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Abstract

Large Language Models (LLMs) have demon-001
strated remarkable capabilities, but struggle002
with code-mixed language understanding. For003
example, prior work benchmarking the perfor-004
mance of multilingual LLMs on code-mixed005
translation tasks has demonstrated their inef-006
fectiveness in dealing with code-mixed lan-007
guages. However, the question of how to im-008
prove the capability of multilingual LLMs to009
handle code-mixed language has not received010
any attention to date. In this paper, we tackle011
this research gap by proposing CHAI, a novel012
general-purpose framework for improving the013
ability of multilingual LLMs to handle code-014
mixed languages. CHAI relies on three novel015
contributions made in this paper. First, we ex-016
plore the ability of LLMs to provide accurate017
annotations for code-mixed translation tasks.018
Second, we leverage this ability of LLMs as019
annotators to generate preference data for code-020
mixed translation tasks at scale, which are021
then used within a reinforcement learning from022
AI feedback (RLAIF) procedure to improve023
LLMs’ capability on code-mixed tasks. Third,024
we conduct a rigorous experimental evalua-025
tion across various real-world datasets and set-026
tings. Our analysis shows that CHAI-powered027
LLMs outperform state-of-the-art open-source028
LLMs by 25.66% (in terms of win rate adju-029
dicated by human annotators) in code-mixed030
translation tasks. This work represents a first031
step towards developing more inclusive code-032
mixed LLMs. Our code is publicly available at:033
https://github.com/draftsubmt/CHAI-LLM.034

1 Introduction035

Large language models (LLMs) have excelled at036

comprehending, producing, and interacting with037

human language across a wide variety of real-world038

use cases, e.g., drafting code in information tech-039

nology (Tian et al., 2023), generating hypotheses in040

biology (Park et al., 2024), formulating therapeutic041

dialogue in mental health settings (Cheng et al.,042

2023), etc. LLMs have also seen widespread user 043

adoption, e.g., ChatGPT reached 100 million users 044

in two months after its launch, the fastest growth 045

of any consumer application in history (Hu, 2023). 046

Unfortunately, the vast linguistic diversity across 047

the globe still poses significant challenges for such 048

emerging LLM-based technologies. In particu- 049

lar, recent studies (Zhang et al., 2023a; Gupta 050

et al., 2024a) have shown that the ability of cur- 051

rent LLMs to understand and generate language 052

is heavily skewed towards monolingual English 053

language queries, with a significant performance 054

degradation reported in prior work (Gupta et al., 055

2024b) on tasks involving code-mixed language1. 056

These results are highly problematic because they 057

leave a large proportion of the global population 058

— those using code-mixed language as their pri- 059

mary means of communication (which includes 060

more than 1 billion people in India alone) — at a 061

comparative disadvantage (Ramzan et al., 2021). 062

To ensure that the benefits of LLMs can extend to 063

these populations, it is crucial that the next genera- 064

tion of LLMs can understand, reason, and respond 065

to/in code-mixed language. 066

In part, this performance degradation on code- 067

mixed tasks occurs because most current-day 068

LLMs are trained on large corpora of monolingual 069

and/or multilingual text, with comparatively little 070

explicit code-mixed corpora included during the 071

pre-training phase of LLM training. This lack of in- 072

clusion of code-mixed corpora can be attributed to 073

a (relative) lack of availability of large-scale code- 074

mixed datasets on the Internet (Magueresse et al., 075

2020). Despite this, prior attempts at augmenting 076

LLMs to handle code-mixed language have mainly 077

focused on injecting additional code-mixed text 078

during the pre-training stage (Zhang et al., 2023c). 079

These challenges motivate us to explore - Can 080

1Code-mixing, the fluid alternation between languages
within a conversation, is common in multilingual societies.
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we develop a general-purpose approach to improve081

