
Under review as a conference paper at ICLR 2024

g(sa,ϕ,θ) > 0 Is the objective clipped? Return value of min Gradient
g(sa,ϕ,θ) ∈ [1− ϵPROPS, 1 + ϵPROPS] No −g(s,a,ϕ,θ) ∇ϕLCLIP

g(s,a,ϕ,θ) > 1 + ϵPROPS No −g(s,a,ϕ,θ) ∇ϕLCLIP

g(s,a,ϕ,θ) < 1− ϵPROPS Yes −(1− ϵPROPS) 0

Table 1: Behavior of PROPS’s clipped surrogate objective (Eq. 4).

A PROPS IMPLEMENTATION DETAILS

Figure 6: In this example, π(·|s) =
N (0, 1). After several visits to s, all
sampled actions (blue) satisfy a > 0 so
that actions a < 0 are under-sampled.
Without regularization, PROPS will at-
tempt to increase the probabilities of
under-sampled action in the tail of target
policy distribution (green). The regular-
ization term in the PROPS objective en-
sures the behavior policy remains close
to target policy.

In this appendix, we describe two relevant implementa-
tion details for the PROPS update (Algorithm 2). We ad-
ditionally summarize the behavior of PROPS’s clipping
mechanism in Table 1.

1. PROPS update: The PROPS update adapts the
behavior policy to reduce sampling error in the
replay buffer D. When performing this update
with a full replay buffer, we exclude the oldest
batch of data collected by the behavior policy
(i.e., the m oldest transitions in D); this data
will be evicted from the replay buffer before the
next behavior policy update and thus does not
contribute to sampling error in D.

2. Behavior policy class: We compute behavior
policies from the same policy class used for tar-
get policies. In particular, we consider Gaussian
policies which output a mean µ(s) and a variance
σ2(s) and then sample actions a ∼ π(·|s) ≡
N (µ(s), σ2(s)). In principle, the target and be-
havior policy classes can be different. However,
using the same class for both policies allows us
to easily initialize the behavior policy equal to
the target policy at the start of each update. This
initialization is necessary to ensure the PROPS up-
date increases the probability of sampling actions
that are currently under-sampled with respect to
the target policy.

B COMPUTING SAMPLING ERROR

We claim that PROPS improves the data efficiency of on-policy learning by reducing sampling error
in the agent’s replay buffer D with respect to the agent’s current (target) policy. To measure sampling
error, we use the KL-divergence DKL(πD||πθ) between the empirical policy πD and the target policy
πθ which is the primary metric Zhong et al. (2022) used to show ROS reduces sampling error:

DKL(πD||πθ) = Es∼D,a∼πD(·|s)

[
log

(
πD(a|s)
πθ(a|s)

)]
. (6)

We compute a parametric estimate of πD by maximizing the log-likelihood of D over the same policy
class used for πθ. More concretely, we let θ′ be the parameters of neural network with the same
architecture as πθ train and then compute:

θMLE = argmax
θ′

∑
(s,a)∈D

log πθ′(a|s) (7)

using stochastic gradient ascent. After computing θMLE, we then estimate sampling error using the
Monte Carlo estimator:

DKL(πD||πθ) ≈
∑

(s,a)∈D

(log πθMLE(a|s)− log πθ(a|s)) . (8)

13

Under review as a conference paper at ICLR 2024

Figure 7: Sampling error with a fixed, expert target policy. Solid curves denote the mean over 5 seeds.
Shaded regions denote 95% confidence belts.

Figure 8: Sampling error with a fixed, randomly initialized target policy. Solid curves denote the
mean over 5 seeds. Shaded regions denote 95% confidence belts.

Figure 9: Sampling error ablations with a fixed, expert target policy. Here, “no clipping” refers to
setting ϵPROPS = ∞, and “no regularization” refers to setting λ = 0. Solid curves denote the mean
over 5 seeds, and shaded regions denote ± one standard error.

C CORRECTING SAMPLING ERROR FOR A FIXED TARGET POLICY

In this appendix, we expand upon results presented in Section 6.1 of the main paper and provide
additional experiments investigating the degree to which PROPS reduces sampling error with respect
to a fixed target policy. We include empirical results for all six MuJoCo benchmark tasks as well as
ablation studies investigating the effects of clipping and regularization.

