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ABSTRACT

Continuous sparsification strategies are among the most effective methods for re-
ducing the inference costs and memory demands of large-scale neural networks.
A key factor in their success is the implicit L1 regularization induced by jointly
learning both mask and weight variables, which has been shown experimentally
to outperform explicit L1 regularization. We provide a theoretical explanation for
this observation by analyzing the learning dynamics, revealing that early continu-
ous sparsification is governed by an implicit L2 regularization that gradually tran-
sitions to an L1 penalty over time. Leveraging this insight, we propose a method
to dynamically control the strength of this implicit bias. Through an extension of
the mirror flow framework, we establish convergence and optimality guarantees
in the context of underdetermined linear regression. Our theoretical findings may
be of independent interest, as we demonstrate how to enter the rich regime and
show that the implicit bias can be controlled via a time-dependent Bregman po-
tential. To validate these insights, we introduce PILoT, a continuous sparsification
approach with novel initialization and dynamic regularization, which consistently
outperforms baselines in standard experiments.

1 INTRODUCTION

Deep learning continues to impress across disciplines ranging from language and vision (Ramesh
et al., 2022) to drug design (Stephenson et al., 2019; Jumper et al., 2021) and even fast matrix
multiplication (Fawzi et al., 2022). These accomplishments come at immense costs, as they rely on
increasingly large neural network models. Moreover, training such massive models with first-order
methods like variants of Stochastic Gradient Descent (SGD) is a considerable challenge and often
requires large-scale compute infrastructure (Kaack et al., 2022). Even higher costs are incurred at
inference time, if the trained models are frequently evaluated (Wu et al., 2022; Luccioni et al., 2023).

Sparsifying such neural network models is thus a pressing objective. It not only holds the promise
to save computational resources, it can also improve generalization (Frankle & Carbin, 2019; Paul
et al., 2023), interpretability (Chen et al., 2022; Hossain et al., 2024), denoising (Jin et al., 2022;
Wang et al., 2023), and verifiability (Narodytska et al., 2020; Albarghouthi, 2021). However, at its
core is a hard large-scale nested optimization problem combining multiple objectives. In addition to
minimizing a typical neural network loss minw∈Rn f(w) (and its generalization performance

::::
error),

we wish to rely on the smallest possible number of weights, effectively minimizing the L0 norm
minw∈Rn ||w||L0

. This is an NP-hard problem that is also practically hard to solve due to its mixed
discrete and continuous nature. This becomes more apparent when we reformulate it in a way as
:::
like the best performing sparsification methodsapproach it.

Among such approaches that achieve high sparsity while maintaining high generalization perfor-
mance , albeit being computationally expensive, are

::
are

::::::::::
continuous

:::::::::::
sparsification

::::::::
methods

:::
and

:
it-

erative pruning strategiesand continuous sparsification methods , which
:
.
:::::
These

:::::::
methods

:
explicitly

identify for each weight parameter w of a neural network a binary mask m ∈ {0, 1} that signifies
whether a parameter is prunedand thus .

::::::
Thus,

:
a
:::::::::
parameter

::
is set to zero (m = 0) or not (m = 1),

effectively parameterizing the network with parameters x = m ⊙ w
:
,
:::::
where

:::
⊙

::
is

:::
the

::::::::
pointwise

:::::::::::
mutliplication

::::::::::
(Hadamard

:::::::
product). The introduction of the additional mask parameters m turns the

sparsity objective into a discrete L1 penalty of m as ||w ⊙m||L0
=
∑

i mi subject to mi ∈ {0, 1},
where ⊙ denotes elementwise multiplication and we assume that w ̸= 0 if m = 1. The L1 objective
is already more amenable to continuous optimization than the original L0 objective (Louizos et al.,
2018). Nevertheless, the big challenge arises from the fact that m is binary.
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Continuous sparsification addresses this issue by relaxing the optimization problem to continuous
or even differentiable variables m, often with m ∈ [0, 1] by learning a parameterization m = g(s)
with g: R → [0, 1],

:::::
e.g., like a sigmoid. This way, the problem becomes solvable with standard

first-order optimization methods. Yet, moving from the continuous space back to the discrete space
is error-prone. Regularizing and projecting m towards binary values {0, 1} is generally problematic,
requires careful tuning, and often entails robustness issues.

However, this projection step is not necessarily required in a parameterization m ⊙ w,
where m can freely attain values in R, as it implicitly optimizes for an L1-penalty
(Ziyin & Wang, 2023; Ziyin, 2023), which appears to be equivalent to LASSO. To utilize this
insight for continuous sparsification, Ziyin & Wang (2023) have proposed a method named spred,
which combines .

:::::::::::::::::::
Ziyin & Wang (2023)

:::::
show

:::
that

::
a
::::
loss

::::
with

:::
this

:::::::::::::::
parameterization m ⊙ w with

a separate weight decay α(m2 + w2). Interestingly, this approach
::::::::
combined

::::
with

::::::
weight

:::::
decay

::::::::::::::::::
α
(
||m||2L2

+ ||w||2L2

)
:
is
:::::::::
equivalent

::
to

:::::::
LASSO

::::
and

:::
thus

:::
an

::::::
explicit

:::::::::::::::
L1-regularization

:::::::::::
(Ziyin, 2023).

:::
Yet,

::::
their

::::::::
proposed

:::::::
method

:::::
spred significantly outperforms LASSO, which suggests that the

::::
posed

equivalence of optimized objectives does not suffice to explain its success.
:::::
cannot

:::::::
explain

:::
this

::::::
success.

:

The answer to this open question lies in the analysis of the learning dynamics, which fundamentally
differs from LASSO, as redundant features are sparsified exponentially fast. We show this by
extending the mirror flow framework, based on which we gain additional insights and derive
tools to improve over spred. By the unification of the explicit regularizationin the implicit bias
framework, the problem gets indirectly reformulated as a

::
As

:::
we

:::::
show,

::
an

:::::::::
important,

:::
but

:::::::::
overlooked,

:::::::::::
distinguishing

::::::
factor

::
is
::::

the
:::
fact

::::
that

::::::::::
continuous

::::::::::::
sparsification

::::
with

:::::::
m⊙ w

::::::::::::::
parameterization

::
is

:::::
driven

:::
by

:::
an

:::::::
implicit

:::::
rather

:::::
than

::
an

:::::::
explicit

:::::::::::::
regularization.

:::::
This

:::::::
implies

::::
that

::
in

::
a

:::::::::
sufficiently

:::::::::::::::
overparameterized

:::::::
setting,

:::
the

::::::::
following

:
hierarchical optimization problem , instead of solving

LASSO
::
is

:::::
solved:

min
x∈Rn:f(x)=0

||x||L1
. (1)

The main idea follows the same philosophy as the lottery ticket hypothesis (Frankle & Carbin, 2019).
From a range of models which all attain optimal training loss, we choose

:
it
::::::
prefers

:
the sparsest

model. In other words, we aim to find a subnetwork with a similar accuracy as a dense network.
Instead of having two competing objectives, we enforce cooperation between the two objectives by
subjugating the sparsification.

:::::
While

::::
this

::::::::::
formulation

:::
can

:::::
have

::::::::::
advantages,

::
if

:::
we

:::
can

:::::
attain

::::
zero

::::::
training

::::
loss

::::::::::
(f(x) = 0),

:
it
::::::
might

:::
still

::
be

:::::::::
equivalent

::
to

:::
an

::::::
explicit

::::::::::::
regularization.

:

The optimization problem in Eq. (1)is solvable using the implicit bias framework.
It is well known that standard gradient flow has an implicit bias which
acts as an L2 regularization(Nemirovski & Yudin, 1983; Beck & Teboulle, 2003)
. Different parameterizations though induce a different implicit bias
(Pesme et al., 2021; Gunasekar et al., 2020; Woodworth et al., 2020; Li et al., 2022) in the

:::
The

:::
real

::::::::
potential

::
of

:::::::::
continuous

:::::::::::
sparsification

::::
and

::
its

:::::::
induced

:::::::
implicit

::::
bias

::
(in

:::::::::
particular

::
in

:::::::::
non-convex

:::::::
settings)

:::::::
becomes

::::::::
apparent

:::::
when

:::
we

:::::
study

:::
the

::::::::::::
corresponding

:::::::
learning

:::::::::
dynamics.

::::
Our

:::::::::
theoretical

::::::
analysis

:::
of

:
(stochastic) gradient flow framework. We utilize this framework to understand the

implicit bias induced by the parameterization
::::::
applied

::
to

:
m ⊙ w with weight decay. The key

insight is that the
::::::
reveals

::::
that

:::
the

:::::::::
dynamics

:::::
differ

:::::::::::::
fundamentally

:::::
from

:::
the

:::::
ones

:::
of

:::::::
LASSO,

:::::
where

:::::::::
redundant

:::::::
features

::::
are

:::::::::
sparsified

::::::::::::
exponentially

::::
fast.

:::::::::
Instead,

:::
we

:::::
show

::::
by

::::::::
extending

::
the

:::::::
mirror

::::
flow

::::::::::
framework

::::
that

::
a
::::::::

dynamic
::

explicit weight decay regularization moves
::
can

::::
move

:
the implicit bias from L2 to L1 during training. This way, the dynamics resemble

:
In

:::::::::::
consequence,

:::
the

::::::::::::
sparsification

::::::::
becomes

:::::::
effective

:::::
only

::::::::
relatively

::::
late

::::::
during

::::::::
training,

:::::::
allowing

::
the

::::::::::::::::
overparameterized

::::::
model

:::
to

::::
first

::::::
attain

::::
high

:::::::::::::
generalization

:::::::::::
performance.

::::::
The

::::::::
dynamics

:::::::
resemble

::::
thus

:
a successful strategy that is applied across continuous and iterative pruning methods,

as they all acknowledge
:::::
which

:::
all

::::::::::::
acknowledge

:::
and

:::::::
realize

:::
the

:::::::
premise

:
that training overpa-

rameterized models before they are sparsified
::::::
usually

:
leads to significant performance benefits

(Frankle & Carbin, 2018; Gadhikar & Burkholz, 2024; Paul et al., 2023). Remarkably, we also
learn that the strength of the weight decay controls the amount of implicit L1 regularization.
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Frankle & Carbin, 2018; Paul et al., 2023; Gadhikar & Burkholz, 2024).

:

We theoretically extend the framework by proposing a dynamic regularization

2
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:::
Our

::::::::
analysis

:::::::
extends

::::
the

:::::::
implicit

::::
bias

:::::::::::
framework,

::::::
which

::::::
covers

::::::::
different

:::::::::::::::
parameterizations

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Pesme et al., 2021; Gunasekar et al., 2020; Woodworth et al., 2020; Li et al., 2022)
:::
and

::::
the

::::::::::::
well-known

:::::
fact

:::::
that

:::::::::
standard

:::::::::
gradient

::::::
flow

::::
has

::::
an

:::::::::
implicit

::::
L2:::::

bias
:::::::::::::::::::::::::::::::::::::::::::
(Nemirovski & Yudin, 1983; Beck & Teboulle, 2003).

