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Supplementary Material

A Restatement of Algorithms

For the convenience of reference, we restate our algorithms under both finite-horizon case (Algorithm
1) and infinite-horizon case (Algorithm 2). In both finite and infinite horizon cases, we provided
Bayesian regret bounds on both general prior and Dirichlet prior distributions. The reward function
under finite-horizon case is set to be random and bounded within [0, 1]. The reward function under
infinite-horizon case is set to bee known and also bounded within [0, 1]. However, the result can
also be generalized directly to random reward under infinite-horizon case, as long as the reward
function is bounded. As a matter of fact, in our simulation, we set reward functions under both
settings drawn from random normal distribution. Here we give the posterior distribution updating
principle for transition probability distribution with the Dirichlet prior and also the random normal
reward functions with random normal prior for the mean parameter.

Posterior Distribution Update: For each pair of state-action s, a, the transition probability
Ps,a(i), i 2 S is a categorical distribution over state space S. Dirichlet distribution is a con-
jugate prior for the categorical distribution which has the following property: given a prior
Dirichlet(↵1,↵2, . . . ,↵S) for Ps,a, after observing a transition from s to i when taking action a, then
the posterior distribution of Ps,a becomes Dirichlet(↵1, . . . ,↵i+1, . . . ,↵S). Hence when we update
posterior distribution of transition probability Ps,a after time t (and before time t+1), the posterior is
Dirichlet({N t

s,a
(s0) + 1}s02S), where with a little bit abuse of notation, N t

s,a
(s0) denotes the number

of times that s jumps to s0 under action a by (including) time t. For reward posterior, since we model
the reward of each (s, a) as r ⇠ N (µ, 1) and start from a prior µ ⇠ N (0, 1), after observing n
i.i.d. samples from N (µ, 1), the posterior distribution for parameter µ is N (µ̂n, 1/(n+ 1)), where
µ̂n = 1

n

P
n

i=1 ri is the sample average of the observed rewards, and note that µ̂0 is just 0.

Algorithm 3: Concurrent PSRL
Data: prior distribution �,Hp

0 = ;, 8p 2 [n]
for episode k = 1, 2, . . . do

for p = 1 : n do
Sample MDP Mkp ⇠ �(·|H(k�1)H);
Compute µkp 2 argmaxµ V

Mkp

µ,1 ;
for period h=1,. . . ,H do

take action ap
kh

= µkp(s
p

kh
, h);

update H
p

(k�1)H+h
= H

p

(k�1)H+h�1 [ {sp
kh
, ap

kh
, rp

kh
, sp

k(h+1)}

end
end
HkH = [

n

p=1H
p

kH
; Update posterior distribution �(·|HkH);

end
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Algorithm 4: Concurrent Infinite-Horizon Posterior Sampling MDP under Dirichlet Prior
Data: State space S , Action space A, starting state vector across all agents s1 2 S

P , reward
function r, time horizon T , Fp

0 = ; for p 2 [n].
for epochs k = 1, 2, . . . do

Sample transition probability vectors: For each s, a generate sample probability vectors Qk

s,a

as follows:
Posterior sampling: use samples from the posterior sampling:

Qk

s,a
⇠ �(·|Fk�1)

Compute policy ⇡̃k: as the optimal gain policy for the sampled MDP M̃k constructed using
sample set {Qk

s,a
, s 2 S, a 2 A}.

Execute policy ⇡̃k:
for time steps t = ⌧k, ⌧k + 1, . . ., until break epoch do

for agent p = 1, 2, . . . , n do
(This block can be implemented in parallel)
Play action ap

t
= ⇡̃k(s

p

t
).

Observe the transition to the next state sp
t+1.

Update F
p

k
= F

p

k
[ {sp

t
, ap

t
, rp

t
, sp

t+1}

end
If N t+1

s
p
t ,a

p
t
� 2N⌧k

s
p
t ,a

p
t

for some p, (i.e. for some (sp
t
, ap

t
)), then set ⌧k+1 = t+ 1 and

break epoch.
Fk = [

n

p=1F
p

k
Update posterior distribution �(·|Fk);

end
end

B Worst-case Bound of Infinite-Horizon Case under Dirichlet Prior

In this section, we provide a worst-case bound on the concurrent infinite-horizon posterior sampling
method under Dirichlet Prior based on [3].
Theorem B.1. (Worst-case Infinite-Horizon Regret Bound Under Dirichlet Prior) With high
probability, Algorithm 5 is bounded by

R(T,M, n)  Õ
⇣
DS

p

ATn
⌘

Proof. As defined before,

R(T,M, n) = Tn�⇤ �
nX

p=1

TX

t=1

r(sp
t
, ap

t
)

�⇤ is the optimal gain of MDP M. Algorithm 5 proceeds in epochs k = 1, 2, . . . ,K, where
K  SA log(T ). Now we define

Rk = (⌧k+1 � ⌧k)n�
⇤
�

⌧k+1�1X

t=⌧k

nX

p=1

rspt ,a
p
t

So we can write Rk as

Rk =

⌧k+1�1X

t=⌧k

nX

p=1

[�⇤ � rspt ,a
p
t
]

=

⌧k+1�1X

t=⌧k

nX

p=1

[(�⇤ � �̃k) + (�̃k � rspt ,a
p
t
)]
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Algorithm 5: Concurrent Infinite-Horizon Posterior Sampling MDP under Dirichlet Prior
Data: State space S , Action space A, starting state vector across all agents s1 2 S

n, reward
function r, time horizon T , parameters ⇢ 2 (0, 1],  , !, , ⌘.

