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Overcoming Domain Knowledge Forgetting in Continual
Test-Time Adaptation via Siamese Networks

Supplemental Material

1. More Experimental Details

1.1. The Experimental Environment

We perform all experiments on PyTorch (2.2.1+cu118), using 8 × NVIDIA GeForce RTX
3090. The code is primarily implemented based on (Wang et al., 2022; Döbler et al., 2023;
Marsden et al., 2024). We express our gratitude for their contributions to the open-source
community.

1.2. Specific Adaptation Sequences on DomainNet126

DomainNet126 consists of four domains. We obtain a pretrained model for one domain at a
time and then sequentially perform continual test-time adaptation on the remaining three
domains. The specific adaptation sequences are shown in Tab. 1.

Table 1: The Adaption sequences on DomainNet126.
Source Domain Target Domain Sequence

real clipart painting sketch

clipart sketch real painting

painting real sketch clipart

sketch painting clipart real

2. Supplementary Experiments

2.1. Triple-Network Structure Ablation Study

This ablation study aims to validate the necessity of the bridge network in transferring
and integrating knowledge across domains. We set up three groups: (1) using only ”Tent-
A”(Group A), (2) using a dual-network architecture of ”Tent-A +Momentum Network”(Group
B), and (3) using a triple-network architecture of ”Tent-A + Bridge Network + Momentum
Network” (i.e., the complete ATAN)(Group C). The experimental results on ImageNet-C
are shown in Fig. 1.

Based on the experimental results, using the dual network architecture of ”Tent-A +
Momentum Network” resulted in even worse error rate. In contrast, employing ATAN
significantly improved model performance. This demonstrates the necessity of the bridge
network.
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Figure 1: Error rates on ImageNet-C using different numbers of Siamese networks. Group
A: using only ”Tent-A”; Group B: using ”Tent-A + Momentum Network”; Group
C: using ”Tent-A + Bridge Network + Momentum Network”.

Figure 2: Error rates for ATAN (with Tent-A) using different momentum coefficients.

2.2. Sensitivity Analysis of Momentum Coefficient

The momentum coefficient α is a critical hyperparameter in the momentum network during
exponential moving average updates. A larger value of α results in smaller parameter
update increments for the momentum network. Figure 2 shows the variation in error rates
of ATAN across different values of α.
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Figure 3: The Expected Calibration Error (ECE) and Maximum Calibration Error (MCE)
of Tent-A on CIFAR10-C. The closer the arrangement of the bar graph is to
the diagonal line (red dashed line), the better. Lower values of ECE and MCE
indicate better performance.

Figure 4: The Expected Calibration Error (ECE) and Maximum Calibration Error (MCE)
of ATAN (With Tent-A as the forerunner network) on CIFAR10-C. ATAN sig-
nificantly reduces both the expected and the maximum calibration error.

It can be seen that when the momentum coefficient ranges between 0.9 and 0.999, the
error rate fluctuates minimally; however, when the momentum coefficient reaches 0.999, the
error rate increases significantly.



2.3. Model Calibration

Model calibration Guo et al. (2017) refers to the degree of alignment between the probabil-
ities predicted by a model and the actual frequency of event occurrences. Good calibration
aids in determining the extent to which one should trust a model’s predictions, thereby en-
abling more reliable decision-making in practical applications. Conversely, poor calibration
significantly diminishes a model’s usability in real-world scenarios. Entropy minimization-
based methods encourage models to produce overconfident predictions, thus reducing model
calibration.

Calibration error measures the deviation between the predicted probability (confidence)
and the actual accuracy. Expected Calibration Error (ECE) divides the predicted proba-
bilities into several intervals (bins), calculates the difference between the average predicted
probability and the actual accuracy within each bin, and then computes a weighted average
of these differences.

ECE =
M∑

m=1

|Bm|
n

|acc(Bm)− conf(Bm)| (1)

where M is the number of bins, Bm is the m-th bin. |Bm| is the number of samples in the
m-th bin, n is the total number of samples, acc(Bm) is the actual accuracy in the m-th bin,
and conf(Bm) is the average predicted probability in the m-th bin. Maximum Calibration
Error (MCE) focuses on the maximum calibration error among all bins.

MCE =
M

max
m=1

|acc(Bm)− conf(Bm)| (2)

where the symbols have the same meanings as in the ECE formula.

We set the number of the bins to 10. As shown in Fig. 3, Tent-A exhibits substantial
calibration error. However, with Tent-A as the forerunner network, the momentum network
in ATAN effectively reduces calibration error (Fig. 4), to some extent rectifying model
calibration and enhancing the model’s credibility.

3. More Related Work

Domain generalization (DG) addresses the challenge of out-of-distribution (OOD) gen-
eralization, where models trained on source domains must perform well on unseen target
domains without access to target data (Blanchard et al., 2011). Recent advances pro-
pose diverse strategies, including domain alignment for invariant feature learning (Li et al.,
2018b,c), meta-learning to simulate domain shift during training (Li et al., 2018a; Balaji
et al., 2018), and data augmentation techniques to enrich training diversity (Zhou et al.,
2020a,b). Ensemble methods (Zhou et al., 2021), self-supervised learning (Carlucci et al.,
2019), and disentangled representations (Li et al., 2017) further expand the methodological
landscape. DG has been applied to vision, speech, NLP, and medical imaging, highlighting
its broad impact across machine learning domains (?Liu et al., 2020).

Continual learning focuses on catastrophic forgetting (Chen and Liu, 2018), closely
related to CTTA. Existing approaches are commonly categorized into regularization-based
methods, replay strategies, and dynamic architectural techniques (Wang et al., 2024). Reg-
ularization constrains parameter updates to preserve past knowledge (Kirkpatrick et al.,
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2017). Replay methods leverage memory or generative models to rehearse old experi-
ences (Rebuffi et al., 2017). Architectural approaches allocate or expand parameters for
new tasks (Rusu et al., 2016). Many CTTA works (Wang et al., 2022; Döbler et al., 2023)
draw upon the concept of continual learning.

References

Yogesh Balaji, Swami Sankaranarayanan, and Rama Chellappa. Metareg: Towards domain
generalization using meta-regularization. Advances in neural information processing sys-
tems, 31, 2018.

Gilles Blanchard, Gyemin Lee, and Clayton Scott. Generalizing from several related clas-
sification tasks to a new unlabeled sample. Advances in neural information processing
systems, 24, 2011.

Fabio M Carlucci, Antonio D’Innocente, Silvia Bucci, Barbara Caputo, and Tatiana Tom-
masi. Domain generalization by solving jigsaw puzzles. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 2229–2238, 2019.

Zhiyuan Chen and Bing Liu. Lifelong machine learning. Morgan & Claypool Publishers,
2018.
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