::::::::
Another

:::::::
common

::::
use

::
of

:::
the

:::::::::
framework

:::
has

::::
been

::
to

:::::
study

:::::
when

:::::::
training

:::::::::
dynamics

:::::
enter

:::
the

::::::::
so-called

::::
rich

:::::::
regime,

:::::
which

::
is
::::::::::

responsible
:::

for
::::::::
improved

::::::
feature

::::::::
learning.

:::
In

:::
this

:::::::
context,

:::
we

:::::
study

::::
two

:::::
main

::::::::::
innovations.

:::
a)

:::
As

:::
we

:::::
show,

:::
the

::::::
explicit

::::::::::::
regularization

::::
(i.e.

::::::
weight

::::::
decay on m and w. This regularization leads to even sparser

lottery tickets, while still prioritizing the main optimization goal: accuracy. In this sense, it can
be interpreted as tuneable implicit regularization.

:
)
::::::
guides

:::
the

:::::::
strength

:::
of

:::
the

:::::::
implicit

::::
bias.

::::
The

:::
fact

::::
that

:::
this

::::::
makes

:::
the

::::::
implicit

::::
bias

::::::::
tuneable

:::::
makes

::
it

:::::::::
practically

:::::::
relevant

:::
for

:::::::::::
sparsification,

:::
as

::
we

::::
have

::
to

:::
be

::::
able

::
to

:::::
reach

:
a
::::::

target
:::::::
sparsity.

:::
b)

:::
By

::::::::
proposing

::
a
::::::::
dynamic

:::::::::::
regularization

::::::
(rather

::::
than

:
a
::::::::
common

:::::
static

::::
one),

:::
we

::::::
obtain

::::::
control

:::::
over

:::
the

::::::::
transition

:::::
speed

:::::
from

:::
L2::

to
:::
L1::::::::::::

regularization,
:::::
which

::
is

::::::
crucial

:::
for

::::::::::
performance

:::::
gains

::
in
:::

the
:::::

high
::::::
sparsity

:::::::
regime

:::
and

:::::::
enables

::
us

::
to

:::::
enter

:::
the

:::
rich

::::::
regime.

:
We thus show that

:::::
From

:
a
:::::::::
conceptual

:::::
point

:::
of

:::::
view,

:::
we

::::
unite

:
explicit and implicit bias

can be united with
:::::
within

:
a time-dependent Bregman potential, which is potentially of independent

theoretical interest.

Utilizing these insights , we
:::::
While

:::
our

::::::
general

::::::::::
derivations

::::::
provide

:::::::
insights

::::
into

::::::
various

:::::::::
continuous

:::::::::::
sparsification

::::::::::
approaches,

::::::::
including

:::::
STR

:::::::::::::::::::
(Kusupati et al., 2020),

:::::
spred

::::::::::::::::::
Ziyin & Wang (2023)

:
,
::
or

::::::::::::::::::
(Savarese et al., 2021),

:::
we

::::
also

::::::
utilize

:::::
them

::
to

:
propose a new

::::::::
improved

:
algorithm, PILoT (Para-

metric Implicit Lottery Ticket), which .
::::::

PILoT
:

combines the m ⊙ w parameterization with a dy-
namic regularization and a better initialization . This initialization

::
an

:::::::::::
initialization

:::
that

:
enables sign

flips, which are key for
:
.
::::
Such

::::
sign

::::
flips

:::
are

::::
key

::
to

:::::::
effective

:
sparse training (Gadhikar & Burkholz,

2024),
:
but are not feasible with the spred initialization. Furthermore, the dynamic regularization

:::
The

:::::::
dynamic

::::::::::::
regularization

:::
and

::::
thus

:::::::
implicit

::::
bias leads us to improve over spred and other competing

methods in particular on
:::::::::
outperform

:::::::::::::
state-of-the-art

::::::::
baselines

:::
in

::::::::
particular

:::
in

:
the high-sparsity

regime, as we demonstrate in extensive experiments.

In summary, we make the following contributions:

• We gain novel insights into continuous sparsification by highlighting its implicit bias to-
wards sparsity induced by doubling the number of trainable parameters. In particular, we
explain the effectiveness of spred (Ziyin & Wang, 2023), which is based on m⊙ w.

• To the best of our knowledge, we are the first to introduce the implicit bias with an explicit
regularization resulting in a mirror flow with a time-dependent Bregman potential.

• We provide convergence results for (quasi)-convex loss functions (Theorem 2.2) and opti-
mality for underdetermined linear regression (Theorem 2.3) with time-dependent Bregman
potential.

• Improving results by (Alvarez et al., 2004; Li et al., 2022), we replace convexity with the
Polyak-Łojasiewicz inequality, quasi-convexity and a growth condition on the Bregman
potential (see Theorem A.3).

• Using our extensions of the mirror flow framework, we propose a new continuous sparsifi-
cation method, PILoT, which controls the implicit regularization dynamically moving from
L2 to L1. Its initialization enables sign flips in contrast to spred.

• In experiments for diagonal linear networks and vision benchmarks (including ImageNet),
PILoT consistently outperforms baseline sparsification methods such as STR and spred,
which demonstrates the utility of our theoretical insights.

1.1 RELATED WORK

Neural network sparsification. A multitude of neural network sparsification methods have been
proposed with different objectives (Liu & Wang, 2023). A popular objective is, for instance, to save
computational and memory costs primarily at inference, or also during training, which is linked to
the time of pruning, i.e., initially (Frankle et al., 2021; Lee et al., 2019; Tanaka et al., 2020; Wang
et al., 2020; Pham et al., 2023; Patil & Dovrolis, 2021; Tanaka et al., 2020; Liu et al., 2021; Gadhikar
et al., 2023; Fischer & Burkholz, 2021), early during training (Evci et al., 2020; Dettmers & Zettle-
moyer, 2019), during training like continuous sparsification (Sreenivasan et al., 2022; Kusupati et al.,
2020; Savarese et al., 2021; Peste et al., 2021) or within multiple pruning-training iterations (Han

3
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et al., 2015; Frankle & Carbin, 2018; You et al., 2020; Renda et al., 2020; Gadhikar & Burkholz,
2024). Other distinguishing factors are which type of sparsity the methods seek, if they focus on sav-
ing computational resources and memory in specific resource-constrained environments or, which
methodological approach they follow.

Unstructured sparsity. In this work, we focus on unstructured sparsity, i.e., the fraction of pruned
weights, and thus seek to remove as many weight entries as possible, which can achieve generally
the highest sparsity ratios while maintaining high generalization performance. Structured sparsity,
which usually obtains higher computational gains on modern GPUs (Kuzmin et al., 2019; Wen et al.,
2016; Lasby et al., 2023), could also be realized in the continuous sparsification setting, for instance,
by learning neuron-, group, or even layer-wise masks. Yet, this would not enjoy the same theoretical
benefits as we derive here by showing that the unstructured continuous m ⊙ w parameterization
induces a mirror flow, whereas for example the neuron-wise mask does not (see Section D).

Iterative pruning
:
. Iterative pruning is often motivated by to the Lottery Ticket Hypothesis

(LTH) (Frankle & Carbin, 2018), which conjectures the existence of sparse subnetworks of larger
dense source networks that can achieve the same accuracy as the dense network when both are
trained (Frankle et al., 2021; Liu et al., 2024; Malach et al., 2020; Orseau et al., 2020; Pen-
sia et al., 2020; Burkholz et al., 2022; Fischer & Burkholz, 2021; Burkholz, 2022a;b; da Cunha
et al., 2022; Ferbach et al., 2022). In addition to the sparse structure, iterative pruning often tries
to identify a trainable parameter initialization, indirectly also implementing an approximate L0-
regularization. In repeated prune-train iterations, trained weights are thresholded according to an
importance score like magnitude. Afterward, the remaining parameters are free to adapt to data in
a new training run and not additionally

::
be

:
regularized by a sparsity penalty (like L1). Our pro-

posal PILoT can be combined with such iterative schemes. Our
:::
The

:
experiments show that this

can boost the
:
it

::::::
boosts performance of state-of-the-art schemes like Iterative Magnitude Pruning

(IMP) (Frankle & Carbin, 2018), Weight Rewinding (WR) (Frankle et al., 2019), and Learning Rate
Rewinding (LRR) (Maene et al., 2021; Gadhikar & Burkholz, 2024)

::::::::::::::::
(Maene et al., 2021).

Continuous sparsification. Continuous sparsification characterizes a collection of methods that can
compete with iterative pruning techniques, while often requiring fewer training epochs (Sreenivasan
et al., 2022; Kusupati et al., 2020). The method by (Savarese et al., 2021)lends its name to the
general approach, in which

:
In

::::
one

::
of

:::
the

:::
first

::::::::
proposals

::
by

:::::::::::::::::::
(Savarese et al., 2021), the mask is relaxed

to a continuous variable. In general, continuous sparsification can be combined with a probabilistic
approach where m is interpreted as a probability (Louizos et al., 2018; Zhou et al., 2021a;b). Other
parameterizations of m that are not restricted to

::
the

:::::
range

:
[0, 1] (e.g. Powerpropagation) can also

be utilized to regularize towards higher sparsity (Schwarz et al., 2021). Yet, they usually need to be
::
are

:::::::
usually combined with projection approaches like in iterative pruning. Furthermore, the spred

algorithm proposed by (Ziyin & Wang, 2023)
:
to

::::
map

:::
m

::
to

::
a
::::::
binary

:::::
mask.

:::::
The

:::::
spred

::::::::
algorithm

::::::::::::::::::
(Ziyin & Wang, 2023)

:::::::
removes

:::
any

::::::::::
projections

:::
and shows that m⊙w with weight decay induces an

implicit L1 regularization. Yet, this does not
:::::
solve

:
a
:::::::
LASSO

::::::::
objective.

:::
To

:
explain its performance

gain over LASSO. By extending
:
,
:::
we

:::::
extend

:
the mirror flow framework , we

:::
and find an explanation

in the training dynamicsthat implies a dynamic
:
.
::::

Our
:::::::::

extension,
::::::
PILoT,

:::::::::::
dynamically

::::::
adjusts

:::
the

:::::
weight

::::::
decay

:::
and

:::::::
induces

::
a
:
transition from an implicit L2 to L1 regularization. Our extension,

PILoT controls this transition dynamically, which leads it to even
::
L2::

to
:::
L1:::::::::::::

regularization.
::::
This

::::::
enables

::
it

::
to outperform the state-of-the-art method STR (Kusupati et al., 2020) in the high-sparsity

regime. For a survey of other methods see (Kuznedelev et al., 2023).