Initialize: ⌧1 = 1,M⌧1
s,a

= !1.
for epochs k = 1, 2, . . . do

Sample transition probability vectors: For each s, a generate  independent sample
probability vectors Qj,k

s,a
, j = 1, 2, . . . , as follows:

• (Posterior sampling): For s, a such that N⌧k
s,a

� ⌘, use samples from the Dirichlet
distribution:

Qj,k

s,a
⇠ Dirichlet(M⌧k

s,a
)

• (Simple optimistic sampling): For s, a such that N⌧k
s,a

< ⌘, use the following simple
optimistic sampling: let

P�
s,a

= P̂s,a ��

where P̂s,a(i) =
N

⌧k
s,a(i)

N
⌧k
s,a

, and �i = min{

r
3P̂s,a(i) log(4S)

N
⌧k
s,a

+ 3 log(4S)
N

⌧k
s,a

, P̂s,a(i)}, and let z

be a random vector picked uniformly at random from {11, . . . ,1S}; set

Qj,k

s,a
= P�

s,a
+ (1�

SX

i=1

P�
s,a

(i))z

Compute policy ⇡̃k: as the optimal gain policy for extended MDP M̃k constructed using
sample set {Qj,k

s,a
, j = 1, 2, . . . , , s 2 S, a 2 A}.

Execute policy ⇡̃k:
for time steps t = ⌧k, ⌧k + 1, . . ., until break epoch do

for agent p = 1, 2, . . . , n do
(This block can be implemented in parallel)
Play action ap

t
= ⇡̃k(s

p

t
).

Observe the transition to the next state sp
t+1.

end
Set N t+1

s,a
(i), M t+1

s,a
(i) for all a 2 A, s, i 2 S as defined.

If N t+1
s
p
t ,a

p
t
� 2N⌧k

s
p
t ,a

p
t

for some p, then set ⌧k+1 = t+ 1 and break epoch.
end

end

where �̃k is the optimal gain of the extended MDP M̃k. From Lemma (2.1) we know that for any
state s, optimal policy ⇡̃k for communicating MDP M̃k, action a = ⇡̃k(s), �̃k = rs,a + P̃T

s,a
h̃� h̃s,

where P̃s,a = Qj,k

s,a
for some j. So we have

⌧k+1�1X

t=⌧k

nX

p=1

(�̃k � rspt ,a
p
t
) =

⌧k+1�1X

t=⌧k

nX

p=1

(P̃s
p
t ,a

p
t
� Ps

p
t ,a

p
t
+ Ps

p
t ,a

p
t
� 1s

p
t
)T h̃

=

⌧k+1�1X

t=⌧k

nX

p=1

(P̃s
p
t ,a

p
t
� Ps

p
t ,a

p
t
)T h̃+

⌧k+1�1X

t=⌧k

nX

p=1

(Ps
p
t ,a

p
t
� 1s

p
t
)T h̃

Similar to [3] we have the following result:
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Lemma B.1. Fix any vector h 2 RS such that |hi � hi0 |  D for any i, i0 2 S, and any epoch k.
Let the parameters in Algorithm 5 take the following values:

⌘ =

r
nTS

A
+ 12!S4, = 120 log(N⌧k

s,a
/⇢),! = 720 log(N⌧k

s,a
/⇢)

Let � be the normal cumulative distribution function, then

 = Cn log(nA/⇢), C � 732/�,� = (
(1� �)(1/2)4

2
)4

Then for every s, a, with probability 1� ⇢

SA
there exists at least one j such that

(Qj,k

s,a
)Th � PT

s,a
h�O

⇣
D log2(Tn/⇢)

r
SA

Tn

⌘

Proof. When N⌧k
s,a

> ⌘, we know that Qj,k

s,a
⇠ Dirichlet(mp̄1, . . . ,mp̄S), where m = N

⌧k
s,a+!S


,

p̄i =
N

⌧k
s,a(i)+!

N
⌧k
s,a+!S

. From [3] we know that with probability ⌦(1/S)� 8S⇢,

(Qj,k

s,a
� Ps,a)

Th � �O
⇣
!
DS log(N⌧k

s,a
/⇢)

N⌧k
s,a

⌘
� �O

⇣
D log2(Tn/⇢)

r
SA

nT

⌘

When n < ⌘, with probability at least 1/(2S), (Qj,k

s,a
�Ps,a)Th � 0. So we have that with probability

⌦(1/S � S⇢),

(Qj,k

s,a
)Th � PT

s,a
h�O

⇣
D log2(Tn/⇢)

r
SA

Tn

⌘

for at least one sample j. And the rest of the proof follows similarly as in [3] Lemma 5.3.

Similar to [3], the above Lemma directly leads to the following result:

Lemma B.2. With probability 1� ⇢, for every epoch k, the optimal gain �̃k of the extended MDP
M̃k satisfies:

�̃k � �⇤ �O
⇣
D log2(Tn/⇢)

r
SA

nT

⌘

where �⇤ is the optimal gain of MDP M and D is the diameter.

Proof. The proof follows in the same way as in Lemma 5.4 of [3].

