
Self–Similarity Priors
Supplementary Material

A Background and Extended Formulation

A.1 Metric Spaces

Lemma 1 (Useful results on bounded and closed sets). The following hold:

i. Let X =
⋃n

i=1 Ai such that Ai is a closed subset of Rn for all i = 1, . . . , n. Then, X is closed.

ii. Let X =
⋃n

i=1 Ai such that Ai is a bounded subset of Rn for all i = 1, . . . , n. Then, X is bounded.

iii. Let f : Rn → Rn to be a continuous function and let A to be a closed, bounded subset of Rn. Then
f(A) = {f(x) : x ∈ A} is also closed and bounded.

Definition 3 (Metric space). A metric space is a pair (X, d) where X is a set and d : X× X → R is
a map such that for all x, y, z ∈ X the following conditions hold:

i. d(x, y) ≥ 0; iii. d(x, y) = d(y, x);

ii. d(x, y) = 0; ⇔ x = y iv. d(x, y) ≤ d(x, z) + d(z, y).

The function d is called “metric”. Note that a metric space is called compact if X is closed and
bounded.

Definition 4 (Convergent sequence). Given a metric space (X, d), a sequence {xt}∞t=0 is said to
converge to some x∗ ∈ X

∀ϵ > 0 ∃t∗ : ∀t > t∗ d(x∗, xt) < ϵ.

Definition 5 (Cauchy sequence). A sequence {xt}∞t=0 is X is a Cauchy sequence if

∀ϵ > 0 ∃t∗ : ∀s, t > t∗ d(xs, xt) < ϵ.

Definition 6 (Complete metric space). A metric space (X, d) is complete if every Cauchy sequence
in X is convergent in X.

Definition 7 (Hausdorff space). Let (X, d) be a complete metric space, and define H(X) as the set of
all compact subsets of X:

H(X) = {A ⊂ X : A is compact}.

Definition 8 (Hausdorff metric). Let (X, d) be a metric space and let Y,Z ⊂ X. The Hausdorff
metric dH : H(X)×H(X) → R is then defined as

dH(Y,Z) = max

{
sup
y∈Y

d(y,Z), sup
z∈Z

d(Y, z),
}

where d(y,Z) := inf
z∈Z

d(y, z).

Theorem 2 (Completeness of Hausdorff metric space (Barnsley and Hurd, 1993)). Let (X, d) be a
complete metric space. Then (H(X), dH) is a complete metric space.

(Barnsley and Hurd, 1993) calls (H(X), dH) the space where fractals live. It is the space where the
mathematical foundations necessary to generate fractals via iterated function systems are developed.

14

A.2 Contraction mappings

Definition 9 (Lipschitz function). Let (X, d) be a metric space. A map f : X → X is Lipschitz with
constant ℓ if there exists ℓ > 0 such that

∀x, y ∈ X d(f(x), f(y)) ≤ ℓd(x, y).

A Lipschitz function is then called contractive iff ℓ < 1. Moreover, if f : X → X is Lipschitz, then f
is continuous.

Note: A map f is contractive if brings any elements of X close together. The Lipschitz
constant ℓ measures (bounds) how closer the points are brought together by one application
of f . Thus, intuitively, if we iterate a discrete dynamical system

xt+1 = f(xt)

starting from any point of x0 within X, the sequence {xt}∞t=0 will converge to a unique fixed
point x∗ such that f(x∗) = x∗.
It is worth to notice that linear affine maps f : Rn → Rn (where we consider the standard
Euclidian distance to form a complete metric space on Rn)

f(x) = Ax+ b

are contractive if and only if

∥A∥2 = sup
x∈Rn

∥Ax∥2
∥x∥2

< 1

If this is the case any sequence {xt}∞t=0 would converge to a fixed point

x∗ = (I −A)−1b.

The above intuitions can be formalized in the following classic result

Theorem 3 (Banach fixed-point theorem). Let (X, d) be a (non-empty) complete metric space and let
f : X → X be a contractive map. Then f admits a unique fixed point x∗ ∈ X such that any sequence
{xt}∞t=0 defined by the iteration

xt+1 = f(xt)

converges to x∗ for any starting point x0 ∈ X, i.e.

