Appendix

A Patch-based Negative Data Augmentation Reduces Texture Bias
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Figure 5: ViTs trained only on our patch-based transformations exhibit stronger texture bias. Each
bar is the texture accuracy (%) on Conflict Stimuli (Geirhos et al., 2018), and a higher texture
accuracy indicates the model has a higher bias towards texture. The “texture accuracy” is defined as
the percentage of images that are classified as the “texture” label, provided the image is classified
as either “texture” or “shape” label. The baseline model is ViT-B/16 in (Dosovitskiy et al., 2021)
trained on original images. Other models are trained on patch-based transformed images, e.g., “P-
Shuffle” stands for a ViT-B/16 model trained on patch-based shuffled images. Numbers above the
bars are either accuracy (e.g., ViT-B/16) or the max accuracy difference between each model family
and the baseline ViT-B/16. The patch size in P-Shuffle and P-Rotate and replacement ratio in P-Infill
is denoted by “ps” and “rr”” respectively.

Table 6: Patch-based negative augmentation effectively reduce models’ texture bias on Conflict
Stimuli (Geirhos et al., 2018). A higher texture accuracy indicates the model has a higher bias
towards texture. The “texture accuracy” is defined as the percentage of images that are classified as
the “texture” label, provided the image is classified as either “texture” or “shape” label.

Pre-train on ImageNet-1k Pre-train on ImageNet-21k
Model Texture Accuracy \ Model Texture Accuracy
ViT-B/16 71.7 \ Rand-Augment 57.5
+ P-Rotate / Uniform 66.5 + P-Shuffle / Uniform 56.4
+ P-Rotate / L2 67.2 + P-Shuffle / L2 54.7

B Training Details

We follow (Dosovitskiy et al., 2021) to train each model using Adam (Kingma & Ba, 2015) opti-
mizer with 51 = 0.9, B2 = 0.999 for pre-training and SGD with momentum for fine-tuning. The
batch size is set to be 4096 for pre-training and 512 for fine-tuning. All models are trained with 300
epochs on ImageNet-1k and 90 epochs on ImageNet-21k in the pre-training stage. In the fine-tuning
stage, all models are trained with 20k steps except the models pretrained from ImageNet-1k without
Rand-Augment (Cubuk et al., 2020) or Augmix (Hendrycks et al., 2020), which we train them with
8k steps. The learning rate warm-up is set to be 10k steps. Dropout is used for both pre-training
and fine-tuning with dropout rate 0.1. If the training dataset is ImageNet-1k, we additionally apply
gradient clipping at global norm 1.
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Table 7: Training details following (Dosovitskiy et al., 2021).
Pre-train Dataset Stage Base LR LR Decay Weight Decay Label Smoothing

ImageNet-1K Pre-train  3-107° ‘cosine’ None 1074
ImageNet-21k Pre-train 1072 ‘linear’ 0.03 107
ImageNet-1K Fine-tune 0.01 ‘cosine’ None None
ImageNet-21K  Fine-tune 0.03 ‘cosine’ None None

Table 8: Models using a different hyperparameter A than the default value (1.5).

Model Pre-train Dataset ~ Training stage ~ Hyperparameter A
Rand-Augment + P-Shuffle / Uniform ImageNet-1k Pre-train 1.0
Rand-Augment + P-Shuffle / Contrastive ImageNet-1k Pre-train 1.0
AugMix + P-Shuffle / L2 ImageNet-1k Pre-train 1.0
AugMix + P-Rotate / L2 ImageNet-1k Pre-train 1.0
AugMix + P-Infill / L2 ImageNet-1k Pre-train 1.0
AugMix + P-Shuffle / Contrastive ImageNet-1k Pre-train 1.0
Rand-Augment + P-Shuffle / Uniform ImageNet-21k Pre-train 0.5
Rand-Augment + P-Shuffle / L2 ImageNet-21k Pre-train 0.5
Rand-Augment + P-Shuffle / Contrastive ImageNet-21k Pre-train 0.5
Rand-Augment + P-Rotate / Uniform ImageNet-1k Fine-tune 0.5
Rand-Augment + P-Infill / Uniform ImageNet-1k Fine-tune 1.0
AugMix + P-Rotate / Uniform ImageNet-1k Fine-tune 1.0
Rand-Augment + P-Shuffle / Uniform ImageNet-21k Fine-tune 0.5