Implicit bias. The implicit bias of (S)GD is a well-studied phenomenon
(Chizat & Bach, 2020; Li et al., 2022; Woodworth et al., 2020; Gunasekar et al., 2020; 2017; Chou et al., 2024)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Chizat & Bach, 2020; Li et al., 2022; Woodworth et al., 2020; Gunasekar et al., 2020; 2017; Chou et al., 2024; Vaškevičius et al., 2019; Li et al., 2023; Zhao et al., 2022; Li et al., 2021)
and can in certain cases be described by a mirror flow or mirror descent (in the discrete case with
finite learning rate) (Li et al., 2022). Originally, mirror descent was proposed to generalize
gradient descent and other first-order methods in convex optimization (Alvarez et al., 2004;
Rockafellar & Fenchel, 1970; Boyd & Vandenberghe, 2009; Nemirovski & Yudin, 1983; Beck
& Teboulle, 2003). Moreover, it has been used to study the implicit regularization of SGD in
diagonal linear networks (Pesme et al., 2021; Even et al., 2023). More recently, it also has been
applied to analyze the implicit bias of attention (Sheen et al., 2024). While (Li et al., 2022) has
shown that different parameterizations have a corresponding mirror flow, we find that m ⊙ w
with our proposed explicit regularization, PILoT, gives rise to a corresponding time-dependent
mirror flow. Its time dependence gives us means to control the implicit bias, while still achieving

4
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convergence. Time-dependent mirror descent has so far only been studied in the discrete case as a
general possibility (Radhakrishnan et al., 2021). The time dependence also naturally arises in SDE
modelling, yet, without control of the implicit bias (Pesme et al., 2021; Even et al., 2023). Here, we
not only highlight a practical use case for time-dependent Bregman potentials, we also derive a way
to control and exploit it.

Optimization and convergence proofs. Loss landscapes and the convergence of first-order methods
is a large field of study (Karimi et al., 2016; Fehrman et al., 2019) in its own right. We draw on
literature that shows convergence by using the Polyak-Łojasiewicz inequality (Wojtowytsch, 2021;
Dereich & Kassing, 2024), which is a more realistic assumption in the deep learning context than, for
example convexity, because it can hold locally true for non-convex loss functions that are common
in machine learning.

2 CONTROLLING THE IMPLICIT BIAS WITH EXPLICIT REGULARIZATION

Structure of theoretical exposition. Our first goal is to advance the mirror flow framework from
(Li et al., 2022) to incorporate time-dependent regularization,

:
.
::::
This

::
is a key innovation that forms

the foundation of our proposed PILoT algorithm (Algorithm 1). The dynamical description also
covers constant regularization, as implemented in the spred algorithm. We begin by integrating time-
dependent regularization in the mirror flow framework in the case of the parameterization m ⊙ w
combined with time-varying weight decay. This corresponds to a time-dependent Bregman potential,
enabling a more dynamic and powerful form of implicit regularization. The implicit regularization
becomes controllable and moves from an L2 to an L1 regularization. Building on this, Theorem
2.1 rigorously characterizes this process within this extended framework, offering new insights into
the sparsification process. Moreover, using the characterization,

::::
Then Theorem 2.2 , establishes

convergence to
:
a
:::::::
solution

::
of

:
the original optimization problem. Sparsity is still attained according to

Theorem 2.1, which can also be observed in the gradient flow in Eq. (6) of PILoT. For diagonal linear
networks, which is an analytically tractable setting, we also prove optimality, as stated by Theorem
2.3. This highlights a mechanism how

::
our

:::::::
method PILoT improves over spred, since spred cannot

reach optimality.

Optimization problem. Consider the following time-dependent optimization problem for a loss
function f : Rn → R:

min
m,w∈Rn

f(m⊙ w) + αt

(
||m||2L2

+ ||w||2L2

)
. (2)

where αt ≥ 0 can change during training. (Ziyin & Wang, 2023) for constant
::
In

:::::::
contrast,

::::::::::::::::::
(Ziyin & Wang, 2023)

:::
set αt = α that

::::::
constant

::::
and

:::::
show

:::
that

::::
Eq. (2) is equivalent to the LASSO

objective. Why does spred tend to outperform LASSO then?

Seeking answers in the training dynamics. The gradient flow associated with minimizing the con-
tinuously differentiable loss function f is: dxt = −∇f(xt)dt, x0 = xinit. Using this gradient flow
framework, (Li et al., 2022) show that a reparameterization or overparameterization of the param-
eters x leads to a mirror flow. A mirror flow informally minimizes a potential in the background,
for example, the L1 or L2-norm. In contrast, explicit regularization forces a direct trade-off. The no
need for a trade-off becomes clear in the convergence and optimality theorem.

Mirror flow. Concretely, to define a mirror flow, let R : Rn → R be a differentiable function. It is
described by

d∇xR(xt) = −∇xf(xt)dt, x0 = xinit.

(Li et al., 2022) provide sufficient conditions for a paramerization g: M → Rn to induce a mirror
flow, where M is a smooth sub-manifold in RD for D ≥ n. The parameterization m ⊙ w falls
into this category. The corresponding potential depending on the initialization of m0 and w0 ::

R is
either close to

::
the

:
L1 or L2 norm

::::::::
depending

:::
on

:::
the

:::::::::::
initialization

::
of

:::
m0:::

and
:::
w0. If we could steer

it towards L1, we could therefore induce an implicit regularization towards sparsity. However, even
in this case, we face multiple caveats. Firstly, the ,

::::
yet,

:::
not

::::::
without

::::::
issues.

:

::::
Two

::::::
caveats

::::
and

:::::
their

:::::::
solution.

::
a)

:::
The

:
potential R attains its global minimum at the initialization

:::::
initial x0 (and not 0), a fact that

:
.
::::
This

:
also holds for other reparameterizations (Li et al., 2022).

In consequence, we would not promote actual sparsity . Secondly, to induce the
:::
for

::::::
x0 ̸= 0.

:::
b)

::
To
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:::::
induce

:
L1 regularization

:::
and

:::::
enter

::
the

::::
rich

::::::
regime, the initialization of both m0 and w0 would need

to be exponentially small (Woodworth et al., 2020). The explicit

:::
The

:::::::
explicit

::::::::
dynamic

:
regularization of PILoT in Eq. (2) solves both of these problems. For

completeness, the
:
,
::
as

:::
we

:::::
show

::::
next.

:::::
The corresponding mirror function R is stated in Theorem

A.1 and the corresponding convergence and optimality theorems in Theorem A.2 and A.4. These
results motivate the use and extension of the mirror flow framework.

Dynamic regularization. We now
::::
Next

:::
we

:
present the main result, the dynamical description with

time-dependent regularization. The exact dynamics are described by the time-dependent mirror flow
and is derived in Theorem 2.1.

Theorem 2.1 Let |w0,i| < m0,i for all i ∈ [n], then the time-dependent Bregman potential is given
by

Rat(x) =
1

2

n∑
i=1

xiarcsinh
(

xi

at,i

)
−
√

x2
i + a2t,i − xilog

(
u0,i

v0,i

)
, (3)

with at,i = 2u0,iv0,iexp
(
−2
∫ t

0
αsds

)
and u0,i =

m0,i+w0,i√
2

and v0,i =
m0,i−w0,i√

2
. The

time-dependent Bregman potential
:::::::
gradient

::::
flow

::
of

::::::::::::
xt = mt ⊙ wt:::::::

induced
:::
by

:::
Eq.

:::
(2)

::::
then

:
satis-

fies
d∇Rat(xt) = −∇f(xt)dt, x0 = m0 ⊙ w0.

Proof. The proof is given in the appendix. The main steps are: a) Deriving the evolution of the
gradient flow (Lemma B.1). b) Showing that it satisfies the time-dependent mirror flow (Lemma
B.2). Note that step a) also derives Eq. (6). The

:::::::
Observe

:::
that

:::
the potential in Eq. (3) now depends on at. This has the following effect on the position

of the global minimum :
:::::::
changes

::
the

::::::
global

::::::::
minimum

::
to

:

∇Rat(x) = 0⇔ x = exp
(
−2
∫ t

0

αsds

)
⊙m0 ⊙ w0.

Thus, we gain control over the positional implicit bias, solving our problem with the nonzero global
minimum. Next, we characterize the asymptotic behavior, which we control in practice with αt,
:::::
which

:::::::::
determines

::::
also

::
at. The asymptotics follows from Theorem 2 in (Woodworth et al., 2020).

For a→ 0 and |xa | → ∞, we receive

Ra(x) ∼ log
(
1

a

)
||x||L1 .

Interestingly, the term xilog
(

u0,i

v0,i

)
does not play a role in the asymptotics. The reason is that

log( 1a ) in front of the other term dominates. Figure 1 illustrates the asymptotics in the case of
n = 1. Indeed, we observe that increasing

::
for

:::
the

::::
one

::::::::::
dimensional

:::::
case.

:::
We

:::::::
observe

::::
that

:::
our

:::
two

::::::::
previously

::::::::
identified

::::::
mirror

::::
flow

::::::
caveats

:::
can

:::
be

:::::::
resolved:

:::
a)

::::::::
Increasing

:
a moves the minimum to the

origin, leading to an L1 regularization. This implies initializing at zero with an exponentially small
scaling (i.e. a→ 0) is not necessary.

::
b)

:
Moreover, the regularization αt has an exponential and time-

dependent effect on at, thus solving the other issue of .
::
It

::::
thus

::::::
enables

:
steering the dynamics towards

an L1 regularization at the desired speed. In conclusion, our extension and novel analysis have
discovered a promising initialization and revealed how explicit regularization solves the problems
of the standard mirror flow framework.

Remark 2.1 At the end of LASSO training, the regularization could
:::
can be turned off , to allow a

::
to

::::::
enable

:::
the search for a better solution. However, this approach risks losing the benefits of the

regularization. For
:
,
:::
for example, if the basin of attraction contains non-sparse critical points. In

contrast, for the m⊙ w reparameterization, the time-dependent Bregman potential steers
:
(but does

not force
:
)
:
the bias towards sparsity. Therefore, dynamically updating the regularization strength

makes sense with the reparameterization.

6
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Figure 1: Evolution of the time-
dependent Bregman potential. α =∫ t

0
αsds is the exponent of at.

Convergence and optimality. It remains to be shown that
convergence and optimality results transfer from the mirror
flow framework to the time-dependent mirror flow framework.
For quasi-convex loss functions, we prove convergence to a
critical point. For convex or quasi-convex functions that sat-
isfy the PL-inequality

:
, we derive convergence to a minimizer.

Theorem 2.2 Assume f is quasi-convex, ∇f is locally Lips-
chitz and argmin{f(x)|x ∈ Rn} is non-empty. Assume αt ≥ 0

for all t ≥ 0 and that
∫ t

0
αsds < ∞ for t ∈ [0,∞) ∪ {∞}.

