
Supplementary Material:
Improving Transferability of Representations
via Augmentation-Aware Self-Supervision

A Trade-off between augmentation invariance and awareness

We first emphasize that we want f(x) to learn both augmentation-invariant and augmentation-aware
information (or features) in the input x. To this end, we train g and φ to extract each information from
f(x), respectively; in other words, we want the functions g(f(t1(x))) and φ(f(t1(x)), f(t2(x)))
to be invariant and variant with respect to the augmentation t1 (and t2), respectively. Here, if
the shared network f has a limited capacity (e.g., few parameters or dimension), the two training
objectives (for g and φ) may interfere with each other, i.e., f(x) might become less invariant (or
contain less augmentation-invariant information). However, our choice f of deep neural networks
(DNNs) in our experiments does not suffer from the issue (i.e., DNNs are highly expressive), so
our goal is achievable with a negligible loss of augmentation-invariant information. To support this,
we compute the cosine similarity between representations from augmented and original samples,
i.e., CS = Ex∼D,t∼T [sim(g ◦ f(t(x)), g ◦ f(x))]. Note that this metric becomes higher as the
representation g(f(x)) is more invariant to the augmentation t ∼ T . We here use STL10-pretrained
models. Table 1 shows that AugSelf does not significantly change the cosine similarity CS; in other
words, AugSelf is not harmful to the augmentation-invariant objective.

Table 1: The invariance metric, CS = Ex∼D,t∼T [sim(g ◦ f(t(x)), g ◦ f(x))], with 95% confidence
intervals over 80k random samples in the STL10 test split [1]. Higher values mean f(x) is more
invariant to the augmentations T .

AugSelf (ours) SimSiam [2] BYOL [3] SimCLR [4] MoCo [5]

0.9263±0.0005 0.9555±0.0004 0.9378±0.0006 0.9274±0.0006

X 0.9250±0.0006 0.9453±0.0004 0.9385±0.0005 0.9280±0.0006

B Hyperparameter sensitivity analysis

We simply use the same value of λ, e.g., λ = 1 for STL10 experiments, across different augmen-
tations and different downstream tasks. One can find a better hyperparameter by tuning it on each
augmentation and each downstream task, but we do not make much effort to tune it as our method is
not too sensitive to hyperparameters. We here provide the sensitivity analysis to the hyperparameter
λ with varying λ ∈ {0.5, 1.0, 2.0} under the STL10 pretraining setup. Table 2 shows that the overall
transfer learning performance is not too sensitive to λ and AugSelf clearly improves the performance
in all the cases over the baseline (i.e., λ = 0).

Table 2: Linear evaluation accuracy (%) of ResNet-18 [6] pretrained by SimSiam [2] and our AugSelf
with varying the hyperparameter λ.

Pretraining objective λ STL10 CIFAR10 CIFAR100 Food MIT67 Pets Flowers Avg

LSimSiam 0.0 85.19 82.35 54.90 33.99 39.15 44.90 59.19 57.09

LSimSiam + λLcrop
0.5 85.50 82.81 55.50 35.19 42.79 45.94 61.24 58.42
1.0 85.98 82.82 55.78 35.68 43.21 47.10 62.05 58.95
2.0 86.36 82.41 55.29 36.18 41.91 47.43 62.28 58.84

LSimSiam + λLcolor
0.5 85.66 83.75 58.58 39.39 42.61 47.15 70.05 61.03
1.0 85.55 82.90 58.11 40.32 43.56 47.85 71.08 61.34
2.0 84.79 82.56 58.89 40.69 43.41 46.79 71.93 61.29

LSimSiam + λ(Lcrop + Lcolor)
0.5 86.07 82.67 57.72 39.92 43.88 48.86 70.93 61.43
1.0 85.70 82.76 58.65 41.58 45.67 48.42 72.18 62.14
2.0 84.56 83.08 59.49 41.72 44.50 49.04 72.35 62.11
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C Fine-tuning experiments

We fine-tune ImageNet100-pretrained models using a fine-tuning strategy, L2SP [7].1 Following
Xuhong et al. [7], we use the same set fo hyperparameters, i.e., β = 0.01, α ∈ {0.001, 0.01, 0.1, 1},
and lr ∈ {0.005, 0.01, 0.02}. We evaluate the fine-tuning accuracy on five benchmarks, MIT67 [8],
CUB200 [9], Food [10], Stanford Dogs [11], and Caltech256 [12]. Table 3 shows the effectiveness of
our AugSelf in the fine-tuning scenarios.

Table 3: Fine-tuning accuracy (%) averaged over 5 trials with 95% confidence intervals.
Method MIT67 CUB200 Food Standford Dogs Caltech256

SimSiam 67.69±0.48 67.59±0.41 66.66±0.36 69.34±0.29 52.37±0.45

+ AugSelf (ours) 69.31±0.56 70.22±0.66 70.19±0.18 70.26±0.20 54.66±0.07

D Robustness under perturbations

We also evaluate the robustness of the learned representations by our method. To this end, we use
two types of robustness metrics: (1) adversarial robustness using the single-step fast gradient sign
method (FGSM) [13] and (2) robustness to common corruptions, especially weather (fog, frost, and
snow) corruptions, proposed by [14]. We here use supervised models trained on ImageNet100 for
generating adversarial samples. Table 4 shows the classification accuracy on ImageNet100 under the
two types of perturbations.