∃!x∗ ∈ X lim
t→∞

xt = lim
t→∞

f(xt) = x∗ ∀x0 ∈ X.

Corollary 2 (Collage theorem). Under the assumptions of Theorem 3, it holds

∀x ∈ X d(x, x∗) ≤ 1

1− ℓ
d(x, f(x)).

A.3 Iterated Function Systems

With the aim of deriving fractal compression algorithms it is necessary to define functions on the
Hausdorff metric space (H(X), dH). In particular, let {f1, f2, . . . , fK} be a collection of maps on X,
fk : X → X. Then, we can define maps F : H(X) → H(X) by

F (A) =
K⋃

k=1

fk(A) ∀A ∈ H(X)

where fk(A) is intended as fk(A) = {fk(a) : a ∈ A}. Moreover, note that A ∈ H(X) is also a
compact subset of X. The following results shows that if all fk are contractive, then also F is.

Theorem 4 (Contractivity of maps on the Hausdorff metric space). If for all k = 1, . . . ,K, the
maps fk : X → X are contractive with Lipschitz constant ℓk < 1, then F : H(X) → H(X);A 7→⋃K

k=1 fk(A) is contractive in the Hausdorff metric with Lipschitz constant L = maxk{ℓk}k.

15

Definition 10 (Iterated function system (IFS)). An iterated function system is a collection
{f1, . . . , fK} of contractive maps fk : X → X, represented by F : H(X) → H(X).

Thanks to its contractivess (as established by Theorem 4), F define a unique fixed point (attractor)
by the Banach fixed-point theorem (Theorem 3), i.e. the discrete iteration defined by

At+1 = F (At) =

K⋃
k=1

fk(At)

converges to A∗ ∈ H(X) for t→ ∞. Since the attractor A∗ is unique, it is completely defined by the
map F . The data encoding problem can be then formulated as follows.

Problem: Fractal Data Encoding (Section 2.2)

If we are given some set S ∈ H(X) (our data), can we find map F whose attractor is S?
In other words, given data S ∈ H(X), find the collection of maps fk : X → S such that the
following conditions hold

i. F : H(X) → H(X);A 7→
K⋃

k=1

fk(A) is contractive;

ii. S is the fixed point of F , S = F (S) =
K⋃

k=1

fk(S);

Properties of data encoding Note that condition ii. suggests that, in order for the problem to admit
a solution, data should be made up of transformed copies of itself. Specifically, we are assuming that
it is possible to take the data S, copy it K-times, apply to the copies some contractive transformations
and finally stitch them together to reconstruct the initial data S. The uniqueness of an attractor
induced by the contractivity of F is fundamental to practically solve the fractal encoding problem
because if we can find an F such that S = F (S), then we will be sure that F is the unique solution of
the encoding problem.

On the Collage Representation By applying the Collage Theorem (Corollary 2) to F using the
Hausdorff metric dH we have

dH(S,A∗) ≤ 1

1− L
dH(S, F (S))

⇔ dH(S,A∗) ≤ 1

1−maxk{ℓk}
dH

(
S,

K⋃
k=1

fk(S)

)

This means that if we can’t stitch the transformed copies fk(S) together to perfectly reconstruct the
data S, i.e.

dH

(
S,

K⋃
k=1

fk(S)

)
̸= 0 (⇔ S ̸= F (S)),

then the lower the Lipschitz constant L of the IFS is, the lower the distance between the data S and
the attractor A∗ of S will be given a mismatch dH(S, F (S)). As mentioned in the main text, this
implicitly promotes the use of “very contractive” maps fk (i.e. with low ℓk).

A learning perspective to the fractal data encoding In the language of machine learning practice,
the fractal data encoding problem can be translated into finding a parametric representation fk(· ;wk),
w ∈ Rnw for the functions fk(·) (e.g. Neural Networks with parameters wk) where the parameters
w = (w1, . . . , wK) ∈ W are trained to minimize the Hausdorff metric loss function dH(S, F (S;w))

16

naturally induced by the Collage Theorem, i.e.

min
w

dH(S, F (S;w))

subject to F (S;w) =
K⋃

k=1

fk(S;wk)

w ∈ W

Once optimal fk(· ;wk) are computed, it is easy to find the data that F encodes (i.e. the decoding
process): after sampling any initial condition A0, the encoded data can be obtained by iterating

At+1 = F (At),

until convergence to A∗ ≈ S.