Then as t → ∞, xt converges to some critical point x∗. Fur-
thermore, if f is either convex or both quasi-convex and satis-
fies the PL-inequality in Eq. (9). Then xt convergences to an
interpolator x∗ that is a minimizer of f . Furthermore, in the
PL-inequality case, the loss converges linearly such that there
is a constant C > 0 such that

f(xt)− f(x∗) ≤ Bexp (−λa∞t) , (4)
where B = (f(x0)− f(x∗)) exp

(
C||x∗||L2

∫∞
0

αsds
)

with C depending on the smoothness of the
loss function.

Proof. The main steps of the proof are to show that a) the iterates are bounded and converge to
a critical point (Lemma B.3); b) the loss converges (Theorem B.1). A noteworthy tool is a time-
dependent Bregman divergence, which we use to bound the iterates. Furthermore, we utilize that
αt ≥ 0 converges to zero, resulting in eventually

:::::::::
eventually

::
in a non-increasing evolution of the

loss.

Potential drawbacks. Theorem 2.2 guarantees convergence in the case of implicit regularization.
Explicit L1 regularization or spred, on the other hand, cannot achieve the same result due to constant
regularization, which we will also highlight in experiments. Regardless, note that the constant B
in Eq. (4) could be large. Furthermore, to reach the implicit L1-regularization, a∞ needs to be
exponentially small similarly as in Theorem 2 in (Woodworth et al., 2020). These two potential
drawbacks also reveal where the method will work, namely, in overparameterized settings where the
solution x∗ should have less active parameters. Then B is potentially relatively small.

Remark 2.2 If ∇f is one-sided inversely Lipschitz, a speed-up is possible. The quantity that needs
to be bounded for convergence is −∇f(xt)

⊤xt. In this case, we get
−∇f(xt)

⊤xt ≤ −∇f(xt)
⊤x∗ − ||xt − x∗||2L2

≤ C||x∗||L2
− ||xt − x∗||2L2

,

where C is the bound on the smoothness of the loss function f . This implies that when the interpo-
lator x∗ ≈ 0 is small, the right-hand side is negative, leading to a speed-up. This condition is also
known as coercive.

Optimality. Note, the
:::
The

:
main assumption in Theorem 2.2 is αt → 0, this

:::::
which ensures con-

vergence to a minimizer of the original problem, while retaining sparsity depending on a∞. In the
case of diagonal linear networks, we can even prove optimality

::::
with

::::::
respect

::
to

:::
the

:::::
final

:::::::
Bregman

:::::::
potential

::::
Ra∞ .

Theorem 2.3 In case of under-determined regression consider the loss function f(x) = f̃(Zx−Y ).
Assume f satisfies the conditions with at least one of the convergence criteria of Theorem 2.2. Then
xt converges to x∗ such that

x∗ = argminZx=Y Ra∞(x). (5)

Proof. We show that the KKT conditions of Problem (5) are satisfied (Theorem B.2).

Take away. While we
:::
We

:
have shown that our extended mirror flow framework can attain con-

vergence and optimality in an analytically tractable scenario
:
.
:::::::::::
Furthermore, from a practical side,

it also gives us new tools to derive more promising continuous sparsification techniques . For
instance, indirectly defining a time-dependent Bregman potential, we propose next

::::
with

::::::
implicit

::::::::::::
regularization.

:::
In

:::
the

::::::::
following

:::::::
section,

:::
we

:::::::
propose

:
a way to dynamically control the transition

from implicit L2 regularization to L1 during training
:::
with

:::
the

::::
help

:::
of

:::
the

::::::
derived

:::::::::::::
time-dependent

:::::::
Bregman

::::::::
potential.

7
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3 THE ALGORITHM: PILOT

Like spred, our new algorithm PILoT (Algorithm 1) utilizes the parameterization m ⊙ w, but pro-
poses a novel initialization and dynamic regularization schedule to control the transition from im-
plicit L2 to L1 regularization. To attain the desired results in the original parameterization x, we
first derive its gradient flow.

Gradient flow. Essentially, the gradient flow follows from the analysis in Section 2. Inspired
by

::::::::
According

:::
to

:
Theorem 2.2, we design our algorithm to achieve better performance while

guaranteeing convergence . The main consequence is that
::::::::
guarantee

:::::::::::
convergence

:::
by

:::::::
ensuring

αt → 0. Concretely, the gradient flow for x = m⊙ w
::::::::::::
xt = mt ⊙ wt :::::::

induced
::
by

::::
Eq.

:::
(2) is given

by:

dxt = −
√

x2
t + a2t ⊙

(
∇f(xt) + 2αt

xt√
x2
t + a2t

)
dt, x0 = xinit, (6)

where at =
(
m2

0 − w2
0) exp

(
−2
∫ t

0
αsds

))
:::::::::::::::::::::::::::::
at =

(
m2

0 − w2
0

)
exp

(
−2
∫ t

0
αsds

)
. m0 and w0 have

to be initialized such that m0 ⊙ w0 = xinit. Note that all operations are point-wise. The derivation
is based on the time-dependent mirror flow in Section 2.

Remark 3.1 The gradient flow PILoT in
::
in

:::
Eq.

:::
(6)

::::::
allows

:::
us

::
to
:::::

make
::

a
::::::

direct
::::::::::
comparison

::
to

::
the

::::::::::
continuous

:::::::::::
sparsification

:::::::
method

::::
STR

:::::::::::::::::::
(Kusupati et al., 2020).

:::::::
Instead

::
of

:::
the

::::
soft

::::::::::
thresholding

:::::::
operator,

:::
we

::::
have

::::::::::

√
x2
t + a2t .

:::
The

:::::
main

::::::::
difference

::
is

::::
that

:::
STR

::::
does

:::
not

:::::::
change

:::
the

:::::::::
magnitude

::
of

::
the

:::::::
gradient

::::::
update

::::::
outside

::
of
:::

the
::::::::::

(learnable)
:::::::::
threshold,

:::::
while

::::
both

::::::
PILoT

:::
and

:::::
spred

:::::::
actively

::::::
change

::
the

::::::::::
magnitude

::::::::
depending

:::
on

:::
the

:::::::::
magnitude

::
of
::::

the
::::::
weight.

::::
This

::::::
active

:::::::::::
sparsification

::::::::
explains

:::
why

::::
spred

::::
and

::::
also

:::::
PILoT

::::
can

:::::::
perform

:::::
better

::
in

:::
the

:::::::::::
high-sparsity

::::::
regime.

:

::::::
Spred.

:::
The

:::::::
gradient

::::
flow

::
in

:
Eq. (6) explains why spred usually performs better than LASSO and

highlights where spred can further be improved. Note that the balanced initialization of spred is
defined such that m2

0−w2
0 = 0 and the regularization is constant αt = α. Plugging this into Eq. (6)

gives

dxt = −
√

x2
t ⊙ (∇f(xt) + 2αsign (xt)) dt, x0 = xinit. (7)

Compare this with the gradient flow of LASSO with regularization strength 2α:

dxt = − (∇f(xt) + 2αsign (xt)) dt, x0 = xinit.

We observe that the main difference to the gradient flow of LASSO is the factor
√

x2
t . This implies

the considerable drawback that spred gradient flows cannot sign flip. Therefore, it cannot reach the
optimal solution or specific minimizers potentially. Another way to see this is studying the evolution
xt = x0 exp

(
−4sign (x0)

∫ t

0
∇f(xs)ds− 2αt

)
satisfying Eq. (7). In practice, the absence of sign

flips might be remedied by using a large learning rate and noise. The evolution also explains why
it can perform better than LASSO, as it decays redundant parameters exponentially faster instead
of linearly. In other words, the gradient update is proportional to the magnitude of the parameter.
Therefore, the evolution of PILoT

::::
spred

:
(Eq. (7)) can converge faster and come closer to zero than

LASSO.

The gradient flow in Eq. (6) allows us to make a direct comparison to the continuous sparsification
method STR (Kusupati et al., 2020). Instead of the soft thresholding operator, we have

√
x2
t + a2t .

The main difference is that STR does not change the magnitude of the gradient update outside of the
(learnable) threshold, while both PILoT and spred actively change the magnitude depending on the
magnitude of the weight. This active sparsification explains why spred and also PILoT can perform
better in the high-sparsity regime.

PILoT. Given our insights into the spred algorithm, we want to remedy these by using
:::
Our

:::::
main

:::
goal

:
is
::
to
:::::::
remedy

:::
the

::::::
caveats

::
of

:::
the

:::::
spred

::
by

::::::::
inducing the more general gradient flow in Eq. (6). The first

improvement is ensuring sign flips are possible
::
to

::::::
enable

:::
sign

::::
flips

:
by changing the initialization to

m2
0−w2

0 = β > 0, which we will refer to as
:::::
where

:
β
:::::::
denotes the scaling constant. Our experiments

set β = 1, which is motivated by the discretization of the gradient flow.
::::
After

::::::::::
discretizing

:::
Eq.

:::
(6),

8
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::
the

::::::::
effective

:::::::
learning

:::
rate

::
at

::::::::::
initialization

:::::::
x0 = 0

:
is
:::::
η|β|,

:::::
where

:::::
η > 0

::
is

:::
the

:::::::
learning

::::
rate.

::::::::
Therefore,

::
we

:::
use

::::::
β = 1

::
in

:::
the

::::::::::
experiments

::
so

::::
that

:::
the

:::::::
learning

:::
rate

::
η
::
is

:::
not

::::::
altered.

:

Our
:::::
second

::::
and main improvement is induced by the time dependence of αt. The αt together with

at control
::::::
controls

:
the strength of both the implicit and explicit regularization . We observe if

::
via

::
at.:::

If at >> xt,:then the regularization term in
:::
Eq.

:
(6) resembles

::
an

:
L2 instead of

::
an

:
L1 ::::

norm.
Therefore decreasing at moves the

:::::::
implicit regularization from L2 to L1. Accordingly, we sparsify

gradually instead of abruptly at initialization.
::::
only

::::::
mildly

::
in

:::::
early

:::::::
training

::::::
epochs

::
in

:::::::
contrast

::
to

:::::
spred. We have shown this formally in Section 2. Furthermore, convergence is covered by Theorem
2.2 when αt → 0. The effect of the regularization remains during training , which is captured by
the term

√
x2
t + a2t in Eq. (6). In consequence, PILoT leads to better accuracy while still having a

lasting sparsifying effect on the dynamics.
::::
Even

:::::
when

::::::
PILoT

::::::
attains

:
a
::::::
similar

:::::::
sparsity

:::
as

::::
spred

::
at

::
the

::::
end

::
of

:::
the

:::::::
training

:::::::::
dynamics,

:
it
::::

can
::::::
usually

::::
still

::::::
achieve

::
a
::::::
higher

:::::::
accuracy

::::
due

::
to

::
its

::::::::
improved

::::::
training

:::::::::
dynamics.