the capability of LLMs in dealing with code-mixed082

tasks? To tackle this main research question, we083

propose CHAI (Code Mixed Understanding via084

Hybrid AI Instruction), a novel general-purpose085

framework for improving the ability of multilingual086

LLMs to handle code-mixed language. CHAI re-087

lies on three novel contributions. First, we explore088

the ability of LLMs in providing accurate annota-089

tions for code-mixed translation tasks. We compare090

LLM annotation results with human annotations,091

and our results show that LLM labeled preferences092

(for code-mixed text) are highly correlated with093

human annotator preferences. Second, we leverage094

this ability of LLMs (to serve as a proxy annotator)095

to generate preference data for code-mixed trans-096

lation tasks at scale, which is then used to develop097

a new code-mixed LLM through model alignment.098

In particular, we adopt a reinforcement learning099

from AI feedback (RLAIF) procedure to improve100

the capability of current-day LLMs to handle code-101

mixed language. To the best of our knowledge,102

we are the first to utilize model alignment for the103

code-mixing scenario. Third, we conduct a rig-104

orous experimental evaluation across various real-105

world datasets and settings. Our analysis shows106

that LLMs powered with CHAI outperform conven-107

tional state-of-the-art LLMs by 25.66% (in terms108

of win rate adjudicated by human annotators) on109

code-mixed translation tasks. This work takes a110

first step towards developing more inclusive code-111

mixed LLMs, which can empower people from112

diverse linguistic communities.113

2 Related Work114

LLMs on Code-Mixed Tasks. Zhang et al. (2023b)115

investigates LLMs’ potential in the context of code-116

mixed tasks. They benchmark multilingual LLMs’117

performance across sentiment analysis, machine118

translation, summarization, and word-level lan-119

guage identification tasks. They argue that current120

multilingual capabilities in LLMs do not imply pro-121

ficiency with code-mixed texts. Similarly, Gupta122

et al. (2024a) focuses on multilingual LLMs’ per-123

formance in code-mixed machine translation tasks.124

Experimental results show that k-shot prompting125

improves code-mixed translation compared to 0-126

shot prompting. Unfortunately, while all these ex-127

isting studies focus on benchmarking LLMs on128

code-mixed tasks, none of them offer any solutions129

for improving performance on such tasks.130

RLHF in machine translation. RLHF fine-tunes 131

LLMs using human preference data to align outputs 132

with user expectations. Xu et al. (2024) explores 133

modeling translation preferences with RLHF and 134

constructs reward models by contrasting deficien- 135

cies in machine translation compared to human 136

translation from published books. He et al. (2024) 137

investigates the possibility of utilizing the qual- 138

ity estimation (QE) model as the reward model to 139

predict human preferences during RLHF. Exper- 140

iments show that QE-based feedback training is 141

highly data-efficient. Lai et al. (2024) introduces 142

a framework that models hierarchical rewards in 143

RLHF, and tests their approach in long-form ques- 144

tion answering and machine translation tasks. They 145

demonstrate how well hierarchical reward model- 146

ing works to improve LLM training procedures for 147

greater consistency with human preferences. Un- 148

fortunately, prior work in this space focuses solely 149

on monolingual machine translation tasks. In con- 150

trast, we focus on code-mixed machine translation. 151

RLAIF (Reinforcement Learning from AI Feed- 152

back). Collecting human preference data at scale 153

for RLHF is expensive and time-consuming. Thus, 154

some recent work attempts to replace human feed- 155

back with AI (or LLM) feedback, which is then 156

used as preference data to power the conventional 157

RLHF training procedure. Bai et al. (2022) first 158

introduced this RLAIF procedure, where an AI 159

labeler identified harmful or harmless outputs to 160

construct a reward model for policy optimization 161

and model alignment. Lee et al. (2024) focus on 162

RLAIF for text summarization and dialogue gener- 163

ation tasks and show that RLAIF achieves human- 164

level performance. Li et al. (2024) propose phased 165

annotations on different prompt categories during 166

the AI preference labeling process, greatly improv- 167

ing the accuracy of AI annotations.To the best of 168

our knowledge, this paper represents the first at- 169

tempt at adapting RLAIF to improve the ability of 170

LLMs to handle code-mixed language. 171

3 CHAI: RLAIF for Code-Mixing 172

Reinforcement Learning from Human Feedback 173

(RLHF) is a highly popular and effective tech- 174

nique for aligning the output of LLMs with human- 175

specified preferences (Ouyang et al., 2022). Unfor- 176

tunately, a key obstacle prohibiting the large-scale 177

use of RLHF is that the quality of the reward model 178

(a key component of RLHF used to fine-tune the 179

final policy model) highly depends on access to 180
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high-quality human preference labels. Collecting181