A.4 Partitioned Iterated Function Systems

Existance of solutions of the fractal encoding (inverse) problem requires data to be perfectly rep-
resentable by an IFS. Conversely, we can define self-similar data if it is the attractor of an IFS.

Definition 11 (Self-similar sets). A set S is called self-similar if and only if there exists a contractive
map F : H(X) → H(X) whose attractor is S, i.e. S = F (S).

While verifying the self-similarity of a specific data point is undoubtedly a NP-hard problem, natural
data (e.g. in an image dataset) is unlikely to satisfy this strict property. The challenge is that the
self-similarity property has to be global across the set S. That is, the entire set S has to be made up of
smaller copies of itself, or parts of itself. If one zooms in on it, it would display the same level of
detail, regardless of the resolution scale (Welstead, 1999).

For this reason, it is necessary to extend the fractal encoding to more general, non globally self-similar
sets. This can be achieved by introducing the technology of partitioned function systems (PFS) where
the domains of the contraction maps fk are restricted.

Definition 12 (Partitioned Function System). Let (X, d) be a complete metric space and let Dk ⊂ X
for k = 1, . . . ,K. A partitioned function system is a collection of contraction maps fk : Dk → X.

Note that, according to Fisher (2012), it is not possible to extend Theorem 3 to PFSs in the general
case to effectively ensure existance and uniqueness of fixed points. Intuitively this is due to the
fact that the domains of fk are restricted and the convergence of the decoding dynamics (i.e. the
fixed-point iteration)

At+1 =

K⋃
k=1

fk(At)

becomes dependent on the choice of the initialization A0. In fact, even though if choose A0 ⊂⋂K
k=1 Dk, after one step we may end up with an empty set. Note that this is generally not a problem

in practice when applying PFSs to or Collage working with common type of data such as images or
audio signals.

A.5 Functional Representation of Data

In order to derive an implementation-oriented formulation of data encoding with partitioned functions
systems in the general case, it can be convenient to rely on a functional description of data (see e.g.
(Welstead, 1999; Fisher, 2012)). In example, images (of infinite resolution) can be represented as
functions from the unit square to R. Time series can also be thought as real continuous functions
over a compact time domain.

Specifically we restrict our analysis to the space F = {ϕ : dom(ϕ) → R} of data defined the graphs
(z, ϕ(z)), z ∈ dom(ϕ) of (measurable) functions over the compact domain dom(ϕ) and values in R.
dom(ϕ) is assumed to be a compact subset of Rn.

17

Partitioned fractal encoding a la Welstead (1999) We choose F = Lp(X ;R) with X a compact
subset of Rn and we equip it with a metric dF induced by the Lebesgue measure

dF (ϕ, ψ) =

(∫
X
|ϕ(x)− ψ(x)|pdx

)1/p

.

Then (F , dF) is a complete metric space and the Banach fixed-point (Theorem 3) holds. Then, we
specialize the partitioned function system on (F , dF) as comprised of the following collections of K
elements:

a. sub-domains Dk ⊂ X ;

b. invertible contractive maps vk : Dk → Rk ⊂ X ;

c. maps fk : F → F defined as

fk(ϕ)(x) = ckϕ(v
−1
k (x)) + dk ∀ϕ ∈ F , x ∈ X .

Note that we can define subsets Rk as the range of vk operating on Dk, i.e. Rk = vk(Dk). The
constants ck, dk realize an affine trasformation on ϕ by expanding/contracting and shifting the range
of ϕ. The contractive maps vk are the “spatial part” of the PFS and map the domains Dk to their
respective ranges Rk. vk are often chosen to be affine maps

vk(x) = Akx+ bk, Ak ∈ Rn×n, bk ∈ Rn.

Note that it is possible to choose Ak and ck so that fk is contractive. In particular, it is sufficient to
require |ck||detAk|1/p < 1

Definition 13 (Tiling partition). A collection of ranges Rk ⊂ X is said to tile X iff X =
⋃K

k=1 Rk

and ∀i ̸= j Ri ∩ Rj = ∅.

If the ranges Rk tile X , we can define the operator F : F → F by

F (ϕ)(x) = fk(ϕ)(x) for x ∈ Rk,

i.e.