:

Details on PILoT. These insights lead to
:::
The

::::::::
described

::::::
design

:::::::
choices

:::::
define Algorithm 1. Our up-

date of the regularization strength depends on
::
αk:::::::

depends
::
on

:::::
three

:::::::::
quantities: a) the sparsity thresh-

old K for the weights
::
(a

::::::::::::::
hyperparameter), b) the training accuracy, and c) δ ≥ 1

:
,
:::
the

:::::::::::
multiplicative

:::::
factor

::
to

::::::::
gradually

:::::::
increase

::
or

::::::::
decrease

:::
the

:::::::::::
regularization

:::::::
strength. It is proportional to the current

order of αk. This makes the algorithm
:::
The

::::::::::::
regularization

:::::::
strength

::::
(and

::::
thus

:::::::
sparsity)

::::::
grows

:
if
:::

the
::::::
sparsity

::::::::
threshold

:::
has

::::
not

::::
been

:::::::
reached

:::
yet

:::
and

:::
the

:::::::
training

::::::::
accuracy

:::
has

::::::::
increased

::
in

:::
the

:::::::
previous

:::::::
gradient

:::::
update

:::::
step.

:::
As

:::
the

:::::::
strength

::
is

:::::::
adaptive,

:::
the

:::::::::
algorithm

::
is less sensitive to the initialization

of the regularization strength , as it is adaptive
:::::
initial

:::::::
strength

::
α0. Note that the setting δ = 1 and

β = 0 corresponds to spred, therefore
:
.
:::::::::
Therefore,

:
PILoT is a strict generalization . Furthermore,

::
of

:::::
spred.

::
In

:::::::
contrast

::
to

:::::
spred,

::::::::
however,

:
after half of the training epochs, we decay the regularization

strength regardless of whether the sparsity threshold K is reached. This guarantees convergence of
the corresponding gradient flow, as captured by

::
in

:::::::::
accordance

::::
with

:
Theorem 2.2.

Algorithm 1 PILoT

Require: epochs T , schedule αinit, initialization xinit, scaling constant β
Initialize m0, w0 such that m0 ⊙ w0 = xinit, m2

0 − w2
0 = 2u0 ⊙ v0 = β

:::::::::::
m2

0 − w2
0 = β, δ ≥ 1

and, K
α0 ← αinit

Current training acc← 0
Set f̃(m,w, α0) := f(m⊙ w) + α0

(
||m||2L2

+ ||w||2L2

)
for k in 1 . . . T do

(mk, wk) = OptimizerStep
(
f̃(mk−1, wk−1, αk−1)

)
if Training acc ≥ Current training acc and ||mk ⊙ wk||L1

≥ K and k ≤ T
2 then

αk ← αk−1δ
else

αk ← αk−1/δ
end if
Current training acc← Training acc

end for
return Model f(xT ) with xT = mT ⊙ wT

4 EXPERIMENTS

We demonstrate the effectiveness of PILoT in extensive experiments covering three different sce-
narios. Firstly, we confirm our theoretical results on the gradient flow in Theorem 2.3. Secondly,
we compare PILoT with other state-of-the-art continuous sparsification methods such as STR and
spred in a so-called

::::::::::::::::::
(Kusupati et al., 2020)

:::
and

:::::
spred

:::::::::::::::::::
(Ziyin & Wang, 2023)

:
in

::
a one-shot setting. In

this context, we also isolate the individual contribution of our initialization. Finally, we combine PI-
LoT with iterative pruning methods such as LRR and WR.

:::
WR

:::::::::::::::::::::
(Frankle & Carbin, 2019)

:::
and

::::
LRR

::::::::::::::::
(Maene et al., 2021)

:
.

9
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:::::::
Memory

:::::::::::::
requirements.

::
As

:::::
most

:::::
other

:::::::::
continuous

::::::::::::
sparsification

::::::::::
approaches,

:::::
note

:::
that

::::::
PILoT

::::::
doubles

:::
the

:::::::
number

:::
of

:::::::::
parameters

::::::
during

::::::::
training.

:::::
Yet,

::::::::
according

:::
to

::::::::::::::::::
Ziyin & Wang (2023),

:::
the

::::::
training

::::
time

:::
of

:
a
:::::::::
ResNet50

::::
with

::::::
m⊙ w

::::::::::::::
parameterization

:::
on

:::::::::
ImageNet

::::::::
increases

:::::::
roughly

::
by

:::
5%

::::
only

:::
and

:::
the

:::::::
memory

::::
cost

::
is

:::::::::
negligible

::
if

:::
the

::::
batch

::::
size

::
is

:::::
larger

::::
than

:::
50.

:::
At

:::::::::
inference,

:::
we

:::::
would

:::::
return

::
to

:::
the

::::::
original

::::::::::::
representation

::
x
:::
and

::::::::
therefore

::::::
benefit

::::
from

:::
the

::::::::
improved

::::::::::::
sparsification.

:

Diagonal Linear Network. A simulation of gradient flow on a diagonal linear network is given
for the different regularizations. The

:::
We

::::
have

::::::
proven

:::::::::
optimality

:::
for

:::
the analytically tractable setting

of diagonal linear networks, for which we have proven optimality, illustrates
:
.
:::::

Now
:::
we

:::::::
illustrate

the benefit of our initialization and dynamic explicit regularizationand highlights the importance of
choosing the right schedule for

:
.
:::::::::::
Furthermore,

:::
we

::::::::
highlight

:::
the

:::::
impact

:::
of

:
a
:::::
good

:::::::
dynamic

:::::::
schedule

::
of

:::
the

::::::::::::
regularization

:::::::
strength

:
αt. The hyperparameters are set to

:::
We

:::
use

:
d = 40 ,

::::::
amount

::
of

:::
data

::::::
points

::::
with

::::::
feature

:::::::::
dimension

:
n = 100 and sample zj ∼ N(0, In) ::

for
::::::
j ∈ [d]. The ground

truth x∗ is set such that ||x∗||L0
= 5. Furthermore, the network parameters are initialized with

x ∼ N(0, In 1√
n
)
::::::::::::::
x0 ∼ N(0, In 1√

n
). The step-size is η = 10−4 and the trajectories are averaged

over 5 initializations. 0.95 confidence regions are indicated by shades. As standard, the
::::
The mean

squared error is used as loss functionfor this under-determined linear regression problem.
:
.
:
We

report the distance of the evolution to the ground truth ||xt − x∗||L2 ::::
over

:::::::
training

::::
time in Figure 2,

which confirms our theoretical insights. While we compare different initializations
:
.
::::
Two

:::::::
different

:::::::::::
initializations,

::::
i.e.,

:::
the

::::
one of spred and PILoT, different (fixed) regularization schedules for both,

and LASSO, the figure reports the best regularization schedule for each initialization and LASSO.
The initialization of m and w is critical for performance, as the

::
of

:::::
PILoT,

::::
and

:::::::
different

:::::::::::
regularization

::::::::
schedules

:::
are

::::::::::
considered.

::::
The

::::::::
schedules

:::
are

::::::::
described

::
in

:::::::::
Appendix

::::
C.1.

::::::
Results

:::
for

:::
the

::::
best

::::
ones

::
are

::::::
shown

::
in

:::
the

:::::
figure

::::
and

::::::
confirm

:::
our

:::::::::
theoretical

::::::::
insights.

:::
The

:
inability to sign flip prevents spred

from reaching the ground truth for all considered schedules. Therefore, in the case of gradient
flow, the balanced initialization should be avoided. Furthermore, with a dynamic regularization,
our PILoT initialization outperforms both spred and LASSO,

:
reaching the ground truth. The best-

performing schedule for the PILoT initialization is a geometrically decaying schedule. This serves
as additional motivation for the regularization update step

:
,
::
as

::::
also

:::::::::::
implemented

:
in Algorithm 1.

In contrast, for the other two methods, a constant regularization works best. This experimentally
confirms Theorem 2.3 and Remark 2.2. Note that LASSO

:::
with

:::::::
gradient

:::::::
descent

:
performs as ex-

pected. A constant schedule leads to the best performance, with a too small or large constant leading
to worse performance. In addition, decaying schedules perform also worse

::::::::
Decaying

::::::::
schedules

::::::
perform

::::::
worse

::::
than

:::::::
constant

::::
ones supporting Remark 2.1.

0 250 500 750 1000
Time

10 20

10 16

10 12

10 8

10 4

100

||x
x

* |
| L2

mw spred init
mw PILoT init
x L1

Figure 2:
:
A

:::::::::
simulation

:::
of

:::::::
gradient

::::
flow

:::
on

:
a
::::::::
diagonal

:::::
linear

::::::::
network

::
is

:::::
given

:::
for

::::
the

:::::::
different

:::::::::::::
regularizations.

The advantage of PILoT is that it has access to the full parameter space (i.e. can sign flip)
and the explicit regularization enables us to enter the rich regime, thus obtaining an implicit L1

regularization, as illustrated by Figure 1 and suggested by Theorem 2.1.

One-shot sparsification. Firstly, we compare our
method PILoT with STR, spred, and LASSO on
CIFAR10 and CIFAR100 training a ResNet-20 or
ResNet-18, respectively. Furthermore, in the case
of CIFAR10, we also implement the novel initial-
ization (m2

0 − w2
0 = 1) without dynamic regu-

larization to isolate its benefits. We consider two
learning rates {0.1, 0.2} and the weight decay range
{1e − 5, . . . 1e − 2} for CIFAR10 and range {1e −
4, . . . 1e − 3} for CIFAR100 and always show the
best result. The same range for the regularization
strength is explored for LASSO. The other hyper-
parameters are reported in the appendix. Secondly,
we train ResNet-50 on ImageNet with the setup of
STR (Kusupati et al., 2020) and compare directly
with their results. Furthermore, we implement both
PILoT and spred in this setting.

Figure 3 presents our results for the
:::::
results

:::
for

:
CI-

FAR10 and CIFAR100. PILoT outperforms all other

10
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methods and is particularly effective in the high-
sparsity regime. Already, our

:::
Our

:
PILoT initial-

ization leads to improvements over spred and even
STR for medium levels of sparsity. This supports
our theoretical insight into the role of initializations
and how they influence the implicit bias. In addition,
STR is outperformed by spred in the high-sparsity
regime, confirming the findings of (Ziyin & Wang,
2023).

0.80 0.85 0.90 0.95 1.00
Sparsity (%)

70

80
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0.900 0.925 0.950 0.975 1.000
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70

75
spred
PILoT
L1
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PILoT init

Figure 3: One-shot sparsification. Acc. versus sparsity for CIFAR10 (left) and CIFAR100 (right).

Table 1: ResNet-50 on ImageNet sparsity (%) versus accuracy (%) results.