Lemma B.3. (Bound on number of epochs). When Tn � SA, the number of epochs K of Algorithm
5 is upper bounded by

K  SA log2(
8Tn

SA
)

Proof. We use the technique similar to [4] to give the upper bound for the number of epochs. Define
N(s, a) = {t < T + 1 : st = s, at = a} be the total number of observations of the state-action
pair (s, a) up to time step T . Let vk(s, a) be the number of observations of state-action pair (s, a)
within epoch k. For each epoch k < K there exists a state-action pair (s, a) with vk(s, a) = N⌧k

s,a
, or

vk(s, a) = 1, N⌧k
s,a

= 0. Let K(s, a) be the number of epochs with vk(s, a) = N⌧k
s,a

and N⌧k
s,a

> 0.
If N(s, a) > 0, then vk(s, a) = N⌧k

s,a
implies N⌧k+1

s,a = 2N⌧k
s,a

. so that

N(s, a) =
KX

k=1

vk(s, a) � 1 +
X

k:vk(s,a)=N
⌧k
s,a

N⌧k
s,a

� 1 +

K(s,a)X

i=1

2i�1 = 2K(s,a)
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If N(s, a) = 0, then K(s, a) = 0, hence N(s, a) � 2K(s,a)
� 1 for any state-action pair (s, a). It

follows that

Tn =
X

s,a

N(s, a) �
X

s,a

(2K(s,a)
� 1) (B.1)

In each epoch k, note that there exists a state-action pair (s, a), such that it’s visited with either
N⌧k

s,a
= 0 or N⌧k

s,a
= vk(s, a). So we have

K  1 + SA+
X

s,a

K(s, a) )
X

s,a

K(s, a) � K � 1� SA

This implies

X

s,a

2K(s,a)
� SA2

P
s,a K(s,a)/SA

� SA2
K�1
SA �1

With (F.1) we have:

Tn � SA(2
K�1
SA �1

� 1)

So we have

K  1 + 2SA+ SA log2(
Tn

SA
)

So when Tn � SA, we have

K  SA log2(
8Tn

SA
)

Lemma B.4. ([3] Lemma 5.5). In every epoch k, with probability 1� ⇢, for all samples j, all s, a,
and all vectors h 2 [0, H]S ,

(Qj,k

s,a
� Ps,a)

Th  O
⇣
H(

s
S

N⌧k
s,a

+
S

N⌧k
s,a

) log2(SAT/⇢)
⌘

Lemma B.5. (Diameter of the extended MDP). Assume Tn > CSA log4(SATn/⇢) for some
constant C sufficiently large. The bias vector of the extended MDP M̃k satisfies

max
s

h̃s �min
s

h̃s  D(M̃k)  2D

with probability 1� ⇢.

Proof. The proof follows that of Lemma 5.7 in [3].

Lemma B.6. With probability 1� ⇢,

KX

k=1

nX

p=1

(Qj,k

s
p
t ,a

p
t
� Ps

p
t ,a

p
t
)T h̃  O

⇣
DS

p

AT (log(SA) + log log2(
8Tn

SA
)) log2(

SAT

⇢
)

+DS3A2 log2(
8Tn

SA
) log2(

SAT

⇢
)
⌘
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Proof. From Lemma B.4, and note the fact that N⌧k+1
s,a �N⌧k

s,a
 N⌧k

s,a
for any pair of (s, a), we have

nX

p=1

(Qj,k

s
p
t ,a

p
t
� Ps

p
t ,a

p
t
)T h̃  D

X

s,a

(N⌧k+1
s,a

�N⌧k
s,a

)(

p
Sp

N⌧k
s,a

+
S

N⌧k
s,a

) log2(
SAT

⇢
)

 O
⇣
(D

p

S
X

s,a

p
N⌧k

s,a +DS2A) log2(
SAT

⇢
)
⌘

So if we use the fact that N⌧k+1
s,a  2N⌧k

s,a
, we have

KX

k=1

nX

p=1

(Qj,k

s
p
t ,a

p
t
� Ps

p
t ,a

p
t
)T h̃  O

⇣ KX

k=1

(D
p

S
X

s,a

p
N⌧k

s,a +DS2A) log2(
SAT

⇢
)
⌘

 O
⇣
(D

p

S log(K)
X

s,a

p
N⌧K

s,a +KDS2A) log2(
SAT

⇢
)
⌘

Also by simple worst case analysis, using the fact that
P

s,a
N⌧K

s,a
 T we have that. with probability

at least 1� ⇢,

X

s,a

p
N⌧K

s,a 

p

SAT

So using Lemma F.1 we have that with probability at least 1� ⇢

KX

k=1

nX

p=1

(Qj,k

s
p
t ,a

p
t
� Ps

p
t ,a

p
t
)T h̃  O

⇣
(D

p

S log(K)
X

s,a

p
N⌧K

s,a +KDS2A) log2(
SAT

⇢
)
⌘

 O
⇣
DS

p

AT (log(SA) + log log2(
8TP

SA
)) log2(

SAT

⇢
)

+DS3A2 log2(
8TP

SA
) log2(

SAT

⇢
)
⌘

Lemma B.7. With probability at least 1� 2�

⌧k+1X

t=⌧k

nX

p=1

(Ps
p
t ,a

p
t
� 1s

p
t
)T h̃  O

⇣
D
p

n(⌧k+1 � ⌧k) log(n/�)
⌘

(B.2)

Proof. We expand the left hand side of (G.2) as

⌧k+1�1X

t=⌧k

nX

p=1

(Ps
p
t ,a

p
t
� 1s

p
t
)T h̃ =

⌧k+1�1X

t=⌧k

nX

p=1

[Ps
p
t ,a

p
t
� 1s

p
t+1

+ 1s
p
t+1

� 1s
p
t
]T h̃

=

⌧k+1�1X

t=⌧k

nX

p=1

(Ps
p
t ,a

p
t
� 1s

p
t+1

)T h̃

| {z }
(1)

+

⌧k+1�1X

t=⌧k

nX

p=1

(1s
p
t+1

� 1s
p
t
)T h̃

| {z }
(2)

Bound on part (1):
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Let Zp =
P