F (ϕ)(X) =

K⋃
k=1

fk(ϕ)(Rk) =

K⋃
k=1

ckϕ(Rk) + dk =

K⋃
k=1

ckϕ(v
−1
k (Dk)) + dk

Since the ranges Rk tile X , F is defined for all x ∈ X , so F (ϕ) is a function of the same class of ϕ.

If ϕ is an image on the unit square tiled by the ranges Rk, then F (ϕ) will also be an image on the
unit square.

Assuming all the maps fk to be contractions on F , F satisfies the Banach fixed point theorem and
has unique fixed point ϕ∗ ∈ F such that

ϕ∗ = F (ϕ∗).

Collage and PIFS for digital images Similarly to the main text, we can define PIFS by restricting
our analysis to affine maps, operating on the space of discrete images of a given resolution with a total
number m of pixels. Note that pixels across channels can be treated effectively as different elements.

We assume the value of each pixel to range in R and to collect all the pixel values in an ordered3 in a
vector z ∈ Rm. Then, a partitioned function system (Jacquin, 1993; Welstead, 1999; Fisher, 2012)
can be represented as the structured map

Definition 14 (Discrete PIFS). Consider a m-pixel image represented by the ordered vector z ∈ Rm.
Then, a Discrete PIFS is defined as the parametric linear map F : Rm → Rm:

F (z;w) =

K∑
k=1

akTkPkSkz +

k∑
k=1

bkTk1, w = (a1, . . . , aK , b1, . . . bK) (A.1)

where Tk, Pk, Sk are defined similarly to Definition 1.

3with a specific predefined criterion.

18

Algorithm 1 Fractal Compression with PIFS Jacquin et al. (1992)
Encoding Decoding

Input: Image I, parametrized PIFS F (· ;w).
Partition I into two collections of N domains Dn and K ranges Rk.
for k from 1 to K do
D∗

n, w
∗
k = arg min

Dn,wk

d(fk(Dn;wk),Rk) matching

end for
Store code := {w∗

k, (n, k)}Kk=1 fractal code and domain index
Initialize Ĩ0 as any image with same size as I
repeat

Ĩt+1 =

K⋃
k=1

fk(D
∗
n,t;w

∗
k)

until convergence
return Ĩ∗ decoded data

Figure 8: Algorithmic summary of fractal compression with PIFS.

The output of the collage operator for Rk is thus a pooled and scaled version of Dk translated
block-wise by bk. A symbolic formulation of the collage operator can be also given by

Rk = fk(Dk;wk), wk = (ak, bk)

Since the collection of range cells Rk tiles the whole image I, we can write (a la IFS)

F (I;w) =
K⋃

k=1

fk(Dk;wk)

Remark 1 (Extensive search). Note that, in the classic setting of Jacquin (1993); Welstead (1999),
for each range cell Rk, the corresponding domain cell Dk has to be found by extensive search through
the set of all possible pooled domain cells.

We provide a compact algorithmic summary of the core steps in fractal compression as per Jacquin
et al. (1992); Jacquin (1993) in Figure 8. Other variants of fractal compressions have historically been
attempted, including ones with adaptive partitions and different algorithms to solve the combinatorial
search during encoding.

19

B Additional Details

Code-length flexibility: Collage and PIFS A Collage operator is a generalization of PIFS
operators of fractal compression algorithms (Jacquin et al., 1992; Jacquin, 1993; Fisher, 2012). In
particular, the Collage introduces additional flexbility in the choice of code length i.e. how many
bits to allocate to the compression code. For example, given non-adaptive (square) tiling domain and
range cells4, the bits-per-dimension (bpp) cost of PIFS-based fractal compression of Jacquin et al.
(1992) is costwk

n2
r,k

, where costwk
is the cost of saving the parameters of single element in the fk of

Fw.

Here, other than seeking further compression and reduction of costwk
by modifying the class of

operator, the only degree-of-freedom is to reduce or increase the dimensions of tiling partitions.
Note that modifying the partition scheme has not only effect on the bpp cost but also on the type
of self-similarity that can be captured. Instead, Collage operators offer an additional design axis;
indeed, the bpp budget – given a fixed partition – can be modified by increasing or decreasing the
number of auxiliary domains introduced as learnable feature maps. This number is independent
on the number of original domains, whereas the number of additional domains generated as affine
augmentations of fractal compression (see Welstead (1999); Fisher (2012) for details) is not.