Method Top-1 Acc Sparsity
ResNet-50 77.01 0
STR 76.19 79.55
STR 76.12 81.27
spred1 75.5 80.00
spred 72.64 79.03
PILoT 75.62 80.00
STR 74.73 87.7
STR 74.01 90.55
spred 71.84 89.26
PILoT 74.73 88.00
PILoT 74.04 91.00

Method Top-1 Acc Sparsity
ResNet-50 77.01 0
STR 70.4 95.03
spred 69.47 94.50
PILoT 72.67 94.00
PILoT 71.30 95.00
PILoT 71.05 95.60
PILoT 70.49 96.00
STR 67.22 96.53
spred 66.12 97.19
PILoT 68.49 97.19
STR 61.46 98.05
spred 62.71 98.20
PILoT 66.49 97.75
PILoT 64.06 98.20

In Table 1, we compare PILoT to both STR and
spred on ImageNet (Deng et al., 2009).

:::
See

::::::::
Appendix

::::
C.2

:::::
Table

::
3

:::
for

::::::
details

:::
on

:::::::::::
experimental

::::::::::::
configurations.

:
Our method competes with or out-

performs all baselines at medium and high sparsity
levels. In addition, it improves over spred for the

::
at

80% sparsity, even when spred is initialized with a
77% pretrained ResNet-50. This highlights the ef-
fectiveness of PILoT and confirms the insights from
the developed theory.

Iterative Pruning. To demonstrate the versatility
of PILoT, we also combine it with the state-of-the-art
iterative pruning methods Learning Rate Rewinding
(LRR) (Maene et al., 2021) and Weight Rewinding
(WR) (Frankle et al., 2019) on ImageNet with

:::::
using

:
a
:
ResNet-18. For simplicity, we use β = 1 and no

1Starting from a pretrained model with 77% validation accuracy

11
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Figure 4: Learning Rate Rewinding (LRR) and Weight Rewinding (WR) with PILoT on ImageNet
ResNet-18. The left plot is the complete plot and the right plot is zoomed in on the higher sparsity
regimea

:::::::::
zoomed-in

:::::::
version.

regularization. We see in Figure 4 that the parame-
terization m ⊙ w futher boosts the performance of
iterative methods. Remarkably, WR becomes com-
petitive with LRR. Additional experiments on CI-
FAR10 and CIFAR100 with regularization are in
Appendix C.3. The regularization further helps to
reach higher accuracy at high sparsities.

5 DISCUSSION

We have shed light on the inner workings of con-
tinuous sparsification, a state-of-the-art approach
to prune neural networks that tries to solve an
intractable optimization problem of mixed discrete
and continuous nature.

:
.
:
Its basic relaxed formula-

tion utilizes the parameterization m ⊙ w, which in-
duces an implicit bias towards sparsity.

::
In

:::::::
contrast

::
to

::
an

:::::::
explicit

::::::::::::::::
L1-regularization,

::
it
::::::

enjoys
:::

all
::::

the
::::::
benefits

::
of

:::
an

:::::::
implicit

:::::::::::
regularization

::::
that

:::::
caters

::::
first

::
to

::
the

::::
loss

:::
and

:::
not

::
a
:::::::
sparsity

::::::
penalty.

:
Exploiting this

insight for neural network sparsification, we have
proposed PILoT,

:::::
which

:::::
relies

::
on

:
a controllable reg-

ularization that acts like an implicit regularization
in the original neural network parameter space and,
remarkably, corresponds to a time-dependent Breg-
man potential. It therefore enjoys all the benefits of
an implicit regularization that caters first to the loss
and not a sparsity penalty. Furthermore

::
As

:::
we

:::::
have

:::::
shown, the time-dependent control enables the associated mirror flow to enter the rich regime and
to

:::::::
so-called

::::
rich

::::::
regime,

::::
and

::::
thus

:::::::::
effectively change the implicit regularization from L2 to L1. This

property is central to our proofs that show
:::::::
showing convergence of our approach for (quasi)-convex

loss functions and optimality for underdetermined linear regression. Moreover, our analysis of the
training dynamics explains why the parameterization m⊙ w performs better than LASSO (and thus
an L1 penalty) and why previous work (Ziyin & Wang, 2023) is limited by its initialization and
constant regularization approach. Experiments on standard vision benchmarks further corroborate
the utility of our theoretical insights, as our proposal PILoT achieves significant improvements over
state-of-the-art baselines.

12
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A MIRROR FLOW FRAMEWORK

In this section we present some known results from
the mirror flow framework for completeness. We de-
rive the Bregman potential associated with m⊙w in
Theorem A.1. Next, we will also show the conver-
gence of the loss and provide optimality guarantees
in Theorem A.2. In addition, we extend Theorem
A.2 with Theorem A.3. Finally, we give the opti-
mality result for diagonal linear networks in Theo-
rem A.4

Theorem A.1 Let the initialization of m and w sat-
isfy m0,i > |w0,i| for all i ∈ [n]. Then the corre-
sponding mirror function is:

R(x) :=
1

4

n∑
i=1

xiarcsinh
(

xi

2u0,iv0,i

)
−
√
x2
i + 4u2

0,iv
2
0,i−xilog

(
u0,i

v0,i

)
(8)

where u0,i =
m0,i+w0,i√

2
and v0,i =

m0,i−w0,i√
2

. Fur-
thermore, R is a Bregman function.

Proof. The result follows directly from applying
Theorem 4.16 in (Li et al., 2022).

Theorem A.1 implies the following: a) The global
minima of R is at the initialization x0 = m0 ⊙ w0.
b) The Lipschitz coeficient of R depends on the ini-
talization. The Lipschitz coeficient LR of (8) is
LR = 1

mini 2u0,iv0,i
, determining the smoothness of

the potential. Following these two observations we
make the following remark about Theorem A.1.

Remark A.1 Note that when the initialization is
zero, i.e., w0 = 0,m0 =

√
a with a ≥ 0 then (8)

is the hyperbolic entropy. The hyperbolic entropy is
n∑

i=1

xiarcsinh
(xi

a

)
−
√

x2
i + a2

Theorem 2 of (Woodworth et al., 2020) character-
izes the behavior in the limit for this case. For the
hyperbolic entropy in case a→ 0 and |xa | → ∞,

R(x) ∼ log
(
1

a

)
||x||L1

.
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This means an L1 bias is induced when a is small.
Nevertheless, we need an exponentially small a com-
pared to x to get there as shown in (Woodworth
et al., 2020), which can lead to numerical problems.
Furthermore, m0 = w0 = 0 is a saddle point which
can slow down training (exponentially) (Du et al.,
2017). Additionally, the asymptotic result only holds for initializing at zero. Note LR = a in this
case.

Remark A.1 shows the potential of using the implicit
bias to induce sparsity. To actualize this, we need to
solve the two challenges posed in the remark. Both
are remedied in Section 2.

In addition to this promising formulation of implic-
itly minimizing an L1 norm with the use of the
mirror framework, we can get convergence results.
These results make it clear why implicit regulariza-
tion is preferable over explicit regularization. The
convergence result from (Li et al., 2022) is stated for
our setting. Furthermore, the theorem is extended
for a specific class of Bregman functions.

Theorem A.2 (Theorem 4.14 (Li et al., 2022)) As-
sume that f is quasi-convex, ∇f is locally Lipschitz
and argmin{f(x)|x ∈ Rn} is non-empty. Then as
t → ∞, xt converges to some critical point x∗.
Moreover, if f is convex xt converges to a minimizer
of f .

In Theorem A.2 it is shown that with implicit reg-
ularization an optimal solution to the original opti-
mization problem can be reached. In contrast, ex-
plicit regularization makes this not possible, by def-
inition. Because the optimization problem has fun-
damentally changed. Showing the benefit of implicit
over explicit.

For the extension, the convexity constraint is re-
placed by the Polyak-Łojasiewicz (PL) inequality in
the theorem. The PL-inequality is a more realis-
tic constraint in a machine learning context as loss
functions are not locally convex but can satisfy the
PL inequality locally (Wojtowytsch, 2021; Dereich
& Kassing, 2024). The PL-inequality for a continu-
ously differentiable function f is
||∇f(x)||2L2

≥ λ (f(x)− f(x∗)) ∀x ∈ Rn

(9)
for some λ > 0 and global minima x∗ of f . This
allows us to state the modified theorem.

Theorem A.3 Consider the same setting as Theo-
rem A.2. Assume R satisfies for all x ∈ Rn,

zT
(
∇2R(x)

)−1
z ≥ σ||z||2L2

∀z ∈ Rn. (10)
Furthermore, assume f satisfies the PL-inequality
(9). Then xt converges to a minimizer of f . Fur-
thermore, the loss converges linearly with rate σλ.

Proof. The evolution of f(xt) − f(x∗) is described
by df(xt) = −∇f(xt)

⊤ (∇2R(xt)
)−1∇f(xt)dt.
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From (10) and (9) the evolution is bounded by

df(xt) ≤ −σ||∇f(xt)||2L2
dt ≤ −σλ (f(xt)− f(x∗)) dt.

Applying Gronwall’s Lemma concludes the proof.
□

Note that Theorem A.3 holds in the same (general)
setting as Theorem A.2. Also, note that the PL-
inequality together with quasi-convexity does not
imply convexity. Theorem A.3 holds for our setting.
In this case, it follows from a direct computation that(
∇2R(x)

)−1
= diag

(√
x2 + 4u2

0,1v
2
0,1, . . . ,

√
x2 + 4u2

0,nv
2
0,n

)
.

This implies that η = 2mini u0,iv0,i in Theorem
A.3, which again highlights the importance of the
initialization.

Finally, in the case of under-determined linear re-
gression, we can derive optimality conditions in the
form of KKT conditions of R. Consider a data
set (zj , yj)

d
i=1 with zj ∈ Rn and yj ∈ R. Let

Z = (z1, . . . zd) and Y = (y1, . . . yd). For the re-
gression to be called underdetermined n > d.

Theorem A.4 (Theorem 4.17 (Li et al., 2022)) In
case of under-determined regression consider the
loss function f(x) = f̃(Zx−Y ). Assume f satisfies
the conditions of Theorem A.2. Then xt converges to
x∗ such that

x∗ = argminZx=Y R(x)

Note that Theorem 4.17 of (Li et al., 2022) only uses
quasi-convexity of the loss. Theorem A.4 guarantees
that the optimization problem is solved while implic-
itly minimizing the potential R. Thus choosing the
sparsest model out of the models that predict the data
perfectly. This highlights another benefit of implicit
regularization over explicit regularization.