C Hyper-parameters in Patch-based Negative Augmentation

For the temperature 7 used in contrastive loss, we consistently observe that 7 = 0.5 works better in
pre-training stage and 7 = 0.1 works better in fine-tuning stage. Therefore, we keep this setting for
all the models in our paper.

Since we sweep the coefficient A in Eqn. 1 from the set {0.5,1.0,1.5}, we observe that for most of
the cases, A = 1.5 works the best. In total we have 48 models using loss regularization on negative
views in Table 1, Table 2, Table 5 and Table 3. We use A = 1.5 for all of them except those listed
in Table 8, where either A = 0.5 or A = 1.0 works better. Actually, we find our proposed negative
augmentation is relatively robust to A. Therefore, we suggest using A = 1.5 if readers do not want
to sweep for the best value for this hyperparameter.

In Table. 9, we display the hyperparameters in each patch-based transformation that we use for the
reported results in this work. Our algorithms are generally insensitive to these parameters, and we
use the same hyperparameter for all the settings investigated in this work.

D Ablation Study

D.1 Sensitivity analysis

We test the sensitivity of our patch-based negative augmentation to various patch sizes in P-Shuffle
and P-Rotate, and different replace rates in P-Infill. We find that P-Shuffle and P-Rotate are insen-
sitive to patch sizes from {16, 32,48,64,96} for ViT-B/16, and P-Infill is robust to replace rates
ranging from 1/3 to 1/2. The accuracy difference is smaller than 0.5% on ImageNet-1k as well as
ImageNet-A and ImageNet-R. Therefore, we use the same parameter for all the settings investigated
in this work (see Table 9 and Appendix C for details).

D.2 Double batch-size of baselines

As we use the negative augmented view per example, the effective batch size is doubled compared
to the vanilla ViT-B/16 trained with only cross-entropy loss. Therefore, we further investigate if
the robustness improvement is a result from a larger batch size. When we increase the batch size
from 4096 to 8192 in pre-training while keeping the same 300 training epochs, it decreases the in-
distribution accuracy to 76.0% on ImageNet-1k as well as the accuracy on robustness benchmarks,
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Table 9: Hyperparameters in patch-based transformations.

Image Size | Stage Model Transformation Hyperparameter
224 x 224 Pre-train ViT-B/32 P-Rotate patch size = 32
224 x 224 Pre-train ViT-B/16 P-Shuffle patch size = 32
224 x 224 Pre-train ViT-B/16 P-Rotate patch size = 16
224 x 224 Pre-train ViT-B/16 P-Infill replace rate = 15/49
384 x 384 Fine-tune ViT-B/32 P-Rotate patch size = 64
384 x 384 Fine-tune ViT-B/16 P-Shuffle patch size = 64
384 x 384 Fine-tune ViT-B/16 P-Rotate patch size = 32
384 x 384 Fine-tune ViT-B/16 P-Infill replace rate = 3/8

Table 10: P-Shuffle improve accuracy on CIFAR-100 and CIFAR-100-C when ViT-B/16 is pre-
trained on ImageNet-21k and then fine-tuned on CIFAR-100.

Model CIFAR-100 CIFAR100-C

ViT-B/16 91.8 74.6
+P-Shuffle / Uniform  92.6 (+0.8)  77.0 (+2.4)

e.g., ImageNet-R from 20.3% to 19.3%. Hence we conclude the robustness improvement is from
the negative data augmentation.