On adaptive partitions Elaborated partitioning schemes have been developed for PIFS-based
fractal compression methods (Fisher, 2012). While the analysis and empirical comparisons of this
work have been centered around the operators, rather than partition schemes, we remark that Collage
are compatible with alternative and potentially adaptive schemes. Much like for PIFS, this is a likely
direction for further improvement of Neural Collage.

B.1 Collage Schematic

Collage Operator

S

P

F

T

Figure 9: Conceptual schematic of a Collage. In blue, domain cells Sn; in red, range cells Rk of
ranges. Green highlights auxiliary domains. A step can be broken down into (1) S partitions into
domains (2) P reduces dimensions to ensure dimensions match (3) F produces all range cells, each
following (3.2) (4) T rearranges the output.

B.2 Extended related work

Attention operators and patches There exist superficial similarities between Collages and atten-
tion operators (Vaswani et al., 2017). In particular, recent variants of vision transformers (Dosovitskiy
et al., 2020) where attention acts on square patches, can be seen as a single step of a Collage, where
source and target partition match and aggregation weights are found via similarity scores. Collages
differ from attention in that they are structured fixed-point iterations, are built to accommodate
non-overlapping partitions, are resolution-invariant, and have a compact parametrization that can be
used as a compression code. It remains to be seen whether investigating attention operators through
the lenses of Collages can yield improvements in theoretical understanding or performance.

Fractal compression Sun et al. (2001) parametrize elements of the iterative map with small neural
networks. The proposed method still requires training on each image, with marginal improvements

4Although different choices are possible, "tiling" partitions are most convenient; when applying F , a domain
partition D can be identified via single ⌈log2 N⌉-bit integer address.

20

over standard variants. (Guido et al., 2006) provide a preliminary exploration of fractal coding
for audio. Despite the extensive body of work, fractal methods for image compression are rarely
used in place of other codecs due to slow encoding. As discussed in the main text sections, Neural
Collages address this limitation via neural network amortization. We note that Neural Collage
remain compatible with adaptive partitioning schemes, which provides a likely avenue of further
improvement. We highlight a line of work on different probabilistic models of self-similarity (Zha
et al., 2020) for tasks such as image restoration.

21

C Additional Experiment Details

Hardware and software The experiments have been performed on a workstation with 2 NVIDIA
GEFORCE RTX 3090 GPUs. We use JAX5 for model implementation and distributed training.

C.1 Neural Collages for Fractal Art

We construct the encoder E for w by stacking 4 blocks composed of interleaved depthwise and
pointwise convolutions. We train for 5000 iterations on each image displayed in Figure 7 with
AdamW (Loshchilov and Hutter, 2017). We produce U by augmenting at each step of the Collage
with rotations of [90, 180, 270] degrees and flips, produced by multiplying all pixels values of a
domain cell by −1. We do not use any additional learned auxiliary domain, so that the patterns can
be kept globally fractal.

Neural Collage Texturizers We report additional results in D.3, where a Neural Collage is used
to texturize images by optimizing transformations of a fixed U, provided as external "texture source".
To promote utilization of texture sources we introduce a coefficient to weigh U relative to D in the
Collage iteration. We note that in this case the Neural Collage is not leveraging any self-similarity;
rather, this should be intended as a display of the capability of a Neural Collage to aggregate both
external as well as self-referential information to achieve a given task.

C.2 Neural Collages for Generation

We design the architecture of a Collage following (Child, 2020). Table 3 describes the model
structure. We introduce 30 learned auxiliary domains, parametrized to be pixel patches of same size
of range cells. As the tiling partition, we choose a single domain cell of size 28× 28 and size 4 range
cells of 14× 14. All models use a Bernoulli likelihood. Note that in this case, the fixed-point of the
generator p(x|w), chosen as a Collage, is given by the collection of all Bernoulli parameters, one
for each pixel. This is thus an example of a Collage that is does not decode pixel-values of an image
as its fixed-point, but rather parameters of their distributions. We optimize the ELBO by sweeping the
KL weight β as discussed in Figure 4 for 2000 epochs. Additional training details are provided in 4.