these preference labels at scale from human anno-182

tators is expensive and time-consuming.183

To address this issue, recent work (Bai et al.,184

2022) has proposed replacing human annotators185

with AI (more specifically, LLM) annotators to186

efficiently generate preference label data at scale,187

which can then be used to train the reward model188

(inside a conventional RLHF pipeline). This novel189

paradigm of aligning LLMs with (desirable) pref-190

erences is called Reinforcement Learning from AI191

Feedback (RLAIF) (Lee et al., 2024), and it has192

been successfully adopted to achieve model align-193

ment across various use cases, such as reducing194

harmful outputs (Li et al., 2024), etc.195

In this section, we propose CHAI, a novel196

general-purpose RLAIF framework to improve the197

ability of multilingual LLMs to handle code-mixed198

language. To the best of our knowledge, CHAI is199

the first to apply RLAIF (or RLHF) to improve200

model alignment for code-mixed use cases.201

Specifically, CHAI focuses on using RLAIF to202

improve LLMs’ alignment on the task of code-203

mixed translation (i.e. translating monolingual204

text to code-mixed text) using AI-annotated205

preference labels. Next, we describe CHAI’s206

overall architecture (see Figure 1).207

208

Base LLM Model. The RLAIF procedure starts209

by using an existing off-the-shelf LLM as a base210

model (referred to as Base-LLM or πbase in Figure211

1), which is then further optimized (or aligned)212

using the RLAIF procedure. In CHAI, we use213

Llama-3.1-8B-Instruct (Grattafiori and et. al.,214

2024) as our base model, as (i) it is a robust215

multilingual LLM (with support for English, Hindi,216

German, French, and Italian, among others); and217

(ii) it has demonstrated strong performance in218

machine translation tasks (Xu et al., 2023), the219

primary task of interest in this paper, making it220

an ideal choice for an RLAIF-driven code-mixed221

translation pipeline.222

223

Stage 1: Supervised Fine Tuning of Base Model224

Next, we use the base model and conduct super-225

vised fine-tuning on it using domain-specific data226

(for code-mixed translation) to adapt the base LLM227

to the target task (of translating monolingual text228

into code-mixed text). More formally, given a229

parallel corpus Dparallel = {(x(i), y(i))}i=1,...,n230

where xi represents the source (English) sentences,231

and yi represents the corresponding (code-mixed)232

translation, we apply a fixed prompt template I 233

(see Appendix A1) on a portion of this parallel 234

corpus and convert it into a training set Dsft = 235

{(I(x(i)), y(i))}i=1,...,n that can be used to fine- 236

tune our Llama-3.1-8B-Instruct base model. In par- 237

ticular, πbase is supervised fine-tuned (SFT) using 238

a next-token prediction objective on this training 239

set Dsft (Radford et al., 2019). This SFT version of 240

the base model is referred to as SFT-LLM or πsft 241

in Figure 1 (and in the rest of the paper). 242

Given the widespread prevalence of code-mixed 243

language usage in India (in the form of Hinglish, or 244

Hindi+English) (Thara and Poornachandran, 2018), 245

we focus on using datasets for English → Hinglish 246

translation in CHAI to power this SFT stage. In 247

particular, we utilize the following two datasets and 248

use it as our parallel corpus Dparallel: 249

• MixMT 2022 shared task (Srivastava and 250

Singh, 2022), which contains ∼1800 parallel 251

English sentences along with multiple human- 252

generated Hinglish translations. 253

• ALL-CS dataset (Tarunesh et al., 2021), 254

which contains 9290 English sentences and 255

multiple Hinglish translations for each sen- 256

tence (only movie subset is included). 257

For each of these datasets, we first pair each 258

English sentence with each of the available 259

Hinglish translations, and this results in a total 260

of 3873 data points (from the MixMT dataset) 261

+ 11317 data points (from the All-CS dataset) 262

