
A Missing proofs for the `∞-bounded case

First we bound the diameter of the set of possible solutions for minimizing sdp∞(a).
Lemma A.1. Let P be a sample-target distribution. The optimum a∗ = argmina sdp∞(a) satisfies

1

m

m∑
i=1

‖a∗i − bi‖2 ≤
π

2
opt(P)

Proof. Let D = {x ∈ Rn | ‖x‖∞ ≤ 1} and a = {a1, . . . am}. Recall that by the posi-
tive semidefinite Grothendieck inequality sdp∞(a) is a relaxation of the optimization problem
maxx∈D x

>M(a)x, with value at most π2 times larger. Thus

min
a

sdp∞(a) ≤ π

2
min
a

max
x∈D

x>M(a)x =
π

2
opt(P)

Letting a∗ = argmina sdp∞(a) we then have

1

m

m∑
i=1

‖a∗i − bi‖2 = 〈M(a∗), I〉 ≤ max
X�0,Xj,j=1

〈M(a∗), X〉 = min
a

sdp∞(a) ≤ π

2
opt(P)

as desired.

Next we compute a bound on the gradient of the cost functions used to minimize sdp∞(a) via online
gradient descent.
Lemma A.2. Let a = {a1, . . . am} with ai ∈ Wi for all i. Let X � 0 be an n × n positive
semidefinite matrix with Xjj = 1 for j ∈ {1, . . . n}. Let f(a) = 〈M(a), X〉. For any a satisfying

m∑
i=1

‖ai − bi‖2 ≤ r2

we have
‖∇f(a)‖ ≤ 2nr

m

Proof. Recalling the definition of M(a) we have

f(a) = 〈M(a), X〉 =
1

m

m∑
i=1

(ai − bi)>X(ai − bi).

Therefore the component of∇f(a) corresponding to ai is given by

∇aif(a) =
2

m
ΠWi

X(ai − bi).

Thus we estimate the norm by

‖∇f(a)‖2 =
4

m2

m∑
i=1

‖ΠWi
X(ai − bi)‖2

≤ 4

m2

m∑
i=1

‖X(ai − bi)‖2

≤ 4

m2

m∑
i=1

n2‖(ai − bi)‖2

where the last line follows from the fact that ‖X‖ ≤ TrX = n. Plugging in the assumed bound on∑m
i=1‖(ai − bi)‖2 yields the desired result.

The next lemma shows that final steps in Algorithm 1 correspond to projection onto Br(b), the ball
of radius r centered at b. In particular, since a = {a1, . . . am} is restricted to the subspace where
ai ∈Wi for each i, the projection occurs within this subspace.

12

Lemma A.3. For a = {a1, . . . am} let W ⊆ Rnm be the subspace where ai ∈ Wi for all i. Let
β =

∑m
i=1‖ΠW⊥i

bi‖2. For any r such that Br(b) ∩W 6= ∅, the projection Proj(a) of a onto Br(b)

restricted to the subspace W is given by:

λ = min

{
1,

√
r2 − β∑m

i=1‖ai −ΠWi
bi‖2

}
Proj(ai)← λai + (1− λ)ΠWi

bi.

Proof. Note first that b = ΠW b + ΠW⊥b for any b ∈ Rnm. The squared distance from b to W is
given by β =

∑m
i=1‖ΠW⊥i

bi‖2. Thus if Br(b) ∩W 6= ∅ then β ≤ r2 and the definition of λ in the
lemma statement makes sense.

Next observe that since each ΠW⊥i
bi is orthogonal to all vectors in Wi

m∑
i=1

‖ai − bi‖2 =

m∑
i=1

‖ai −ΠWi
bi‖2 +

m∑
i=1

‖ΠW⊥i
bi‖2

for any a ∈ W . Thus the intersection Br(b) ∩ W is equal to those vectors a ∈ W such that∑m
i=1‖ai − ΠWibi‖2 ≤ r2 − β. This is precisely the ball of radius r2 − β in W centered at ΠW b.

Thus, for any a not already in this ball, the projection is given by moving a λ fraction of the distance
along the line from va to ΠW b, exactly as described in the lemma statement.

Next we show how the fast interior point SDP solver of [14] can be used to solve an instance of sdp∞
to the accuracy required for the proof of Theorem 2.3.

Lemma A.4. A positive semidefinite matrix X satisfying sdp∞(a) ≤
(
1 + ε

10

)
〈M(a), X〉 can

be compute in time Õ(n7/2 log(1/ε)). Furthermore, if 〈M(a), X〉 ≤ sdp∞(a∗) + ε
2 then the

approximation is additive i.e. sdp∞(a) ≤ 〈M(a), X〉+ ε
2 .