⌧k+1�1
t=⌧k

(Ps
p
t ,a

p
t
� 1s

p
t+1

)T h̃ for each p. Let Ek be the event defined as

E
k

�
= {|Zp|  D

p
8(⌧k+1 � ⌧k) log(4n/�), 8p}

Let

Ak

�
= {

⌧k+1�1X

t=⌧k

nX

p=1

(Ps
p
t ,a

p
t
� 1s

p
t+1

)T h̃ � 4D
p
n(⌧k+1 � ⌧k) log(

p
8n

�
)}

Thus

P[
⌧k+1�1X

t=⌧k

nX

p=1

(Ps
p
t ,a

p
t
� 1s

p
t+1

)T h̃ � 4D
p
n(⌧k+1 � ⌧k) log(

p
8n

�
)] = P(Ak

�
, Ek

�
) + P(Ak

�
, (Ek

�
)c)

 P(Ak

�
, Ek

�
) + P((Ek

�
)c)

Note that for any p, t,

E[1T

s
p
t+1

h̃|⇡̃k, h̃, s
p

t
] = PT

s
p
t ,a

p
t
h̃ (B.3)

On event Ek

�
we have that

P(Ak

�
, Ek

�
) = P(Ak

�
|E

k

�
)P(Ek

�
)  P(Ak

�
|E

k

�
)

Note that by the fact that
p
ab  a+b

2 for a, b > 0, we have
r
log(

2

�
) log(

4n

�
) 

1

2
(log(

2

�
) + log(

4n

�
)) = log(

p
8n

�
)

By (F.5), (Ps
p
t ,a

p
t
�1s

p
t+1

)T h̃ is a martingale difference sequence for each p. So by Hoeffding-Azuma
inequality,

P(Ak

�
|E

k

�
) = P(

⌧k+1�1X

t=⌧k

nX

p=1

(Ps
p
t ,a

p
t
� 1s

p
t+1

)T h̃ � 4D
p
n(⌧k+1 � ⌧k) log(

p
8n

�
))

 P(
⌧k+1�1X

t=⌧k

nX

p=1

(Ps
p
t ,a

p
t
� 1s

p
t+1

)T h̃ � 4D
p
n(⌧k+1 � ⌧k)

r
log(

2

�
) log(

4n

�
))


�

2

Again by Hoeffding-Azuma inequality and the fact that the diameter of the extended MDP is bounded
by 2D, Zp are i.i.d. across p, we have

P((Ek

�
)c) 

PX

p=1

P(|Zp| � D
p

8(⌧k+1 � ⌧k) log(4P/�))  2P
�

4P
=
�

2

Hence

P(Ak

�
)  P(Ak

�
|E

k

�
) + P((Ek

�
)c) 

�

2
+
�

2
= �

Bound on part (2):
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(2) =

⌧k+1�1X

t=⌧k

nX

p=1

(1s
p
t+1

� 1s
p
t
)T h̃

=
nX

p=1

(1s
p
⌧k+1

� 1s
p
⌧k
)T h̃

Note that (1s
p
⌧k+1

� 1s
p
⌧k
)T h̃ are. i.i.d. across p = 1, 2, . . . , n, and that

|(1s
p
⌧k+1

� 1s
p
⌧k
)T h̃|  2D

Hence using Azuma-Hoeffding inequality, we have that for all ✏ > 0,

P(
nX

p=1

(1s
p
⌧k+1
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Taking ✏ = D
p
8n log(1/�) in the above, then we have that with probability at least 1� �,

nX

p=1

(1s
p
⌧k+1

� 1s
p
⌧k
)T h̃  D

p
8n log(1/�) (B.4)

So from Lemma (B.2), (F.2), (G.2), we have the following bound on the regret of Algorithm 5:
Theorem B.2. With probability at least 1� 5⇢,

R(T,M, n)  O
⇣
D
p

SA log2(Tn/⇢)+DS
p

AT log3(
SAT

⇢
)+DS3A2 log(

SAT

⇢
) log(

Tn

SA
)+D

p
nT log(n/⇢)

⌘

This indicates that With high probability

R(T,M, n)  Õ
⇣
DS

p

ATn
⌘

Proof. Note that
X

k

⌧k+1 � ⌧k  T and
KX

k=1

p
⌧k+1 � ⌧k 

p

KT

From Lemma (B.2), (F.2), (G.2), we have that with probability at least 1� 5⇢,

R(T,M, n)  O
⇣
D
p

SA log2(Tn/⇢)+DS
p

AT log3(
SAT

⇢
)+DS3A2 log(

SAT

⇢
) log(

Tn

SA
)+D

p
nT log(n/⇢)

⌘

So we have the bound as indicated above.

C Simulation Results

In both finite and infinite horizon cases, we use an MDP with transition probabilities drawn from
Dirichlet(1, 1, 1, . . . , 1) and deterministic reward functions drawn from N (0, 1). When we model
the posterior of the MDP, we start from a Dirichlet(1, 1, 1, . . . , 1) as the prior distribution of the
transition probabilities, and a N (0, 1) as the prior distribution of the mean (µ) of the i.i.d. Gaussian
rewards r ⇠ N (µ, 1). For infinite horizon case, the epochs are defined using doubling epoch strategy
as defined in Algorithm (2).
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Under both settings, the policy at each episode or epoch is computed using value iteration from
transition probabilities sampled from a Dirichlet distribution with parameters being the number of
visits to each of the state, action, and next states tuples. The discount for value iteration is set to 0.99
and tolerance 0.01. All experiments were run using CPUs, either through a desktop computer or
Google Cloud Platform. Due to page limitation, we put the experiment results in the appendix.