= 15190 datapoints inside our parallel corpus 263

Dparallel, a portion of which is then converted into 264

the Dsft dataset (as explained above). 265

266

Stage 2: Reward Model Training using AI Feed- 267

back. The key distinguishing characteristic of an 268

RLAIF framework is that we use an AI or LLM 269

model (instead of a human annotator) to annotate 270

preference data. Once generated, this preference 271

data is used to train a reward model, and the rest of 272

the RLAIF pipeline mimics the steps in RLHF. We 273

now explain how this is accomplished in CHAI for 274

the task of code-mixed translation. 275

2.1 Collecting Preference Data Using LLMs We 276

use a portion of the Dparallel corpus (from Stage 277

1) and convert it into a preference dataset as fol- 278

lows: (i) each source (English) sentence is paired 279

with two alternative Hinglish translations; (ii) these 280

three sentences are fed into a prompt template 281
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Figure 1: Overall architecture of the RLAIF Procedure used in CHAI.

Ipref (see Appendix A.12) that generates a cus-282

tom prompt for an LLM annotator asking it to283

select which of the two provided Hinglish sen-284

tences is a better code-mixed translation for the285

source English sentence. To mitigate positional286

bias (Pezeshkpour and Hruschka, 2023; Li et al.,287

2024) in preference labeling of code-mixed text,288

we randomly switch the position of the two candi-289

date Hinglish translations before presenting them290

to the LLM annotator (see Appendix A.2 for more291

details on positional bias).292

Our final preference dataset contains 15190 dis-293

tinct prompts (of type Ipref ) that can be passed to294

an LLM annotator to get a preference label. CHAI295

uses GPT-4o (OpenAI et al., 2024) 2 as an LLM296

annotator, each prompt is passed to GPT-4o at three297

different temperature settings (T=0.1, 0.3, 0.5) to298

get three preference labels, and the final binary299

preference label (Y=0 or 1 means that the LLM300

annotator prefers the first or second code-mixed301

translation, respectively) is obtained through a ma-302

jority vote on these three labels. To the best of our303

knowledge, this represents the first-ever attempt at304

utilizing LLM annotation abilities for annotating305

tasks related to code-mixing.306

2.2 Reward Model Training This LLM-annotated307

preference label dataset is used to train a reward308

model (a key component in the RLAIF frame-309

2GPT-4o points to gpt-4o-2024-11-20

work), which outputs numerical scores in response 310

to LLM generated responses provided as input. In- 311

tuitively, the trained reward model should be such 312

that LLM responses that are closely (or weakly) 313

aligned with AI preferences (expressed in our pref- 314

erence dataset) should receive high (or low) scores 315

from the reward model. 316

In CHAI, we train our reward model as fol- 317

lows: (i) we take πsft (our SFT model from Stage 318

1) and change its last neuronal layer from a lan- 319

guage modeling head (i.e., output logit of each 320

token in vocabulary) into a linear layer which gen- 321

erates a singular scalar prediction representing the 322

output reward score. (ii) To get the final reward 323

model, this modified version of πsft is trained on 324

the LLM-annotated preference dataset using the 325

Bradley-Terry model (Bradley and Terry, 1952), 326

which provides a functional form for the probabil- 327

ity that for an English sentence x, the LLM labeler 328

prefers its chosen Hinglish translation yc over the 329

rejected translation yr: 330

P{i ≻ j} =
er(x,yc)

er(x,yc) + er(x,yr)
(1) 331

where r(x, yc) and r(x, yr) denote the reward 332

model scores for the chosen and rejected Hinglish 333

translations, respectively. Finally, this probability 334

is incorporated into a negative log-likelihood loss: 335

L(r) = −EDrm [logP{i ≻ j}] (2) 336
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where Drm = {x(i), y(i)c , y
(i)
r }Ni=1 represents the337