Proof. For matrices M,C1, . . . Ck ∈ Rn×n and bi ∈ R, the interior point solver of [14] solves SDPs
of the form

Maximize: 〈M,X〉
subject to: 〈Ci, X〉 = bi

X � 0 (4)

to accuracy (1 + ε) in time Õ(
√
n(kn2 + kω + nω) log(1/ε)). In our case k = n as there are n

constraints of the form Xii = 1 which can be equivalently written as 〈eie>i , X〉 = 1. Thus the
dominant term in the runtime is Õ(

√
nkn2 log(1/ε)) = Õ(n7/2 log(1/ε)) as desired.

Running the solver with accuracy parameter ε
10 yields a solution X such that

sdp∞(a) ≤
(

1 +
ε

10

)
〈M(a), X〉. (5)

Letting a∗ = argmina sdp∞(a) we have by the positive-semidefinite Grothendieck inequality that

sdp∞(a∗) ≤ π

2
opt(P) ≤ π. (6)

Thus, if a satisfies 〈M(a), X〉 ≤ sdp∞(a∗) + ε
2 , then by (5) and (6)

sdp∞(a) ≤ 〈M(a), X〉+
ε

10

(
π +

ε

2

)
≤ 〈M(a), X〉+

ε

2
.

13

B Analysis of the `2-bounded case

The analysis of Algorithm 2 follows a similar outline to that of Algorithm 1, but is simpler in several
regards. We begin with a lemma bounding the diameter of the set of feasible solutions to sdp2(a).
Lemma B.1. Let P be a sample-target distribution. The optimum a∗ = argmina sdp2(a) satisfies

1

m

m∑
i=1

‖a∗i − bi‖2 ≤ opt(P)

Proof. Let D = {x ∈ Rn | ‖x‖ ≤
√
n} and a = {a1, . . . am}. By the definition of sdp2(a) we

have
min
a

sdp2(a) = min
a

max
x∈D

x>M(a)x = opt(P)

Letting a∗ = argmina sdp2(a) we then have

1

m

m∑
i=1

‖a∗i − bi‖2 = Tr(M(a∗)) ≤ n‖M(a∗)‖ = min
a

sdp2(a) = opt(P)

as desired.

Next we bound the norm of the gradient of the cost function used in Algorithm 2.
Lemma B.2. Let a = {a1, . . . am} with ai ∈ Wi for all i. Let X = xx> with ‖x‖ ≤

√
n. Let

f(a) = 〈M(a), X〉. For any a satisfying
m∑
i=1

‖ai − bi‖2 ≤ r2

we have
‖∇f(a)‖ ≤ 2nr

m

Proof. Recalling the definition of M(a) we have

f(a) = 〈M(a), X〉 =
1

m

m∑
i=1

(ai − bi)>X(ai − bi).

Therefore the component of∇f(a) corresponding to ai is given by

∇aif(a) =
2

m
ΠWi

X(ai − bi).

Thus we estimate the norm by

‖∇f(a)‖2 =
4

m2

m∑
i=1

‖ΠWi
X(ai − bi)‖2

≤ 4

m2

m∑
i=1

‖X(ai − bi)‖2

≤ 4

m2

m∑
i=1

n2‖(ai − bi)‖2

where the last line follows from the fact that

‖X‖ = ‖xx>‖ = ‖x‖2 ≤ n.

Plugging in the assumed bound on
∑m
i=1‖(ai − bi)‖2 yields the desired result.

Next we show that an approximate eigenvector can be computed with the desired accuracy.

14

Lemma B.3. A vector x satisfying sdp2(a) ≤
(
1 + ε

10

)
〈M(a), xx>〉 can be compute in time

Õ(mnε). Furthermore, if 〈M(a), xx>〉 ≤ sdp2(a∗) + ε
2 then the approximation is additive i.e.

sdp2(a) ≤ 〈M(a), xx>〉+ ε
2 .

Proof. Let L denote the m×n matrix whose rows are equal to (ai− bi) and note that L>L = M(a).
By the classical power method of [15] we can compute a vector v such that

(
1 + ε

10

)
v>M(a)v ≥

‖M(a)‖. The runtime is bounded by Õ(1
ε) times the cost of multiplying a vector by the matrix

M(a). Since M(a) = L>L, we can split each matrix-vector product into two steps, first multiply by
L then by L>, for a total runtime of O(mn). Thus, v can be computed in Õ(mnε) time.