D.3 Pre-training vs. Fine-tuning

We further disentangle the effect of patch-based negative data augmentation in pre-training and fine-
tuning. Take P-Shuffle as an example, we design experiments to apply negative augmentation 1)
only at the fine-tuning stage, 2) only at the pre-training stage, and 3) at both stages. As shown
in Table 13, compared to the baselines, patch-based negative augmentation can effectively help
improve robustness in both stages, and its effect in pre-training is slightly larger than in fine-tuning.
Finally, we found using negative augmentation in both stages during training yields the largest gain.

D.4 When to use positive data augmentation

As Steiner et al. (2021) observed that traditional (positive) augmentation can slightly hurt the accu-
racy of ViT if applied to fine-tuning stage, we compare the accuracy of a ViT-B/16 when positive
augmentation (e.g., Rand-Augment (Cubuk et al., 2020)) is only applied to pre-training stage as well
as both stages. As shown in Table 15, fine-tuning without Rand-Augment achieves slightly better
performance.

E Visualization of Patch-based Transformations

We display more examples with patch-based transformations without cherry-picking in Figure 6,
Figure 7 and Figure 8.
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Table 11: Test accuracy on P-Shuffled images with different patch sizes ps; and clean ImageNet-1k.

Model | psy=24 ps,;=32 ImageNet-1k
ViT-B/16 (ps; = 16) 329 57.8 84.1
BiT-ResNet101-3 9.2 24.6 84.0

Table 12: Effects of patch-based negative augmentation on five different levels of corruption severi-
ties on ImageNet-C. Best results are highlighted in bold.

ImageNet-C Corruption Severity Level

Model
1 2 3 4 5

Rand-Augment (Cubuk et al., 2020)  70.4 63.7 57.9 48.2 36.1

+ P-Shuffle / Uniform 71.0 (+0.6) 644 (+0.7) 59.0 (+1.1) 49.5(+1.3) 37.3(+1.2)
+ P-Rotate / Uniform 71.1 (+0.7) 64.6(+0.9) 59.0(+1.1) 50.0(+1.8) 37.6 (+1.5)
+ P-Infill / Uniform 71.1 (+0.7) 64.6(+0.9) 59.1 (+1.2) 49.5(+1.3) 37.3(+1.2)
+ P-Shuffle / L2 70.5 (+0.1) 639 (+0.2) 583 (+0.4) 48.6(+0.4) 36.6 (+0.5)
+ P-Rotate / L2 71.1 (+0.7) 64.8(+1.1) 59.5(+1.6) 50.1(+1.9) 37.8(+1.7)
+ P-Infill / L2 70.5 (+0.1) 63.8(+0.1) 58.2(+0.3) 484 (+0.2) 36.0(-0.1)
AugMix (Hendrycks et al., 2020) 71.4 65.2 60.5 51.9 40.2

+ P-Shuffle / Uniform 71.6 (+0.2)  65.7 (+0.5) 61.2(+0.7) 52.8(+0.9) 41.4(+1.2)
+ P-Rotate / Uniform 71.7 (+0.3)  65.7 (+0.5) 61.1(+0.6) 52.7(+0.8) 41.4(+1.2)
+ P-Infill / Uniform 71.9 (+0.5) 65.8 (+0.6) 61.1(+0.6) 52.4(+0.5) 40.8 (+0.6)
+ P-Shuffle / L2 71.8 (+0.4) 65.8(+0.6) 61.0(+0.5) 524 (+0.5) 40.7(+0.5)
+ P-Rotate / L2 71.9 (+0.5) 66.0 (+0.8) 61.5(+1.0) 52.9 (+1.0) 41.6 (+1.4)
+ P-Infill / L2 71.8 (+0.4) 658 (+0.6) 61.3(+0.8) 52.7(+0.8) 41.0(+0.8)

Table 13: Effect of patch-based negative augmentation in pre-training and fine-tuning stages. Top-1
accuracies of ViT-B/16 pretrained and fine-tuned on ImageNet-1k. Under ‘Stage’ we denote which
training stage patch-based negative augmentation is used. The best result under each setting is
highlighted in bold.