preference labeled dataset for all X data points338

annotated by the LLM.339

Stage 3: Tuning Policy Model with Reinforce-340

ment Learning. Finally, we train a policy341

model πrl (initialized from πsft) to maximize the342

expected score returned from the reward model343

using general-purpose reinforcement learning al-344

gorithms, such as proximal policy optimization345

(PPO) (Schulman et al., 2017). More precisely, we346

optimize the policy model πrl to maximize rtotal:347

rtotal = r(x, y)− ηKL(πrl(y|x)||πsft(y|x)) (3)348

where r refers to the reward score based on349

a single sample, and the KL divergence term (i)350

acts as an entropy bonus, preserving generation351

diversity and preventing pattern-collapse into sin-352

gular high-reward responses (Jaques et al., 2019);353

while (ii) also ensuring that the RL policy’s output354

does not deviate drastically from the distribution355

where the reward model is accurate (Laidlaw et al.,356

2024; Wang et al., 2024). Finally, η is a coeffi-357

cient that trades-off the two terms in this objective358

function. We conducted an ablation experiment359

comparing this PPO approach against direct pref-360

erence optimization (DPO) based alternatives in361

Appendix A.6, which showed the superiority of our362

PPO approach. Results can be found in Table A5.363

4 Experimental Evaluation364

We primarily focus our experimental evaluation365

on analyzing the effectiveness of CHAI in improv-366

ing the ability of our base Llama-3.1-8B-Instruct367

model on the task of English → Hinglish trans-368

lation. Note that while our CHAI framework is369

general enough to handle code-mixed translation370

tasks for any language pair, we focus our evaluation371

to English → Hinglish because there are very few372

large-scale datasets similar to MixMT 2022 and373

All-CS available in other language pairs. In partic-374

ular, MixMT 2022 and All-CS contain multiple tar-375

get Hinglish translations for every source English376

sentence, and these multiple target translations are377

crucial in enabling LLMs to provide preference la-378

bels in Stage 2 of the CHAI framework. As such,379

we leave exploration of other language pairs to fu-380

ture work, especially given the non-trivial effort in381

collecting such data in other language pairs using382

human annotators. Nevertheless, we analyze the383

cross-lingual transfer ability of our CHAI-powered384

LLM (trained specifically for English → Hinglish)385

on additional language pairs (in Table 4).386

Baselines. We apply three baseline models for 387

the translation quality evaluation: (i) the base-LLM 388

or πbase, which refers the LlaMA-3.1-8b-Instruct; 389

(ii) the SFT baseline-1 or πsft−1 which applies 390

an additional SFT step on LlaMA-3.1-8b-Instruct; 391

(iii) the SFT baseline-2 or πsft−2 that utilizes the 392

additional SFT step on LlaMA-3.1-8b. The training 393

details can be checked at Appendix A.8. 394

Evaluation Metrics. To understand the impact of 395

CHAI on the quality of code-mixed translation, we 396

utilize five well-studied metrics: (i) chrF (Popović, 397

2015), which calculates a character n-gram F-score 398

based on the overlap between predicted and ref- 399

erence sentences; (ii) chrF++ (Popović, 2017), 400

which improves correlations with human assess- 401

ment by adding word unigrams and bigrams to the 402

standard chrF score; (iii) COMET (Rei et al., 2020), 403

which generates embeddings of the source, hypoth- 404

esis, and reference sentences with a cross-lingual 405

encoder (Conneau, 2019), and predicts the score 406

of the given translation3. To validate the impact of 407

CHAI on classification tasks (especially the senti- 408

ment analysis task), we use two classic metrics: (i) 409

classification accuracy; (ii) weighted F1-score. 410

In addition to these classical evaluation metrics, 411

we also utilize human and LLM evaluators to calcu- 412

late the win rate (Lee et al., 2024). (iv) To compute 413

win rate with human evaluators, three human eval- 414

uators4 fluent in both English and Hindi were re- 415

cruited. For each source English sentence in the test 416

set (of MixMT 2022), we generated two Hinglish 417

translations, one using the CHAI-powered LLM 418

and the other using either (πbase) or two SFT base- 419

lines. These two Hinglish translations were shown 420

(in random order) to each human evaluator, who 421

were asked to select their preferred translation of 422

the source English sentence. A majority vote was 423

used to determine the evaluators’ aggregate prefer- 424

ence label. (v) Similarly, to calculate win rate with 425

LLM evaluators, we generated two Hinglish trans- 426

lations for each test data point (as described above) 427

and presented them in random order to a Gemini- 428

1.5-Flash-001 (Team et al., 2024) model across 429

three different temperature settings (T=0.1, 0.3, 430

0.5), and aggregated results using a majority vote. 431

In both cases, the win rate was defined as the pro- 432

portion of test data points for which the Hinglish 433

translation generated by our CHAI-powered LLM 434

was preferred by the evaluators over the Hinglish 435

3We use reference-based evaluation model wmt22-comet-
da to calculate the COMET score.