We tune PROPS and ROS using a hyperparameter sweep. For PROPS, we consider learning rates in
{10−3, 10−4}, regularization coefficients λ ∈ {0.01, 0.1, 0.3}, and PROPS target KLs in δPROPS ∈
{0.05, 0.1}. We fix ϵPROPS = 0.3 across all experiments. For ROS, we consider learning rates in
{10−3, 10−4, 10−5}. We report results for the hyperparameters yielding the lowest sampling error.

Fig. 7 and 8 show sampling error computed with a fixed expert and randomly initialized target policy,
respectively. We see that PROPS achieves lower sampling error than both ROS and on-policy sampling
across all tasks. ROS shows little to no improvement over on-policy sampling, highlighting the
difficulty of applying ROS to higher dimensional tasks with continuous actions.

Fig. 9 ablates the effects of PROPS’s clipping mechanism and regularization on sampling error
reduction. We ablate clipping by setting ϵPROPS =∞, and we ablate regularization by setting λ = 0.
We use a fixed expert target policy and use the same tuning procedure described earlier in this
appendix. In all tasks, PROPS achieves higher sampling error without clipping nor regularization than
it does with clipping and regularization. However, it nevertheless outperforms on-policy sampling in

14

Under review as a conference paper at ICLR 2024

all tasks except Hopper where it matches the performance of on-policy sampling. Only including
regularization slightly decreases sampling error, whereas clipping alone produces sampling error only
slightly higher than that achieved by PROPS with both regularization and clipping. These observations
indicate that while regularization in is helpful, clipping has a stronger effect on sampling error
reduction than regularization when the target policy is fixed.

Figure 10: Sampling error throughoutRL training. Solid curves denote the mean over 5 seeds. Shaded
regions denote 95% confidence belts.

Figure 11: Sampling error throughoutRL training without clipping the PROPS objective. Solid curves
denote the mean over 5 seeds. Shaded regions denote 95% confidence belts.

Figure 12: Sampling error throughoutRL training without regularizing the PROPS objective. Solid
curves denote the mean over 5 seeds. Shaded regions denote 95% confidence belts.

D CORRECTING SAMPLING ERROR DURING RL TRAINING

In this appendix, we include additional experiments investigating the degree to which PROPS reduces
sampling error during RL training, expanding upon results presented in Section 6.2 of the main paper.
We include sampling error curves for all six MuJoCo benchmark tasks and additionally provide
ablation studies investigating the effects of clipping and regularization on sampling error reduction
and data efficiency in the RL setting.

As shown in Fig 10, PROPS achieves lower sampling error than on-policy sampling throughout training
in 5 out of 6 tasks. We observe that PROPS increases sampling error but nevertheless improves data
efficiency in HalfCheetah as shown in Fig. 5a. This result likely arises from our tuning procedure
in which we selected hyperparameters yielding the largest return. Although lower sampling error
intuitively correlates with increased data efficiency, it is nevertheless possible to achieve high return
without reducing sampling error.

In our next set of experiments, we ablate the effects of PROPS’s clipping mechanism and regularization
on sampling error reduction and data efficiency. We ablate clipping by tuningRL agents with

15

Under review as a conference paper at ICLR 2024

ϵPROPS =∞, and we ablate regularization by tuning RL agents with λ = 0. Fig. 11 and Fig. 12 show
sampling error curves without clipping and without regularization, respectively. Without clipping,
PROPS achieves larger sampling than on-policy sampling in all tasks except Humanoid. Without
regularization, PROPS achieves larger sampling error in 3 out of 6 tasks. These observations indicate
that while clipping and regularization both help reduce sampling during RL training, clipping has a
stronger effect on sampling error reduction. As shown in Fig. 13 PROPS data efficiency generally
decreases when we remove clipping or regularization.

Lastly, we consider training with larger buffer sizes b in Fig. 14. We find that data efficiency may
decrease with a larger buffer size. Intuitively, the more historic data kept around, the more data that
must be collected to impact the aggregate data distribution.

Figure 13: IQM return over 50 seeds of PROPS with and without clipping or regularizing the PROPS
objective. Shaded regions denote 95% bootstrapped confidence intervals.

16

Under review as a conference paper at ICLR 2024

Figure 14: IQM return over 50 seeds for PROPS with different buffer sizes. We exclude b = 8 for
Humanoid-v4 due to the expense of training and tuning. Shaded regions denote 95% bootstrapped
confidence intervals.