Table 4: Classification accuracy (%) under various perturbations.
FGSM Weather corruption

Method Clean ε = 1/255 ε = 2/255 ε = 4/255 Fog Frost Snow

SimSiam 85.60 32.48 22.80 17.70 57.53 53.96 43.85
+ AugSelf (ours) 85.40 32.90 21.60 16.64 57.42 53.97 45.65

We observe that our AugSelf does not significantly affect the robustness of learned representations.
This result is somewhat interesting because the representations learned with AugSelf are more sensi-
tive to diverse information than those without AugSelf. Since improving the adversarial robustness of
self-supervised learning is an ongoing topic [15, 16], we believe that incorporating the idea with our
framework would be an interesting research direction.

E Datasets

Table 5 summarizes detailed descriptions of (a) pretraining datasets, (c) linear evaluation benchmarks,
and (c) few-shot learning benchmarks. For linear evaluation benchmarks, we randomly choose
validation samples in the training split for each dataset when the validation split is not officially
provided. For few-shot benchmarks, we use the meta-test split for FC100 [17], and whole datasets
for CUB200 [9] and Plant Disease [18]. The evaluation details are described in Section G.

F Pretraining setup

F.1 ImageNet100 pretraining

We pretrain the standard ResNet-50 [6] architecture in the ImageNet1002 [19, 20] dataset for 500
training epochs using SimSiam [2] and MoCo [5] methods. We use a batch size of 256 and a cosine
learning rate schedule without restarts [29]. Note that the pretraining setups are the same as they
officially used for ImageNet pretraining described in [2, 5, 30]. In multi-GPU experiments, we use

1L2SP [7] use Ω(θ) = α
2
‖θ−θ0‖22+ β

2
‖θcls‖22 as the regularization term where θ0 is the vector of pretrained

parameters (i.e., an initial point) and θcls is the vector of classifier parameters.
2ImageNet100 is a 100-category subset of ImageNet [19]. We use the same split following Tian et al. [20].
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Table 5: Dataset information.
Category Dataset # of classes Training Validation Test Metric

(a) Pretraining STL10 [1] 10 105000 - - -
ImageNet100 [19, 20] 1000 126689 - - -

(b) Linear evaluation

STL10 [1] 10 4500 500 8000 Top-1 accuracy
CIFAR10 [21] 10 45000 5000 10000 Top-1 accuracy
CIFAR100 [21] 100 45000 5000 10000 Top-1 accuracy
Food [10] 101 68175 7575 25250 Top-1 accuracy
MIT67 [8] 67 4690 670 1340 Top-1 accuracy
Pets [22] 37 2940 740 3669 Mean per-class accuracy
Flowers [23] 102 1020 1020 6149 Mean per-class accuracy
Caltech101 [24] 101 2525 505 5647 Mean Per-class accuracy
Cars [25] 196 6494 1650 8041 Top-1 accuracy
Aircraft [26] 100 3334 3333 3333 Mean Per-class accuracy
DTD (split 1) [27] 47 1880 1880 1880 Top-1 accuracy
SUN397 (split 1) [28] 397 15880 3970 19850 Top-1 accuracy

(c) Few-shot
FC100 [17] 20 - - 12000 Average accuracy
CUB200 [9] 200 - - 11780 Average accuracy
Plant Disease [18] 38 - - 54305 Average accuracy

the synchronized batch normalization following Chen and He [2]. When incorporating our AugSelf
into the methods, we use λ = 0.5 andAAugSelf = {crop, color}. Note that SimSiam [2] and MoCo
[5] requires 32 and 29 hours on a single RTX3090 4-GPU machine, respectively.

SimSiam [2]. We use a learning rate 0.05 and a weight decay of 0.0001. We use a 3-layer projection
MLP head g(·) with a hidden dimension of 2048 and an output dimension of 2048. We use a batch
normalization [31] at the last layer in the projection MLP. We use a 2-layer prediction MLP head h(·)
with a hidden dimension of 512 and no batch normalization at the last layer in the prediction MLP.
When optimizing the prediction MLP, we use a constant learning rate schedule following Chen and
He [2].

MoCo [5]. We use a learning rate 0.03 and a weight decay of 0.0001. Following an advanced version
of MoCo [30, MoCo v2], we use a 2-layer projection MLP head g(·) with a hidden dimension of
2048 and an output dimension of 128. We use a batch normalization [31] at only the hidden layer.
We also use a temperature scaling parameter of 0.2, an exponential moving average parameter of
0.999, and a queue size of 65536.