Hyperparameters and Results: For finite horizon case, we run our experiments with different
settings as in the Table 1. We sample 10 environments and average over their per-agent total regrets
to approximate the Bayesian per-agent regret. For infinite horizon case, we run our experiments
with the settings as in Table 2. Again, we sample 10 environments and average over their per-agent
total regrets to approximate the Bayesian per-agent regret. We plot the Bayesian per-agent total
regrets against the number of agents for both finite-horizon and infinite-horizon settings. Figure 1
shows finite-horizon results under two different K and H settings, i.e., K = 30, H = 75 and
K = 20, H = 10 respectively. The ⇥( 1p

n
) trends are plotted as dashed curves for reference. We can

see that under all 4 settings, the Bayesian per-agent regrets from simulations fit well the Bayesian
regret bounds given by our theory. Figure 4 shows infinite-horizon results under two different settings
of total time steps, i.e., T = 1000 and T = 2000 respectively. Again, the simulated Bayesian
per-agent regret fits well the ⇥( 1p

n
) trend given by our Bayesian regret bounds.

Table 1: Finite-Horizon Settings
S (state space size) A (action space size) K (number of episodes) H (horizon)

5 5 20 10
5 5 30 75
20 10 20 10
20 10 30 75

Table 2: Infinite-Horizon Settings
S (state space size) A (action space size) T (total time steps for running)

10 5 1000
10 5 2000

Concurrent UCB Comparison: We compare our concurrent PSRL to a baseline concurrent UCB
algorithm to verify its effectiveness. For concurrent UCB, we parallelize UCB action selection on a
TD-based reinforcement learning algorithm by syncing the experience of all agents at the end of each
episode similar to concurrent PSRL. For the infinite horizon case, we again split training based on
epochs and break the current epoch when the number of times an action is selected for some action is
greater than two times in the previous epoch. For the finite horizon case, we ran experiments for all
settings in Table 1, and for the infinite horizon case we ran experiments for all settings in Table 2
to compare our concurrent PSRL to concurrent UCB. The results show that across all settings for
both finite-horizon (Figure 4a, 4b, 3c, 3d) and infinite (Figure 4) cases, concurrent PSRL outperforms
concurrent UCB in terms of Bayesian regret.

D Proof of Finite-Horizon Case under Dirichlet Prior

Decomposition of the Regret: Note that we have
BayesRegret(T,⇡,�) = E[Regret(T,⇡,M⇤)|M⇤

⇠ �]

=

dT/HeX

k=1
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p=1
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X

s2S
⇢(s)(V M

⇤

⇡⇤,1(s)� V M
⇤

⇡kp,1(s))|M
⇤
⇠ �]

And we can write
V M

⇤

⇡⇤,1(s)� V M
⇤(s)

⇡kp,1
= V M

⇤

⇡⇤,1(s)� V
Mkp

⇡kp,1
(s)

| {z }
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kp

+V
Mkp

⇡kp,1
(s)� V M

⇤

⇡kp,1(s)| {z }
�conc

kp
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(a) S=5, A=5, K=20, H=10

(b) S=20, A=10, K=20, H=10 (c) S=5, A=5, K=30, H=75

(d) S=10, A=5, K=30, H=75

Figure 3: Bayesian regrets for Finite-Horizon Concurrent TS versus Concurrent UCB method with
Dirichlet Prior for Transition Probabilities and Gaussian prior for rewards.
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(a) S=10, A=5, T=1000 (b) S=10, A=5, T=2000

Figure 4: Bayesian regrets for Infinite-Horizon Concurrent TS versus Concurrent UCB method with
Dirichlet Prior for Transition Probabilities and Gaussian prior for rewards.

Note that conditioned upon any data H(k�1)H , the true MDP M⇤ and the sampled Mkp are iden-
tically distributed. This means that E[�opt

kp
]  0 for all k, p. Therefore, we just need to bound

PdT/He
k=1

P
P

p=1 E[�conc
kp

|H(k�1)H ]. For the convenience of notation, we write V kp

kh
= V

Mk,p

⇡kp,h
.

Now we rewrite the regret via the Bellman operator, with wR(x) = r̄kp(x) � r̂k(x), wP

h
(x) =

(Pkp(x)� P̂k(x))TV
kp

k,h+1:
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kp

|H(k�1)H ] = E[(r̄kp � r̄⇤)(xp

k1) + Pkp(x
p

k1)
TV kp

k2 � P ⇤(xp

k1)V
⇤
k2|H(k�1)H ]

= E[(r̄kp � r̄⇤)(xp

k1) + (Pkp(x
p

k1)� P̂k(x
p

k1))
TV kp

k2 + E[(V kp

k2 � Vk2)(s
0)|s0 ⇠ P ⇤(xp

k1)]|H(k�1)H ]

= . . .

= E[
HX

h=1

(r̄kp(x
p

k1)� r̂⇤(xp

k1)) +
HX

h=1

{(Pkp(x
p

kh
)� P̂k(x

p

kh
))V kp

kh
}|H(k�1)H ]

 E[
HX

h=1

|wR(xp

kh
)|+

HX

h=1

|wP

h
(xp

k,h+1)||H(k�1)H ]

D.1 Useful Lemmas

Lemma D.1. (Posterior Sampling [16]). For any H(k�1)H -measurable function g,
E[g(M⇤)|H(k�1)H ] = E[g(Mk)|H(k�1)H ]

Lemma D.2. (Confidence Interval [4]) For any t � 1, the probability that the true MDP M⇤ is not
contained in the set of plausible MDPs Mt at time t (as given by the confidence intervals in the
below) is at most �

15t6 , where Mt is define to be the set of all MDPs with states and actions as in
M⇤, and with transition probabilities p̃(·|s, a) close to p̂k(·|s, a), and rewards r̃(s, a) 2 [0, 1] close
to r̂k(s, a):

|r̃(s, a)� r̂k(s, a)| 

s
7 log(2SA⌧k/�)

2max{1, Nk(s, a)}
, kp̃(·|s, a)� p̂k(·|s, a)k1 

14S log(2A⌧k/�)

max{1, Nk(s, a)}

where p̂k is the empirical distribution by time ⌧k and r̂k is the observed average accumulated rewards,
which will be given more clear definitions in the following.
Lemma D.3. (Empirical Distribution Deviation [31])The L1-deviation of the true distribution and
the empirical distribution over m distinct events from n samples is bounded by

P(
���P̂ (·)� P (·)

���
1
� ✏)  (2m � 2) exp(�

n✏2

2
) (D.1)
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Lemma D.4. (Sub-Gaussian tail bounds [21]) Let x1, . . . , xn be independent samples from sub-
Gaussian random variables. Then, for any � > 0,

P( 1
n
|

nX

i=1

xi| �

r
2 log(2/�)

n
)  �

Lemma D.5. (Gaussian-Dirichlet dominance [21]) For all fixed V 2 [0, 1]N , ↵ 2 [0,1)N with
↵T1 � 2, if X ⇠ N (↵TV ↵T1, 1/↵T1) and Y = PTV for P ⇠ Dirichlet(↵) then X ⌫so Y .
Lemma D.6. (Transition Concentration [21]) For any independent prior over rewards with r 2 [0, 1],
additive sub-Gaussian noise and an independent Dirichlet prior over transitions at state-action pair
xkh, then

wP

h
(xkh)  2H

s
2 log(2/�)

max(nk(xkh)� 2, 1)

with probability at least 1� �.

D.2 Proof of Theorem (3.1)

Proof. Let P̂ t

a
(·|s) denote the empirical distribution up to period t of transitions observed after sam-

pling (s, a), let R̂t

a
(s) denote the empirical average reward. Define Ntk(s, a) =

P
tk�1
t=1 1{(st, at) =

(s, a)} to be the number of times (s, a) was sampled prior to time tk, where tk = (k � 1)H + 1 is
defined to be the start time step of period k. Empirical estimate of rewards and transition probabilities
at each (s, a) are defined as

R̂tk
a
(s) =

Rk(s, a)

max{1, Nk(s, a)}
P̂ tk
a
(s0|s) =

Pk(s, a, s0)

max{1, Nk(s, a)}

where

Rk(s, a) =
tk�1X

⌧=1

r⌧1[s⌧ = s, a⌧ = a]; Pk(s, a, s
0) = #{⌧ < tk : s⌧ = s, a⌧ = a, s⌧+1 = s0}

Note that Ntk(s, a) =
P

tk�1
t=1 1{(st, at) = (s, a)} can take values in {0, 1, 2, . . . , P (tk � 1)}.

Define the confidence set for episode k:

Mk = {M :
���P̂ tk

a
(·|s)� PM

a
(·|s)

���
1
 Bk1, |R̂tk

a
(s)�RM
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where
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s
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2Atk
�

)

Bk2 =

s
7

2max{1, N(sp
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log(
2SAtk
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From Lemma (D.1), we know that Mk is H(k�1)H -measurable, and that

E[1{Mk /2 Mk}|H(k�1)H ] = E[1{M⇤ /2 Mk}|H(k�1)H ] (D.3)

We rewrite our previous bound here:

E[�conc
kp

|H(k�1)H ]  E[
HX
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kh
)|+

HX
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where

wR(x) = r̄kp(x)� r̃k(x)

wP

h
(x) = (Pkp(x)� P̃k(x))
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For Ep

k
= {M⇤

2 Mk,Mkp 2 Mk}, we will condition on event Ep

k
and (Ep

k
)c to bound (D.4).

From Lemma (D.3), for m = S, t = tk, let
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From Lemma (D.1),
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where P̂ is the empirical distribution, and P is the true transition distribution.
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
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where r̂t is the empirical mean reward, and r̄ is the true mean reward. Hence a union bound over all
possible values of N = 1, 2, . . . , n(t� 1) gives

P
⇣���P (·|s, a)� P̂ (·|s, a)

���
1
�

s
14S

max{1, N(s, a)}
log(

2At

�
)
⌘
 min{

n(t�1)X

n=1

�

20t7SA
, 1} < min{

n�

20t6SA
, 1}

P
⇣
|r̂t(s, a)�r̄(s, a)| �

s
7

2max{1, N(s, a)}
log(

2SAt

�
)
⌘
 min{

n(t�1)X

N=1

�

60t7SA
, 1} < min{

n�

60t6SA
, 1}

So if we condition on the event that Ep

k
= {M⇤
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2 Mk}, we have
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where Nk(s
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,⇡kp) =
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i=1 N
i

k
(sp
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,⇡kp) is the accumulated number of appearing times for the

state-action pair (sp
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,⇡kp) across all n agents before period k.