C.3 Neural Collages for Compression

We construct the encoder E for w by stacking 4 blocks composed of interleaved depthwise and
pointwise convolutions. We train for 5 epochs with AdamW Loshchilov and Hutter (2017) on a
dataset of 8000 crops of size 40× 40 obtained from the DOTA Xia et al. (2018) aereal image training
dataset. The dataset is generated (statically) randomly by applying a random rotation, followed by
a random crop. We produce the 10 held-out images of size 1200× 1200 with a similar procedure,
applied to the test dataset. We note that DOTA images are all of different resolutions, motivating the
above procedure. Speedup results are provided in Figure 12.

As baselines, we use the official COIN Dupont et al. (2021) implementation. We develop a GPU-
parallel version of fractal compression with PIFS Jacquin et al. (1992); Jacquin (1993); Welstead
(1999); Fisher (2012) as a baseline. We use the same partition strategy as for Neural Collages,
namely tiling into domain and range cells. Our evaluation includes a fractal compression variant
which incorporate U by augmenting domains, D at each step, with rotations of [90, 180, 270] degrees
and flips, produced by multiplying all pixels values of a domain cell by −1. The matching problem of
domains to ranges is solved via least-squares as per Welstead (1999). We parallelize the least-square
solving across domains.

C.4 Computation of bits-per-pixel

We report the per-image bits-per-pixel (bpp) cost of compression baselines and Neural Collage
compressors.

5https://github.com/google/jax

22

K N V ϵ bppu bppa bppb total

low-bpp 4 1 3 3 9 · 10−4 6.6 · 10−3 6.3 · 10−3 0.134
medium-bpp 4 1 10 4 8.9 · 10−4 6.5 · 10−3 5.9 · 10−3 0.319

Table 2: Example bits-per-pixel (bpp) code length computation for Neural Collage. To determine
bppa and bppb we consider respective maximum values and represent their quantized integer range
as discussed in C.4. The cost of auxiliary inputs is amortized on the 10 held-out 1200× 1200 crops
of DOTA, as decoding uses the same learned auxiliary domains for all images. We consider the
auxiliary cost bppu as part of the fractal code for a worst-case comparison, noting that reutilization
of the same compressor eventually amortizes the cost to 0. For M images, limm→∞ bppu = 0.

Neural Collage Computation of the bpp of fractal codes generated by a Neural Collage compres-
sor requires the following considerations. First, mixing weights γk,n are premultiplied to both ak,n
and bk,n. The same holds for mixing weights of auxiliary domains. We store a single bk for each Rk,
noting that the corresponding term can be precomputed as bk =

∑N
n=1 γk,nbk,n. Further, we exploit

the a priori knowledge that a, b ∈ [−1, 1], enforced via tanh, in combination with significant digit
clipping. Quantizing by clipping to a threshold ϵ of significant digits, in combination with the bounds
enforced by tanh, allows bit-packing each into less than ⌈log2 10ϵ⌉+ 2. One of the 2 additional bits
is for sign information. This can be verified by noticing that by quantizing the range of values, after
multiplying by 10ϵ, is contained by the integer range [−10ϵ, 10ϵ − 1]. In practice, the number of bits
is less than ⌈log2 10ϵ⌉+ 2 since not all values in entire integer interval defined by ϵ-quantization are
utilized by an,k and bk for a given image. In particular, we consider maximum absolute values of the
quantized values, and restrict the interval accordingly.

Neural Collage do not require storing of domain cell addresses, since each map of the Collage
corresponding to a range cell (see 3.2) always transforms all domains. The specification of patch-
sizes, especially when they are the same across all domains, and across all ranges, as well as type of
pooling operators can be considered part of the codec, adding a negligible amount of bits. Further
considerations are necessary in one wishes to employ more elaborate partition schemes (Fisher,
2012).

The overall cost is given by

bpp = K(N + V)bppa +Kbppb + V bppu (C.1)

where N is the number of domains, V is the number of learned auxiliary cells, and K the number of
ranges. We indicate with bppu the cost of saving auxiliary learned patches. This cost is amortized
across each image of the held-out set, as the patches are the same for a given Neural Collage. For V
auxiliary patches of size h× w × c, the (non-amortized) bit cost is 32 · V · h · w · c bits. We provide
some example calculations in 2.