4The study was approved by an Institutional Review Board
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Prompt Alignment score
Basic 0-shot 60.30%

Basic + rule 0-shot 61.8%
Basic 1-shot 57.70%
Basic 2-shot 54.90%
Basic 3-shot 56.50%

Basic + rule 1-shot 59.70%
Basic + rule 2-shot 55.40%
Basic + rule 3-shot 57.60%
Basic + CoT 0-shot 56.40%

Basic + rule + CoT 0-shot 59.40%
Basic + rule + CoT 1-shot 58.90%
Basic + rule + CoT 2-shot 60.20%

Table 1: Alignment scores between human vs LLM
annotators utilizing different prompting strategies.

translation generated by the baseline LLM.436

Evaluation Datasets. Machine translation related437

experiments are evaluated on the test sets of three438

widely used datasets: MixMT 2022 (Srivastava and439

Singh, 2022), HinGE (Srivastava and Singh, 2021),440

and MT-Aug (Dhar et al., 2018). The experiments441

on cross-lingual transfer ability rely on corpora442

contained in (Gupta et al., 2024c). The sentiment443

analysis experiments are evaluated based on the444

whole dataset of SentMix-3L (Raihan et al., 2023)445

and the test set of SemEval-2020 Task 9 (Patwa446

et al., 2020). More details are given in Table A3.447

We now present results in three stages. First,448

we present results analyzing the ability of LLM449

annotators to mimic human preferences in code-450

mixed translation tasks. We also present results of451

fine-tuning several hyperparameters in the CHAI452

framework. Second, we present our main evalu-453

ation result of comparing code-mixed translation454

quality of CHAI-powered LLMs against state-of-455

the-art baselines to understand its effectiveness. Fi-456

nally, we present results analyzing transfer learn-457

ing abilities of CHAI powered LLMs by evaluating458

its performance on Hinglish sentiment analysis &459

cross-lingual machine translation tasks.460

LLM Annotator Alignment. To generate pref-461

erence labels via LLM annotators in Stage 2 of462

the CHAI framework, we compared the prefer-463

ence labels generated via several permutations and464

combinations of three different types of prompting465

strategies (basic prompting A8, rule-augmented466

prompting A9, and chain-of-thought prompting467

A10) against human-annotated preferences (three468

independent human-annotators were also used to469

Figure 2: Relationship between the temperature and the
quality of code-mixed machine translation.

Evaluator Results En->
Hinglish

Gemini RLAIF 36.70%
RLAIF(no SFT) 63.30%

Human RLAIF 44.53%
RLAIF(no SFT) 55.47%

chrF RLAIF 42.09
RLAIF(no SFT) 42.43

chrF++ RLAIF 38.01
RLAIF(no SFT) 38.04

COMET RLAIF 0.67
RLAIF(no SFT) 0.70

Table 2: Performance of RLAIF with (without) SFT.

provide preference labels on training data points). 470

Table 1 lists the alignment scores (defined as the 471

fraction of training data points on which the LLM 472

annotation matched the human-generated annota- 473

tion) achieved by LLM annotators powered by dif- 474

ferent prompting strategies. This figure shows that 475

basic prompting with specified preference anno- 476

tation rules for code-mixed texts outperforms all 477

other strategies by 1.5% (on average) and achieves 478

the highest alignment score of 61.8%. In particu- 479

lar, this table shows that having additional rules in 480

the prompt helps improve the alignment of LLM 481

annotators (1.28% increase in alignment score on 482

average) on code-mixed translation tasks. Surpris- 483

ingly, Table 1 shows that chain-of-thought (CoT) 484

prompting and k-shot prompting fails to improve 485

alignment in code-mixed scenarios, possibly be- 486

cause of inconsistencies in grammatical structure 487

of code-mixed texts leads CoT and k-shot prompt- 488

ing astray. Thus, we henceforth fix our prompting 489

strategy to the best-performing strategy in Table 1. 490

Impact of Supervised Fine Tuning. We conduct 491

an ablation study to evaluate the impact of super- 492

vised fine-tuning (SFT) in Stage 1 of the RLAIF 493
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MixMT 2022 HinGE