Since r̄ 2 [0, 1], so that �kp  H . Hence
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(D.6)

Let K = dT/He. Now in (D.6), we let

� =
2

Kn2

Then
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For this choice of � and �k, by summing over all state-action pairs, we have that
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Using the fact that �kp  H we can decompose regret as follows:
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Using (D.3) and (D.5), we get that
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Also note that under the constraint that reward 2 [0, 1], we have that
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Now consider the event Ak(s, a) = {Ntk(s, a)  Hn}. This event can happen less than or
equal to 2Hn times per state-action pair of each agent throughout the whole process and across
all agents. Suppose one state-action pair (s, a) has appeared in the process for some agent, i.e.
(s, a) = (sp

kh
,⇡kp) for some k, h, p. Note that tk = (k � 1)H + 1 is the start time step of episode k

and Ntk(s, a) is the number of times that (s, a) appears before tk. Suppose (s, a) has appeared for
a number of times less than or equal to Hn, prior to the start time of episode k, and also note that
(s, a) appears at most Hn more times within the new episode k. And once (s, a) appears more than
(>) Hn times by the end of episode k, then event Aj(s, a) doesn’t happen if j � k + 1. And in this
way the event will happen less than or equal to 2Hn times across the whole process and all agents.
Therefore,

nX

p=1

KX

k=1

HX

h=1
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k
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,⇡kp)  Hn)  2HnSA

Now we look at the complement event of Ak(s, a) where {Ntk(s, a) > Hn}. Then for any
t 2 {tk, . . . , tk+1 � 1}, Nt(s, a) + n  Ntk(s, a) + Hn  2Ntk(s, a). Therefore by a similar
analysis from [16] we have
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Note that all the rewards and transitions are absolutely constrained in [0, 1]. Using (D.5), and also
using the fact that n  O(S2AT log(SAnT )), (D.7) is bounded by:
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E Proof of Finite-Horizon Case under Dirichlet Prior

E.1 Proof of Theorem (3.2)

Proof. From Lemma (D.4), (D.5) and (D.6), under Dirichlet prior, by a union bound at each xp

kh
=

(s, a) for some state-action pair (s, a) for P (s, a) and R(s, a), we have that for each p, with probability
at least 1� 1

nT
,
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Let A = {(s, a)|N(s, a)  2} be the set of (s, a) pairs which have only appear less than or equal
to 2 times throughout the whole process. Note that for (s, a) 2 A, when these pairs appear, since
the reward function is strictly in [0, 1], and there are at most SA appears in total. So the total regret
regarding these pairs is upper bounded by 2SA+ 1.

For the xp

kh
/2 A we may use (E.1) to bound as
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So we have
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We again define Ak(s, a) = {Nk(s, a)  Hn}. Then again for any t 2 {tk, . . . , tk+1 � 1},
Nt(s, a) + n  Nk(s, a) +Hn  2Nk(s, a). Then similar to (D.8), for n > 4
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F Proof of Infinite-Horizon Case under General Prior

In order to prove Theorem (4.1), we provide the following lemmas:
Lemma F.1. (Bound on number of epochs). When Tn � SA, the number of epochs K of Algorithm
2 is upper bounded by

K  SA log2(
8Tn

SA
)

Lemma F.2. Conditioning on prior distribution �,

E[
KX
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nX

p=1

(Qk

s
p
t ,a

p
t
� Ps

p
t ,a

p
t
)T h̃|�]  Õ(D

p
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Lemma F.3. With probability at least 1� 2�,
⌧k+1X

t=⌧k

nX

p=1

(Ps
p
t ,a

p
t
� 1s

p
t
)T h̃  O

⇣
D
p

n(⌧k+1 � ⌧k) log(n/�)
⌘

F.1 Proof of Lemma (F.1)

Proof. We use the technique similar to [4] to give the upper bound for the number of epochs. Define
N(s, a) = {t < T + 1 : st = s, at = a} be the total number of observations of the state-action
pair (s, a) up to time step T . Let vk(s, a) be the number of observations of state-action pair (s, a)
within epoch k. For each epoch k < K there exists a state-action pair (s, a) with vk(s, a) = N⌧k

s,a
, or

vk(s, a) = 1, N⌧k
s,a

= 0. Let K(s, a) be the number of epochs with vk(s, a) = N⌧k
s,a

and N⌧k
s,a

> 0.
If N(s, a) > 0, then vk(s, a) = N⌧k

s,a
implies N⌧k+1

s,a = 2N⌧k
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. so that
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� 1 +

K(s,a)X
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2i�1 = 2K(s,a)

If N(s, a) = 0, then K(s, a) = 0, hence N(s, a) � 2K(s,a)
� 1 for any state-action pair (s, a). It

follows that

Tn =
X

s,a

N(s, a) �
X

s,a

(2K(s,a)
� 1) (F.1)

In each epoch k, note that there exists a state-action pair (s, a), such that it’s visited with either
N⌧k

s,a
= 0 or N⌧k

s,a
= vk(s, a). So we have

K  1 + SA+
X

s,a

K(s, a) )
X

s,a

K(s, a) � K � 1� SA

This implies

X
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P
s,a K(s,a)/SA

� SA2
K�1
SA �1

With (F.1) we have:

Tn � SA(2
K�1
SA �1

� 1)

So we have

K  1 + 2SA+ SA log2(
Tn

SA
)

So when Tn � SA, we have
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K  SA log2(
8Tn

SA
)

F.2 Proof of Lemma (F.2)

Proof. Similar to the proof of Theorem (3.1), define P̂ t

a
(·|s) as the empirical distribution up to time

t steps after sampling (s, a), define R̂t

a
(s) as the empirical average reward. Define Nk(s, a) =P

⌧k�1
t=1 1[(st, at) = (s, a)] to be the number of times (s, a) was sampled prior to time ⌧k, where ⌧k

is the start time step of epoch k. Empirical estimate of rewards and transition probabilities at each
(s, a) are defined as
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Define the confidence set for episode k:
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(·|s)� PM

a
(·|s)

���
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where
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One key step for analyzing the Bayesian regret bound of posterior sampling is to notice that condi-
tioning on Fk�1, we have