F.2 STL10 pretraining

We pretrain the standard ResNet-18 [6] architecture in the STL10 [1] dataset. For all methods, we
use the same optimization scheme: stochastic gradient descent (SGD) with a learning rate of 0.03, a
batch size of 256, a weight decay of 0.0005, a momentum of 0.9. The learning rate follows a cosine
decay schedule without restarts [29]. When incorporating our AugSelf into the methods, we use
λ = 1.0 and AAugSelf = {crop, color}, unless otherwise stated. We now describe method-specific
hyperparameters one by one in the following.

SimCLR [4]. We use a 2-layer projection MLP head g(·) with a hidden dimension of 512 and an
output dimension of 128. We do not use a batch normalization [31] at the last layer in the MLP. We
use a temperature scaling parameter of 0.2 in contrastive learning.

MoCo [5]. We use an advanced version of MoCo [30, MoCo v2] with the same projection MLP
architecture as SimCLR used. Other hyperparameters are the same as the ImageNet100 setup
described in Section F.1.

BYOL [3]. Following Grill et al. [3], we use a 2-layer projection MLP head g(·) with a hidden
dimension of 4096 and an output dimension of 256. We do not use a batch normalization [31] at
the last layer in the MLP. We use the same architecture for the prediction MLP head h(·). The
exponential moving average parameter is increased starting from 0.996 to 1.0 with a cosine schedule
following Grill et al. [3].

SimSiam [2]. We use a 2-layer projection MLP with a hidden dimension of 2048 and an output
dimension of 2048. Other hyperparameters are the same as the ImageNet100 setup described in
Section F.1.
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SwAV [32]. We use a 2-layer projection MLP head g(·) with a hidden dimension of 2048 and an
output dimension of 128 without batch normalization [31] at the last layer in the MLP. We use 100
prototypes, a smoothness factor of ε = 0.05 and a temperature scaling parameter of τ = 0.1. We do
not use the multi-resolution cropping technique and the additional queue storing previous batches for
simplicity.

F.3 Augmentations

In this section, we describe augmentations using PyTorch [33] notations in the following. Note that
we use random cropping, flipping, color jittering, grayscale, and Gaussian blurring unless otherwise
stated.

• RandomResizedCrop. The scale of cropping is randomly sampled from [0.2, 1.0]. The
cropped images are resized to 96 × 96 and 224 × 224 for STL10 [1] and ImageNet [19]
pretraining, respectively.

• RandomHorizontalFlip. This operation is randomly applied with a probability of 0.5.
• ColorJitter. The maximum strengths of brightness, contrast, saturation and hue factors

are 0.4, 0.4, 0.4 and 0.1, respectively. This operation is randomly applied with a probability
of 0.8. In Section 2, we adjust the strengths by multiplying a strength factor s, i.e., s > 1
means stronger color jittering than the default configuration while s < 1 means weaker
color jittering.

• RandomGrayscale. This operation is randomly applied with a probability of 0.2.
• GaussianBlur. The standard deviation is randomly sampled from [0.1, 2.0]. The kernel

size is 9× 9 and 23× 23 for STL10 [1] and ImageNet [19] pretraining, respectively. This
operation is randomly applied with a probability of 0.5.

• Rotation. This rotates an image by 0◦, 90◦, 180◦, 270◦ randomly. This operation is
randomly applied with a probability of 0.5 after the default geometric augmentations are
applied.

• Solarization. This inverts each pixel value when the value is larger than a randomly
sampled threshold. Formally, for an uniformly sampled threshold δ ∼ U(0, 1),

x(i,j)new ← 1[x
(i,j)
old < δ]x

(i,j)
old + 1[x

(i,j)
old ≥ δ](1− x

(i,j)
old ),

for all pixels (i, j). This operation is randomly applied with a probability of 0.5 right after
ColorJitter is applied.

G Evaluation protocol

Linear evaluation benchmarks. We follow the same linear transfer evaluation protocol [4, 3, 34];
we train linear classifiers upon the frozen features extracted from 224× 224 (or 96× 96 for STL10
pretraining) center-cropped images without data augmentation. To be specific, images are first resized
to 224 pixels along the shorter side, and then cropped by 224× 224 at the center of the images. Then,
we minimize the `2-regularized cross-entropy objective using L-BFGS. The regularization parameter
is selected from a range of 45 logarithmically spaced values from 10−6 to 105 using the validation
split. After selecting the best hyperparameter, we train again the linear classifier using both training
and validation splits and then report the test accuracy using the model. Note that we set the maximum
number of iterations in L-BFGS as 5000 and use the previous solution as an initial point (i.e., warm
start) for the next step.

Few-shot benchmarks. For evaluating representations in few-shot benchmarks, we simply perform
logistic regression3 using the frozen representations f(x) and N×K support samples without fine-
tuning and data augmentation in a N -way K-shot episode.

Object localization. For predicting bounding box information (i.e., top left coordinates and sizes of
bounding boxes), we simply perform linear regression3 using the frozen representations f(x) and all
training samples in CUB200 [9] without fine-tuning and data augmentation.

3We use the scikit-learn LogisticRegression and LinearRegression modules for logistic regression
and linear regression, respectively.
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] See
https://github.com/hankook/AugSelf.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section E, Section F, and Section G.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section F.1.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section E.
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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