ChrF CHrF++ COMET ChrF CHrF++ COMET
πbase 33.77 30.49 0.64 34.19 30.81 0.63
πsft−1 48.57 46.61 0.69 48.95 45.40 0.70
πsft−2 44.83 43.42 0.69 40.55 40.57 0.67

CHAI-LLM 42.68 38.33 0.71 42.76 38.60 0.71

Table 3: Measuring CHAI’s ability in improving code mixed translation ability.

Figure 3: Corresponding win rate to measure CHAI’s ability in improving code mixed translation ability.

framework on code-mixed translation. Table 2 com-494

pares the quality of code-mixed translation gener-495

ated with the standard RLAIF framework (which496

includes the SFT step) and the translation generated497

with a version of RLAIF in which no SFT train-498

ing is done in Stage 1. Both human and Gemini499

evaluators prefer RLAIF (no SFT) over standard500

RLAIF, with win rates of 55.47% and 63.30%, re-501

spectively (Table 2). Results with conventional502

metrics show similar trends. These results show503

that using SFT is counterproductive in our con-504

text, lowering the code-mixed translation quality.505

In part, these results could also be explained by506

our choice of an instruction-tuned model (Llama-507

3.1-8b-Instruct) as our base model. As instruction-508

tuned models have undergone one round of SFT509

during their training phase, the additional SFT step510

in the standard RLAIF framework may have led to511

overfitting, reducing the model’s generalizability.512

Future research should investigate alternative fine-513

tuning strategies to enhance generalization without514

compromising translation quality. Thus, all future515

CHAI experiments exclude SFT.516

Tuning LLM Temperature. In Figure 2, we517

compare the variation in code-mixed translation518

quality (as measured by chrF, chrF++, and COMET519

on Y-axes) with increasing values of temperature520

for the CHAI-powered LLM (X-axis). This figure521

shows that all three metrics are optimized at T=0.6.522

Thus, we fix the temperature of the CHAI-powered523

LLM to T=0.6 in all future experiments. 524

Impact of CHAI on Translation Quality. Hav- 525

ing identified the best prompting strategy, temper- 526

ature, etc., we now train a CHAI-powered LLM 527

with these optimal hyperparameters to evaluate its 528

effectiveness for code-mixed translation.Table 3 529

compares the ChrF, ChrF++, and COMET scores 530

achieved by CHAI-LLM (against our three base- 531

line models) on MixMT 2022 and HinGE test sets. 532

This table presents a somewhat inconclusive pic- 533

ture - while CHAI-LLM marginally outperforms all 534

three baselines in terms of the COMET score (3% 535

average improvement), it achieves on average 8.5% 536

lower ChrF and ChrF+ scores (compared to πsft−1 537

and πsft−2) on both datasets. Note that existing 538

studies have shown that ChrF and ChrF++ fail to ad- 539

equately capture human preferences (Winata et al., 540

2024), which may partly explain these results. 541

However, we get a more comprehensive an- 542

swer from Figure 3, which compares the LLM- 543

evaluation based and Human-evaluation based win 544

rate achieved by CHAI-LLM (against our three 545

baseline models) on MixMT 2022 and HinGE test 546

sets. This figure shows that CHAI-LLM achieves 547

an average win rate of 61.14% (and 60.65%) 548

against πbase, as adjudged by LLM evaluators (and 549

human evaluators), respectively. In fact, CHAI- 550

LLM does even better against the (supposedly) 551

stronger SFT baselines, as it achieves an aver- 552

age win rate of 73.25% (and 52.15%) against 553
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Original Translation
Direction

Evaluator Results Translation Direction

En→CM of
Be and En

En→CM of
Fr and En

En→CM of
Es and En

En→Hinglish

Gemini
πbase Win 49.89% 54.44% 42.86%
CHAI-LLM Win 50.11% 45.56% 57.14%

chrF
πbase 12.75 34.88 32.72
CHAI-LLM 19.94 22.07 35.56

chrF++
πbase 11.42 31.52 30.56
CHAI-LLM 17.48 19.85 33.09

COMET
πbase 0.59 0.67 0.65
CHAI-LLM 0.66 0.71 0.79

Table 4: Cross-lingual transfer result based on different code-mixed language pairs.