M⇤
|Fk�1

D
= Mp

k
|Fk�1 8p

where M⇤ is the true MDP, and Mp

k
is the sampled MDP by agent p. Similar to the proof of Theorem

(3.1), at time step t, Nt(s, a) takes possible values over 1, 2, . . . , n(t� 1), where n is the number of
agents. Define

E
p

k
= {M⇤

2 Mk,M
p

k
2 Mk}

So by a similar union bound idea in the proof of Theorem (3.1) and equation (F.2), we have that

E[(Qk

s
p
t ,a

p
t
� P̂ ⌧k

s
p
t ,a

p
t
)T h̃|Fk�1, E

p

k
]  2D

s
14S

max{1, Nk(s
p

t
, ap

t
)}

log(
2SA⌧k
�

) (F.3)

E[(P̂ ⌧k

s
p
t ,a

p
t
� Ps

p
t ,a

p
t
)T h̃|Fk�1, E

p

k
]  2D

s
14S

max{1, Nk(s
p

t
, ap

t
)}

log(
2SA⌧k
�

) (F.4)

And
P(M⇤ /2 Mk) 

n�

15
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Also note that for any t 2 {⌧k, . . . , ⌧k+1 � 1}, Nt(s, a)  2Nk(s, a), so we have that for fixed � > 0
in the range where the probabilities above are well defined,
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Taking � = 1
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, then we have
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So we have the regret bound when conditioning on prior distribution �.

F.3 Proof of Lemma (F.3)

Proof. We expand the left hand side of (G.2) as
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Thus
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inequality,
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Again by Hoeffding-Azuma inequality and the fact that the diameter of the sampled MDP is bounded
by 2D, Zp are i.i.d. across p, we have
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Note that (1s
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)T h̃ are. i.i.d. across p = 1, 2, . . . , n, and that
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8n log(1/�) in the above, then we have that with probability at least 1� �,
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F.4 Proof of Theorem (4.1)

Proof. Note that
X

k

⌧k+1 � ⌧k  T and
KX

k=1

p
⌧k+1 � ⌧k 

p

KT

From the above Lemmas in Appendix C, and by taking � = 1/(Tn) in Lemma (F.2, F.3), we have
that conditional on prior �

BayesRegret(T,M, n,�)  Õ(DS
p

ATn)

G Proof of Infinite-Horizon Case under Dirichlet Prior

G.1 Useful Lemmas

Lemma G.1. (Azuma-Hoeffiding inequality [12]) Let X1, X2, . . . be a martingale difference
sequence with |Xi|  c for all i. Then for all ✏ > 0 and n 2 N

P(
nX

i=1

Xi � ✏)  exp(�
✏2

2nc2
)

Lemma G.2. (Transition concentration). Let P̃s,a = Qk

s,a
in Algorithm 2. Let P̂s,a = E[Ps,a|Hk1],

then for any independent prior over rewards with r 2 [0, 1], additive sub-Gaussian noise and an
independent Dirichlet prior over transitions, then for any state-action pair (s, a) in episode k, with
probability 1� �,

|(P̃s,a � P̂s,a)
T h̃|  O(D

p
n log(2/�)/Nk(s, a))

G.2 Proof of Theorem (4.2)

Proof. As defined before,

R(T,M, n,�) = E[Tn�⇤ �
nX

p=1
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r(sp
t
, ap

t
)|M⇤

⇠ �]

�⇤ is the optimal gain of MDP M. Algorithm (2) proceeds in epochs k = 1, 2, . . . ,K, where
K  SA log(T ). Now we define

34



Rk = (⌧k+1 � ⌧k)n�
⇤
�

⌧k+1�1X

t=⌧k

nX

p=1

rspt ,a
p
t

So

R(T,M, n,�) = E[
KX

k=1

Rk|M
⇤
⇠ �]
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where �̃k is the optimal gain of the sampled MDP M̃k. From Lemma (2.1) we know that for any
state s, optimal policy ⇡̃k for communicating MDP M̃k, action a = ⇡̃k(s), �̃k = rs,a + P̃T

s,a
h̃� h̃s,

where P̃s,a = Qk

s,a
.

One key property of Thompson sampling is that, conditional upon the data Fk�1, the transitions are
independent of the transitions sampled by Thompson sampling. Let

P̂s,a = E[Ps,a|Fk�1]

By Lemma G.2, for any fixed (s, a) in episode k, with probability at least 1� �,
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By the proof of Lemma 5.4 in [3], we can have that with probability 1� �, for every epoch k, the
optimal gain �̃k of the MDP M̃k satisfies:
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where Nk(s, a) is the sample size of some pair of state-action pair (s, a). Hence by Cauchy-Schwarz’s
inequality, with probability 1� �,
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Again, we use Azuma-Hoeffding inequality to obtain that with probability 1� 2⇢,
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(G.2)

Similar to previous proof, by noting that
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(G.1) and (G.3) indicate that

BayesRegret(T,M, n,�) = Õ(D
p

SATn)
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G.3 Proof of Lemma (G.2)

Proof.

|(P̃s,a � P̂s,a)
T h̃|  D|(P̃s,a � P̂s,a)|

By Gaussian-Dirichlet dominance theorem (Lemma 2 in [21]), for any ↵ 2 R+, with ↵T1 � 2, the
random variables P̃s,a ⇠ Dirichlet(↵) and X ⇠ N (0,�2 = 1/↵T1) are ordered,

X ⌫so P̃s,a � P̂s,a ) |X|D ⌫so |P̃s,a � P̂s,a|D

So this result follows from Lemma 1 in [21], also Lemma (D.4)
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