In this section, we have shown the viability of us-
ing the implicit bias framework to induce an im-
plicit regularization. Furthermore, we have given
two known benefits of using the implicit bias frame-
work over explicit regularization. The benefits are
convergence to the optimal solution of the original
problem and optimality in the case of underdeter-
mined regression. To add to this, we have extended
the convergence theorem using the PL-inequality in
9. Moreover, we again highlight the importance of
the initialization of m0 and w0 with the influence on
the smoothness of the Bregman potential and con-
vergence of the loss. The initialization insight as in
the main text is used to improve upon spred (Ziyin,
2023) as their initialization has scaling 2u0v0 = 0, it
follows already from the mirror flow framework that
2u0v0 = 1 is a better initialization. Furthermore,
we also do not initialize at zero though, and scaling
needs to be exponentially small to get a good approximation of the L1 norm potentially making
it hard to escape the saddle point. Therefore, the explicit regularization analyzed in Section 2 is
necessary to exploit the implicit bias framework.
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B PROOF MAIN RESULT

We show the main result here. The proof consists of
four parts

• Rat satisfies a mirror flow (Lemmas B.1 and B.2)

• Boundedness of the iterates and convergence to a
critical point (Lemma B.3)

• Convergence of the loss (Theorem B.1)

• Optimality in case of underdetermined linear regres-
sion (Theorem B.2)

Consider the following gradient flow

{
dmt = −∇f (mt ⊙ wt)⊙ wt − 2αtmtdt

dwt = −∇f (mt ⊙ wt)⊙mt − 2αtwtdt
(11)

For the flow in (11) to be well-posed∇f needs to be locally Lipschitz continuous. This is a sufficient
condition given that αt is ”nice”, which will be made more rigorous later. The evolution of xt =
mt ⊙ wt is derived in Lemma B.1.

Lemma B.1 The evolution of xt = mt⊙wt with 11
is described by

xt = u2
0⊙exp

(
−2
∫ t

0

∇f (xs) ds− 4

∫ t

0

αsds

)
−v20⊙exp

(
2

∫ t

0

∇f (xs) ds− 4

∫ t

0

αsds

)
,

where u0 = m0+w0√
2

and v0 = m0−w0√
2

.

Proof. This follows from deriving the flow of mt

and wt and then combining the two. The evolution
of both are given bymt =

(
m0 ⊙ cosh

(
−
∫ t

0
∇f (xs) ds

)
+ w0 ⊙ sinh

(
−
∫ t

0
∇f (xs) ds

))
exp

(
−2
∫ t

0
αsds

)
wt =

(
w0 ⊙ cosh

(
−
∫ t

0
∇f (xs) ds

)
+m0 ⊙ sinh

(
−
∫ t

0
∇f (xs) ds

))
exp

(
−2
∫ t

0
αsds

)
.

For ease of notation set Lt =
∫ t

0
∇f (xs) ds and

At =
∫ t

0
αsds. Combining gives us

xt = mt ⊙ wt

=
(
m2

0 + w2
0

)
⊙ cosh (−Lt)⊙ sinh (−Lt) exp (−4At)

+ w0 ⊙m0 ⊙
(

cosh (−Lt)
2
+ cosh (−Lt)

2
)

exp (−4At)

=

((
m2

0 + w2
0

)
2

⊙ sinh (−2Lt)

)
exp (−4At)

+ w0 ⊙m0 ⊙ (cosh (−2Lt)) exp (−4At)

= u2
0 ⊙ exp (−2Lt − 4At)− v20 ⊙ exp (2Lt − 4At)

where the second equality follows from hyperbolic
identities. □

It follows from Lemma B.1 and the local Lipschitz
condition on ∇f and

∫ t

0
αsds < ∞ for all t ≥ 0,

that the flow is well-posed. We now define the
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(corrected)-hyperbolic entropy function. The cor-
rected hyperbolic entropy is given by

Ra(x) =
1

2

n∑
i=1

xiarcsinh
(xi

a

)
−
√
x2
i + a2−xilog

u0i

v0,i
,

where the last term is the correction. The correction
stems from not initializing at zero.

Lemma B.2 Let |wi0| ≤ m0i for all i ∈ [n], then

Rat
(xt) with at = 2u0 ⊙ v0exp

(
−2
∫ t

0
αsds

)
sat-

isfies

d∇Rat
(xt) = −∇f(xt)dt x0 = m0 ⊙ w0.

(12)

Proof. This follows from Lemma B.1,

xtexp
(
4

∫ t

0

αsds

)
= u2

0exp
(
−2
∫ t

0

∇f(xs)ds

)
− v20exp

(
2

∫ t

0

∇f(xs)ds

)
⇔

1

2

(
arcsinh(

xt

at
)− log(

u0

v0
)

)
= −

∫ t

0

∇f(xs)ds.

This equivalence follows from setting z =

exp
(
−2
∫ t

0
∇f(xs)ds

)
and solving the resulting

quadratic equation. Notice that the left hand side in
(12) is ∇Rat

(xt). □

Lemma B.3 Let f be a quasi-convex function and
αt ≥ 0 for all t ≥ 0. Furthermore, assume the in-
tegral

∫ t

0
αsds < ∞. Then the iterates are bounded

and converge to a critical point.

Consider the time-dependent Bregman divergence

Dat
(x∗, xt) := Rat

(x∗)−Rat
(xt)−∇xR

T
at
(x∗−xt) ≥ 0

The divergence is bounded by:

Dat
(x∗, xt) ≤ Ra∞(x∗)−Rat

(xt)−∇xR
T
at
(x∗ − xt) =: Wt,

this follows from the fact that the map a→ Ra is de-
creasing. We make the following two observations:

d

da
Ra(x) = −

1

2

n∑
i=1

x2
i |a|+ a3

a2
√
a2 + x2

i

≤ 0 and
dat
dt
≤ 0 ∀t ≥ 0.

(13)

This allows us to bound the evolution

d

dt
Wt =

d

dt

(
−Rat

(xt)−∇xR
T
at
(x∗ − xt)

)
= − d

da
Rat

(xt)
d

dt
at −

d

dt

(
∇xR

T
at

)
(x∗ − xt)

≤ ∇xf(xt)
T (x∗ − xt)

≤ 0,

where the observations in (13) are used in the first
inequality.
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From Theorem 4.16 in (Li et al., 2022) it follows that
for all a > 0, Ra is a Bregman potential. Implying
that for all a > 0 the level set for γ ∈ R,

{x ∈ Rn : Da(x
∗, x) ≤ γ}

is bounded. Combining this with the fact that
the evolution is bounded, implies the iterates are
bounded.

In the next part, it is shown that xt converges to a
critical point. We first show that the loss becomes
eventually non-increasing. There is a T such that for
all t ≥ T the loss f is non-increasing.,

df(xt) = −
(
∇f(xt)

T diag
(√

x2
t + a2t

)
∇f(xt) + 2αt∇f(xt)

Txt

)
dt

≤
(
−∇f(xt)

T diag
(√

x2
t + a2t

)
∇f(xt) + 2αtC

)
dt,

where it is used that the iterates are bounded and∇f
is locally Lipschitz. As t→∞ we have that αt → 0
and at → a∞ > 0 by assumption. Hence there
exists a T such that for all t ≥ T we have

df(xt) ≤ 0.

Note if this is not the case then there is a T > 0
such that ∇f(xT ) = 0 implying convergence (to a
critical point).

Now let x∞ be an accumulation point of the
bounded flow xt. We use this to show convergence
to a critical point. We have that for all x ∈ Rn,

∇f(x∞)⊤x = lim
t→∞

1

t

(∫ T+t

T

∇f(xs)ds

)⊤

x = lim
t→∞

1

t

(
RaT

(xT )−RaT+t
(xT+t)

)⊤
x = 0,

where the first equality follows from that the loss is
non-increasing and the second one from the time-
dependent mirror flow description. Finally, because
xt converges to an accumulation point we also have
limt→∞ Rat

(xt) = Ra∞(x∞) by continuity, giving
the last equality.

We use that the accumulation point is a critical point
and set x∗ = x∞ in Wt such that Wt → 0. This
implies Dat

(x∞, xt)→ 0 by the upperbound. It fol-
lows from the fact that the iterates are bounded that
Rat

is µ-strongly convex on this bounded convex set
where the iterates stay. This gives

||x∞ − xt||L2
≤ µ

2
Dat

(x∞, xt)→ 0,

showing xt converges to a critical point. □

Lemma B.3 gives a condition such that the iterates
are bounded and converge to a critical point. It re-
mains to be shown that the loss converges. This is
done in Theorem B.1.

Theorem B.1 Consider the same setting as Lemma
B.3, if f is convex or satisfies the PL-inequality we
have convergence to an interpolator x∗ such that it is
a minimizer of f . Furthermore, in the PL-inequality
case, the loss converges linearly.
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Proof. Assume f is convex, notice first that there is
a T such that for all t ≥ T the loss is non-increasing.
Combining this with a bound on the time-dependent
Bregman potential gives us convergence of the loss.
The time-dependent Bregman divergence is again
defined by

Dat
(x∗, xt) = Rat

(x∗)−Rat
(xt)−∇xR

⊤
at
(x∗−xt) ≥ 0.

The divergence is bounded by:

Dat(x
∗, xt) ≤Wt.

The evolution of the bound is
d

dt
Wt =

d

dt

(
−Rat

(xt)−∇xR
⊤
at
(x∗ − xt)

)
= − d

da
Rat

(xt)
d

dt
at −

d

dt

(
∇xR

⊤
at

)
(x∗ − xt)

≤ ∇xf(xt)
⊤ (x∗ − xt)

≤ f (x∗)− f (xt) ,

where again the observations in (13) are used in the
first inequality. Therefore the loss converges:

f(xT+t)− f(x∗) ≤ 1

t

∫ T+t

T

f(xs)− f(x∗)ds

≤ WT −WT+t

t

≤ WT

t
→ 0

where the first inequality follows from convexity of the loss and the third inequality from the fact
that Wt ≥ Dat

(x∗, xt) ≥ 0. So the loss converges. We already know from Lemma B.3 that the
iterates converge, concluding the convex case.

In case when f satisfies the PL-inequality, we pro-
ceed in the same way as Theorem A.3. The evolution
of f is given by

df(xt) = −
(
∇f(xt)

⊤diag
(√

x2
t + a2t

)
∇f(xt) + 2αt∇f(xt)

⊤xt

)
dt

≤ (−a∞λ (f(xt)− f(x∗)) + αtC||x∗||L2
) dt

where C is constant depending on the smoothness of
f . Then it follows from Gronwall’s Lemma that

f(xt)−f(x∗) ≤ (f(x0)− f(x∗)) exp
(
−a∞λt+

∫ t

0

αsC||x∗||L2
ds

)
.

It follows from the fact that
∫ t

0
αsds <∞ for all t ≥

0 that the loss f convergence. Convergence of the
iterates now follows in a similar way as the convex
case. □

We now show optimality in the case of under-
determined linear regression Consider a data set
(zj , yj)

d
i=1 with zj ∈ Rn and yj ∈ R. Let Z =

(z1, . . . zd) and Y = (y1, . . . yd). For the regression
to be called underdetermined n > d.