Pre-train on ImageNet-1k

Model ‘ Stage ‘ ImageNet-1k ~ ImageNet-A  ImageNet-C ~ ImageNet-R
Rand-Augment (Cubuk et al., 2020) | - | 791 7.2 55.2 23.0
+ P-Shuffle / Uniform Fine-tune 79.1 7.1 55.3 23.0
+ P-Shuffle / Uniform Pre-train 79.3 7.6 56.2 23.5
+ P-Shuffle / Uniform Both 79.3 7.7 56.2 23.4
+ P-Shuffle / Contrastive Fine-tune 79.5 7.6 56.2 23.7
+ P-Shuffle / Contrastive Pre-train 79.4 8.5 56.8 24.0
+ P-Shuffle / Contrastive Both 79.7 8.9 57.8 24.7

Pre-train on ImageNet-21k

Model ‘ Stage ‘ ImageNet-1k ~ ImageNet-A  ImageNet-C =~ ImageNet-R
Rand-Augment (Cubuk et al., 2020) | - | 844 28.7 67.2 38.7
+ P-Shuffle / L2 Fine-tune 84.5 294 67.9 39.0
+ P-Shuffle / L2 Pre-train 84.4 29.9 67.5 38.8
+ P-Shuffle / L2 Both 84.5 29.7 68.0 39.6
+ P-Shuffle / Contrastive Fine-tune 84.4 29.2 67.5 38.7
+ P-Shuffle / Contrastive Pre-train 84.6 29.9 67.7 38.5
+ P-Shuffle / Contrastive Both 84.3 30.8 68.1 38.6
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Table 14: Effect of patch-based negative augmentation in contrastive loss regularization. Top-1
accuracies of ViT-B/16 trained with or without patch-based negative augmentation.

Pre-train on ImageNet-1k

Model ImageNet-1k  ImageNet-A  ImageNet-C  ImageNet-R
ViT-B/16 + Contrastive* 78.7 8.1 535 22.8
ViT-B/16 + Shuffle / Contrastive 78.9 8.2 54.1 232
ViT-B/16 + P-Rotate / Contrastive 78.9 8.6 54.1 23.6
Rand-Augment + Contrastive™ 79.7 8.9 57.6 24.7
Rand-Augment + P-Rotate / Contrastive 79.9 9.4 58.4 25.4
Rand-Augment + P-Infill / Contrastive 79.9 9.3 57.9 25.0
AugMix + Contrastive* 79.6 9.0 59.8 272
AugMix + P-Rotate / Contrastive 79.6 9.8 60.0 27.5
AugMix + P-Infill / Contrastive 79.6 9.9 60.3 273
Pre-train on ImageNet-21k
Model ImageNet-1k  ImageNet-A  ImageNet-C = ImageNet-R
Rand-Augment + Contrastive* 84.1 29.7 67.6 39.2
Rand-Augment + P-Shuffle / Contrastive ~ 84.3 30.8 68.1 38.6

Table 15: Effect of positive augmentation in pre-training and fine-tuning stages. Top-1 accuracies
of ViT-B/16 pretrained on ImageNet-21k and fine-tuned on ImageNet-1k. Under ‘Stage’ we denote
which training stage Rand-Augment (Cubuk et al., 2020) is used.

Model | Stage | ImageNet-lk ImageNet-A ImageNet-C  ImageNet-R
Rand-Augment | Pre-train | 84.4 28.7 67.2 38.7
Rand-Augment | Both | 84.4 29.1 67.0 38.4
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Figure 6: Examples of original images (on the top) and their corresponding patch-based shuffle (at
the bottom) with either patch size 32 or 48 without cherry-picking.
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Figure 7: Examples of original images (on the top) and their corresponding patch-based rotation (at
the bottom) with either patch size 32 or 48 without cherry-picking.
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Figure 8: Examples of original images (on the top) and their corresponding patch-based infill (at the
bottom) with either replace rate 0.25 or 0.375 without cherry-picking.
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