Letting x =
√
nv, and X = xx> we have

sdp2(a) ≤
(

1 +
ε

10

)
〈M(a), X〉. (7)

Letting a∗ = argmina sdp∞(a) we have that

sdp2(a∗) ≤ opt(P) ≤ 1. (8)

Thus, if a satisfies 〈M(a), X〉 ≤ sdp2(a∗) + ε
2 , then by (7) and (8)

sdp2(a) ≤ 〈M(a), X〉+
ε

10

(
1 +

ε

2

)
≤ 〈M(a), X〉+

ε

2
.

We are now ready to give the full proof of Theorem 2.4.

Proof of Theorem 2.4. The main observation is that the algorithm is precisely online gradient descent
where the convex cost function observed at each step is given by ft(a) = 〈M(a), X(t)〉. Indeed
viewing a as a vector in nm dimensions (one for each ai) the component of the gradient ∇ft(a)
corresponding to ai is 2

mΠWiX
(t)ai. By Lemma B.1 the optimal solution a∗ lies in Br∗(b), the `2-

ball of radius r∗ =
√

opt(P) centered at b = {b1, . . . , bm}. Thus given an upper bound p ≥ opt(P)
it is sufficient to limit the search to Br(b) for r =

√
mp. The last lines of the loop are just projection

onto this ball (Lemma A.3). Finally, for a in Br(b), Lemma B.2 gives ‖∇ft(a)‖ ≤ 2nr
m .

Thus the algorithm is online gradient descent with feasible set diameter D = 2r and gradients
bounded by G = 2nr

m . Thus by the textbook analysis of online gradient descent [11] we have

1

T

T∑
t=1

ft(a
(t))− min

a′∈Br(b)

1

T

T∑
t=1

ft(a
′) ≤ 3GD

2
√
T

=
3np

2
√
T
.

Letting a∗ = argmina sdp2(a) (which we know is contained in Br(b)) we have

1

T

T∑
t=1

ft(a
(t))− 1

T

T∑
t=1

ft(a
∗) ≤ 3np

2
√
T
.

Noting that ft(a∗) = 〈M(a∗), X(t)〉 ≤ sdp2(a∗) yields

1

T

T∑
t=1

ft(a
(t)) ≤ sdp2(a∗) +

3np

2
√
T
≤ sdp2(a∗) +

ε

2

where the last line follows from the choice of T = 36n2p2

ε2 . For t∗ = argmint ft(a
(t)) we therefore

have
〈M(a(t∗)), X(t∗)〉 = ft(a

(t∗)) ≤ sdp2(a∗) +
ε

2
.

Thus by Lemma B.3 X(t∗) is an ε
2 -additive-approximate solution to sdp2(a(t∗)), and so we conclude

sdp2(a(t∗)) ≤ 〈M(a(t∗)), X(t∗)〉+
ε

2
≤ sdp2(a∗) + ε

15

i.e. a(t∗) is an ε-additive-approximation of mina sdp2(a).

To analyze the runtime note that each iteration requires approximately solving an instance of
sdp2(a(t)), multiplying the solution X(t) by each vector a(t)

i − b
(t)
i , and then rescaling by λ(t).

First, by Lemma B.3 the vector xt can be computed in time Õ(mnε). Further X(t)(a
(t)
i − b

(t)
i) =

xt〈xt, (a(t)
i − b

(t)
i)〉 can be computed in time O(n) for each i, for a total runtime of O(mn).

Finally, λ(t) can be computed inO(mn) time. Putting it all together there areO(p
2n2

ε2) iterations each
of which takes Õ(mnε) time, given an upper bound p ≥ opt(P). We can find an upper bound that is
at most 2 opt(P) by starting with p = 1

n and repeatedly doubling at most log(n opt(P)) = O(log ρ)

times. This yields the final iteration count of (ρ
2 log ρ
ε2).

C Additional Details on Experiments

We based our code for the experiments (especially for the algorithm from [4]) on the publicly
available code at https://github.com/justc2/worst-case-randomly-collected. The code
is available under the MIT License. For running Algorithm 2 in practice we found that T = 1000
iterations was more the sufficient to compute a good solution. Though this is not a particularly
scientific comparison, we found that in practice running the code on a laptop with an Intel 8th
generation Core i5 and 16GB of RAM that Algorithm 2 was significantly faster than the public code
for the algorithm from [4]. For example, in the snowball sampling experiment Algorithm 2 took about
3 seconds, while the algorithm from [4] took approximately 100 seconds to compile the program
description into the correct form (including the automatic Schur complement reduction described in
the previous section), and approximately 30 seconds to numerically solve the resulting SDP.

16

https://github.com/justc2/worst-case-randomly-collected