COIN We use the official implementation of (Dupont et al., 2021), where the bpp is computed by
serializing the weights of the network into a bytes.

Fractal compression baseline We quantize fractal compression affine maps fk into half-floats, 16
bits for each ak and bk. As the address of the domain cell associated to a given range Rk, we store the
index with cost ⌈log2 (N + V)⌉-bit, where N is the number of source domains D and V the number
of auxiliary domains U.

block-DCT We apply a forward, two-dimensional discrete cosine transform (DCT) to patches of
sizes 12 (high bpp) and 16 (medium bpp) and filter all but the lowest coefficient. The total cost is
thus 32 · npatches. The image is decoded by applying an inverse DCT.

23

ARCHITECTURE LEARNING PARAMETERS

Model ENCODER DECODER CHANNELS β DECODER LATENT NUM. AUXILIARY

Collage VAE “28x1,28d4,7x1,7d7,1x1” “1x4” 128 [0.5, 0.7, 1.0, 1.2, 1.5] 64 [30]
VDVAE “28x1,28d4,7x1,7d7,1x1” “1x1,7m1,7x2,28m7” 64 [0.5, 0.7, 1.0, 1.2, 1.5] 16 –

Table 3: Autoencoder model setup for VDVAE and VDCVAE (ours). Both were trained on BMNIST
with Bernoulli likelihood. The encoder and decoder architectures strings can be interpreted as follows:
"28x1" indicates 1 block of 28 residual layers and "28m7" is the mixing a 7 by 7 activation into an
upsampled 28 by 28 embedding. A block consists of standard autoencoder parameterization with a
learned prior, posterior and latent projection output layer. The channel dimensions apply to both the
widths of encoder and decoder blocks with the collage decoder variants having learned separate maps
per channel. β describes the KL-coefficient weighting in the ELBO objective.

TRAINING OPTIMIZER

Model BATCH SIZE EPOCHS EMA PER STEP (SECS) LEARNING RATE WEIGHT DECAY OPTIMIZER

Collage VAE (ours) 32 2000 0. 1.7 1e− 4 0. AdamW(0.9, 0.9)
VDVAE 32 2000 0. 2.2 1e− 4 0. AdamW(0.9, 0.9)

Table 4: Optimization settings for training baseline VDVAE and Collage VAE (ours) on dynamically
binarized MNIST.

D Additional Results

D.1 Super-Resolution of Collage VAE Samples

(a) VDVAE (b) VDCVAE

Figure 10: Super-resolution factor of 1× the original data resolution (28 × 28 MNIST). [Left]:
Samples from the VDVAE baseline. [Right]: Samples from a Collage VAE.

24

Figure 11: [Left:] Collage VAE samples with 10× magnification (280× 280 resolution). [Right:]
Collage VAE samples with 40× magnification (1120× 1120 resolution).

D.2 Compression

COIN Collage
10−1
100
101
102
103
104

sp
ee
d
u
p

Encoding speedup w.r.t fractal compression
Encoding Encoding (test)

1

Figure 12: Wall-clock encoding speedups of Neural Collage compressors and COIN over a PIFS-
based fractal compression implementation on GPU.

25

D.3 Fractal Stylization

Figure 13: Fractalized MNIST digit via a Collage at 500× the original data resolution. Red box
is a 3× magnification, yellow is a 20× magnification, orange is 2× magnification, and lime is 80×
magnification. Note that the image is compressed for easier displaying within the pdf. Refer to the
code repository for the full quality version.

(a) (b)

(c) (d)

Figure 14: Neural Collage texturizer, with relative weights of 0.5 for U (texture source) and 1.0 for
D (domain cells) in the Collage iteration.

26

	
	Background and Extended Formulation
	Metric Spaces
	Contraction mappings
	Iterated Function Systems
	Partitioned Iterated Function Systems
	Functional Representation of Data

	Additional Details
	Collage Schematic
	Extended related work

	Additional Experiment Details
	Neural Collages for Fractal Art
	Neural Collages for Generation
	Neural Collages for Compression
	Computation of bits-per-pixel

	Additional Results
	Super-Resolution of Collage VAE Samples
	Compression
	Fractal Stylization