Theorem B.2 In case of under-determined regres-
sion consider the loss function f(x) = f̃(Zx − Y ).
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Assume f satisfies the conditions with at least one
of the convergence criteria of Theorem B.1. Then xt

converges to x∗ such that

x∗ = argminZx=Y Ra∞(x) (14)

Proof. Convergence follows from Theorem B.1. It
remains to be shown that the optimality conditions of
(14) are satisfied. The gradient flow of Rat

satisfies

∇Rat
(xt) = Z⊤

∫ t

0

∇f̃(xs)ds ∈ span{Z⊤}.

This quantity is well defined for all t ≥ 0 because
∇f̃ is locally Lipschitz (because f has to be locally
Lipschitz). Therefore taking the t → ∞ yields the
KKT conditions of the optimization problem in (14).
□

B.1 DISCUSSION OF THE PROOF

Most of the proof follows the same arguments as in
(Alvarez et al., 2004; Li et al., 2022; Pesme et al.,
2021). The notable differences are showing that the
loss becomes decreasing over time and the observa-
tions made in (13).

C DETAILS EXPERIMENTS

In this section, we provide the details of the experi-
ments. In addition, there are additional figures given.

Compute The codebase for the experiments is
written in PyTorch and torchvision and their relevant
primitives for model construction and data-related
operations. The experiments in the paper are trained
on an NVIDIA A6000. In addition, the diagonal lin-
ear network is trained on a CPU 13th Gen INTEL(R)
Core(TM) i9-13900H.

C.1 DIAGONAL LINEAR NETWORK

For each setting, different regularization schemes are
tried. In total, 7 options are tried. 4 of the sched-
ules are constant i.e. the regularization stays the
same during training. The remaining 3 are decay-
ing schedules. These schedules we name harmonic,
quadratic, and geometric. The schedules are de-
scribed by the following recurrent relations:

hk =
1

k
, qk =

1

k2
and gk = pk

where we have set p = 0.95. These schedules lead to
a total strength of regularization applied. We denote
A :=

∫ t

0
αsds the total strength of the regulariza-

tion. So in practice, it is the weighted sum of the
regularization strength.

In Figure 5 we present the trajectories of all the
schedules for the 3 considered settings. We observe
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that our regularization performs the best with the de-
caying schedules as predicted by the theory. The
other methods need constant regularization to per-
form well as already mentioned in Remark 2.1. Note
that, PILoT also can perform well with constant reg-
ularization (see Figure 5.

0 500 100010 7

10 5

10 3

10 1

101

0 500 1000 0 500 1000

Time

||x
x

* |
| L2

Constant A = 0.1
Constant A = 1

Constant A = 10
Constant A = 100

Harmonic A 14.4
Quadratic A

2

6

Geometeric A 20

Figure 5: All runs for the diagonal linear network. From left to right m⊙w with PILoT initalization,
m⊙ w with spred initialization, and x with L1 regularization

C.2 ONE-SHOT

In this section we give the additional details for the
one-shot experiments. In Table 2 the hyperparam-
eters for the CIFAR 10 and 100 experiments are
given. To determine which configuration is best for
which sparsity level we compute the validation ac-
curacy at multiple levels and choose the level just
before the accuracy drops 1% or in the high-sparsity
regime 2%. Moreover, we use s = −200 for STR.

For the ImageNet experiment we use the setup of
(Kusupati et al., 2020). For PILoT and spred we
in addition use L2 regularization to compensate for
the weight decay i.e. we add a term (m⊙ w)

2 with
strength 0.000030517578125/2, which is based on
the weight decay strength in (Kusupati et al., 2020)
for the baseline. Furthermore, weight decay is
turned off for the other parameters. In Table 3 we
present the configurations that correspond to the val-
ues in Table 1. Note for all PILoT configs δ = 1.01
is used.

Label smoothing Altough PILoT is competitive in
the 80% − 90% sparsity range it is not SOTA. Nev-
ertheless, if we turn of label smoothing in the exper-
iment PILoT outperforms STR in this range as well.
The only change for STR is turning of labelsmooth-
ing. For PILoT we use two different configurations.

2Applied to the other parameters
3Starting from a pretrained model with 77% validation accuracy
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Table 2: One-shot experiment

Parameter Setting Comments

Optimizer SGD
Momentum 0.9
Batch size 256
Activation function ReLu
Weight decay2 10−4

Base learning rate {0.1, 0.2}
Epochs 150
Warmup period 0
Initialization Kaiming normal
Scaling 1 Only for m⊙ w
δ 1.01
K 8000

CIFAR 10

Learning rate schedule cosine warmup

CIFAR 100

Learning rate schedule step warmup

Table 3: ResNet-50 on ImageNet configurations for each sparsity (%).

Method αinit K sparsity
spred3 2e− 5 - 80.00
spred 3e− 6 - 79.03
PILoT 7e− 6 60000 80.00
spred 5e− 6 - 89.26
PILoT 1e− 5 60000 88.00
PILoT 1.4e− 5 60000 91.00

Method αinit K sparsity
spred 2e− 5 - 94.50
PILoT 2e− 5 60000 94.00
PILoT 3e− 5 60000 95.00
PILoT 3e− 5 60000 95.60
PILoT 3e− 5 60000 96.00
spred 3e− 5 - 97.19
PILoT 4e− 5 40000 97.19
spred 5e− 5 - 98.20
PILoT 5e− 5 20000 97.75
PILoT 7e− 5 20000 98.20

We use L2 regularization i.e. (m⊙ w)2
::::::::::
||m⊙ w||2L2

regularization set to 5 · 10−5 instead of the value
from STR experiment. We use K = 600000 and
δ = 1.01. Furthermore, the strength of the PILoT
regularization is initialized at {1 · 10−5, 2 · 10−5}
and no weight decay is used on the rest of the pa-
rameters. The results are given in Table C.2.

Table 4: Extra experiment ResNet-50 on ImageNet sparsity (%) versus accuracy (%) without label
smoothing.

Method Top-1 Acc Sparsity
ResNet-50 75.80 0
STR 73.03 79.03
PILoT 74.72 79.03
STR 71.6 89.26
PILoT 73.21 91.41
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C.3 ITTERATIVE PRUNING

In Table 5 the details of the ImageNet the experi-
ment are given. Note the base learning rate 0.1 is
for the baseline and 0.2 is used for our parameteri-
zation combined with scaling 1. In addition, the L2

regularization denotes the reparameterization of the
original weight decay. Thus for PILoT, in this case,
we use that instead. Moreover, all runs have been
done for 3 different seeds. Furthermore, we provide
additional experiments on CIFAR 10 and 100 with
ResNet-20 and ResNet-18 respectively in Figure 6.
The details are given in Table 6

Table 5: WR and LRR experiment on ImageNet

Parameter Setting Comments

Optimizer SGD
Momentum 0.9
Batch size 512
Activation function ReLu
Weight decay {0, 10−4}
Learning rate schedule step warmup
Base learning rate {0.1, 0.2}
Cycles 25
Pruning rate 0.8
Epochs per cycle 90
Warmup period 10
Initialization Kaiming normal
L2 regularization 5 · 10−5 Only for m⊙ w
PILOT regularization {0} Only for m⊙ w
Scaling 1 Only for m⊙ w
δ 1 Only for m⊙ w
K − Only for m⊙ w

Table 6: WR and LRR experiment on CIFAR 10 and 100

Parameter Setting Comments

Optimizer SGD
Momentum 0.9
Batch size 256
Activation function ReLu
Weight decay 10−4

Learning rate schedule step warmup
Base learning rate {0.1, 0.2}
Cycles 25
Pruning rate 0.8
Epochs per cycle 150
Warmup period 50
Initialization Kaiming normal
L2 regularization 0 Only for m⊙ w
PILOT regularization {10−4} Only for m⊙ w
Scaling 1 Only for m⊙ w
δ 1 Only for m⊙ w
K − Only for m⊙ w
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Figure 6: Learning Rate Rewinding (LRR) and Weight Rewinding (WR) with PILoT shows im-
provement over the baseline itterative pruning methods for CIFAR 10 and 100.

D REMARK
ON NEURONWISE PRUNING

In the main text, we have used mirror flow to de-
scribe the implicit bias of parameterwise pruning. In
this section, we show that neuronwise pruning can
not be analyzed in the same way. We first define
neuronwise pruning. Next, we paraphrase the nec-
essary condition such that the implicit bias can be
described by a mirror flow from (Li et al., 2022).
Finally, we show neuronwise pruning violates this
condition pointing out a limitation of the framework.

Consider the parameterization for a function with p
neurons, g : Rp × Rn1 × . . .× Rnp ,

g(m,w1, . . . , wp) = (m1w1, . . . ,mpwp)

where mi ∈ R is the mask and wi ∈ Rni are the
neurons.

We state the necessary condition for a parameteriza-
tion to induce a mirror flow.

Theorem D.1 (Theorem 4.10 (Li et al., 2022)) The
Lie bracket span of {∇ig}ni=1 is in the kernel of Ja-
cobian ∂g.

Now, we use this theorem to show that neuronwise
pruning does not induce a mirror flow.

Lemma D.1 Neuronwise pruning violates Theorem
D.1.

Proof. We show that for p = 1 the condition is al-
ready violated. This implies that in the general case,
the condition is also violated as the neurons them-
selves are commuting with each other as they are
parameterized separate.

To see this we can explicitly check the commuting
condition for the following parameterization g : R×
Rn → Rn

g(m,w) = mw

Then the gradients (Jacobians) and Hessian’s are
given by:

∇gi =


wi

mIi=1

...
mIi=n1

 and Hgi =


0 Ii=1 . . . Ii=n

Ii=1 0 . . . 0
...

...
Ii=n 0 . . . 0

 for i = 1, 2
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Computing Hgi∇gj

Hgi∇gj = wj


0

Ii=1

...
Ii=n


we compute the Lie brackets which span a subspace
of the Lie Algebra LIE≥2(∂g). The subspace is
spanned by

span

wj


0

Ii=1

...
Ii=n

− wi


0

Ij=1

...
Ij=n

 for i, j ∈ [n]

 ⊂ LIE≥2(∂g).

Clearly, this span is not in Ker(∂g) as can be shown by a direct computation:

(∂g)

wj


0

Ii=1

...
Ii=n

− wi


0

Ij=1

...
Ij=n


 = (Ii=1mwj − Ij=1mwi, . . . , Ii=nmwi − Ij=1mwi)

For the span to be in the kernel we need either that all wi = 0 for all i ∈ [n] or m = 0. In both
cases this implies that g(m,w) ∈ {0}. This implies that a mirror flow is only well-defined if the
parameterization is zero. Hence, neuron-wise continuous sparsification does not induce a mirror
flow. □
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