17

Under review as a conference paper at ICLR 2024

Figure 15: IQM return for discrete action tasks over 50 seeds. Shaded regions denote 95% boot-
strapped confidence intervals.

Figure 16: Performance profiles for discrete-action tasks over 50 seeds. The return τ for which the
profiles intersect y = 0.5 is the median, and the area under the performance profile corresponds to
the mean. Shaded regions denote 95% bootstrapped confidence intervals.

E DISCRETE-ACTION TASKS

We include 3 additional discrete-action domains of varying complexity. The first two are the widely
used OpenAI gym domains CartPole-v1 and LunarLander-v2 (Brockman et al., 2016). The third
is a 2D navigation task, Discrete2D100-v0, in which the agent must reach a randomly sampled
goal. There are 100 actions, each action corresponding to different directions in which the agent can
move. From Fig. 15 and 16 we observe that PROPS with b = 2 achieves larger returns than PPO and
PPO-BUFFER all throughout training in all three tasks. PROPS with b = 1 (no historic data) achieves
larger returns than PPO all throughout training in all three tasks and even outperforms PPO-BUFFER in
CartPole-v1 and Discrete2D100-v0 even though PPO-BUFFER learns from twice as much data. Thus,
PROPS can improve data efficiency without historic data.

18

Under review as a conference paper at ICLR 2024

PPO learning rate 10−3, 10−4, linearly annealed to 0 over training
PPO batch size n 1024, 2048, 4096, 8192
PROPS learning rate 10−3, 10−4 (and 10−5 for Swimmer)
PROPS behavior batch size m 256, 512, 1024, 2048, 4096 satisfying m ≤ n
PROPS KL cutoff δPROPS 0.03, 0.05, 0.1
PROPS regularizer coefficient λ 0.01, 0.1, 0.3

Table 2: Hyperparameters used in our hyperparameter sweep for RL training.

PPO number of update epochs 10
PROPS number of update epochs 16
Replay buffer size b 2 target batches (also 3, 4, and 8 in Fig. 14)
PPO minibatch size for PPO update bn/16
PROPS minibatch size for ROS update bn/16
PPO and PROPS networks Multi-layer perceptron

with hidden layers (64,64)
PPO and PROPS optimizers Adam (Kingma and Ba, 2015)
PPO discount factor γ 0.99
PPO generalized advantage estimation (GAE) 0.95
PPO advantage normalization Yes
PPO loss clip coefficient 0.2
PPO entropy coefficient 0.01
PPO value function coefficient 0.5
PPO and PROPS gradient clipping (max gradient norm) 0.5
PPO KL cut-off 0.03
Evaluation frequency Every 10 target policy updates
Number of evaluation episodes 20

Table 3: Hyperparameters fixed across all experiments. We use the PPO implementation provided by
CleanRL (Huang et al., 2022).

F HYPERPARAMETER TUNING FOR RL TRAINING

For all RL experiments in Section 6.2 and Appendix D), we tune PROPS, PPO-BUFFER, and PPO
separately using a hyperparameter sweep over parameters listed in Table 2 and fix the hyperparameters
in Table 3 across all experiments. Since we consider a wide range of hyperparameter values, we ran
10 independent training runs for each hyperparameter setting. We then performed 50 independent
training runs for the hyperparameters settings yielding the largest returns at the end of RL training.
We report results for these hyperparameters in the main paper. Fig. 17 shows training curves obtained
from a subset of our hyperparameter sweep.

19

Under review as a conference paper at ICLR 2024

(a) PROPS KL cutoff values δPROPS.

(b) Regularization coefficients λ.

(c) Behavior batch sizes m (i.e. the number of steps between behavior policy updates).

Figure 17: A subset of results obtained from our hyperparameter sweep. Default hyperparameter
values are as follows: PROPS KL cutoff δPROPS = 0.03; regularization coefficient λ = 0.1; behavior
batch size m = 256. Darker colors indicate larger hyperparameter values. Solid and dashed lines
have the PROPS learning rate set to 1 · 10−3 and 1 · 10−4, respectively. Curves denote averages over
10 seeds, and shaded regions denote 95% confidence intervals.

20

	PROPS Implementation Details
	Computing Sampling Error
	Correcting Sampling Error for a Fixed Target Policy
	Correcting Sampling Error During RL Training
	Discrete-Action Tasks
	Hyperparameter Tuning for RL Training