Dataset LLM Accuracy F1_score

SemEval-2020
πbase 35.40% 22.65%
CHAI 36.77% 25.04%

SentMix-3L
πbase 44.39% 32.96%
CHAI 55.21% 46.38%

Table 5: Performance of CHAI on sentiment analysis.

πsft−1, as adjudged by LLM evaluators (and hu-554

man evaluators), respectively. Similarly, CHAI-555

LLM achieves an average win rate of 76.69% (and556

76.91%) against πsft−2, as adjudged by LLM eval-557

uators (and human evaluators), respectively. Due558

to lack of space, we move evaluations exhibiting559

similar trend on one additional test set to Table A4).560

Thus, these results establish that the CHAI561

framework is highly successful at improving the562

ability of LLMs to effectively handle code-mixed563

translation. Further, in Appendix A.11, Table A7564

compares translations from baseline models and565

CHAI-LLM on two representative examples. For566

both, CHAI-LLM produces more natural sounding567

code-mixed translations that align with phrasings568

commonly preferred by Hinglish speakers, which569

provides insight into CHAI-LLM’s effectiveness.570

Cross-lingual Transferability. We examine if571

translation preferences learned during the RLAIF572

procedure enhance cross-lingual transfer. Three573

translation directions: (i) English → English +574

Bengali (En+Be);(ii) English → English + French575

(En+Fr); and (iii) English → English + Spanish576

(En+Es) are evaluated in Table 4. In LLM-based577

evaluations, CHAI-LLM demonstrates a consis-578

tent preference, narrowly surpassing the baseline in579

En+Be (50.11% vs. 49.89%) and showing clearer 580

wins in En+Es (57.14%), suggesting its improved 581

capability in generating more natural or human- 582

preferred outputs. In addition, all classic metrics 583

consistently favor CHAI-LLM, reinforcing that 584

our RLAIF procedure has indeed improved the 585

cross-lingual transfer ability on two out of three 586

language pairs ( En+Be & En+Es). This result mir- 587

rors existing findings showing cross-lingual trans- 588

fer ability of LLMs achieved via machine transla- 589

tion tasks (Lample and Conneau, 2019). 590

Ability to Understand Code-Mixing. Finally, we 591

explore if using RLAIF for code-mixed translation 592

improves an LLM’s general ability to handle ad- 593

ditional code-mixed tasks. Table 5 compares the 594

accuracy and F1 achieved by our CHAI-powered 595

LLM and the base LLM (πbase) on two code-mixed 596

sentiment analysis datasets containing Hinglish sen- 597

tences as input, and a ternary sentiment (positive, 598

neutral, negative) label. This table shows that our 599

CHAI-powered LLM outperforms πbase by 14.12% 600

(and 25.64%) on average in terms of accuracy (and 601

F1), which indicates that using RLAIF improves 602

an LLM’s ability to handle other code-mixed tasks. 603

5 Conclusion 604

This paper introduces CHAI, a novel framework 605

utilizing RLAIF to handle code-mixed language, 606

specifically for machine translation. CHAI pro- 607

vides a cost-effective preference labeling strat- 608

egy using open-source datasets and AI labeling. 609

We demonstrate that LLM-as-annotators can effec- 610

tively annotate code-mixed texts, reducing human 611

annotation costs. Experimental results show CHAI- 612

powered models outperform state-of-the-art LLMs. 613
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6 Limitations614

Due to the non-trivial effort involved in gathering615

annotations from professional crowd (human) anno-616

tators across different language pairs, this study fo-617

cuses on a single language pair (Hindi and English)618

and leave the exploration of other language pairs619

for future work. This naturally limits our evalua-620

tion somewhat. Additionally, the study focuses on621

implementing CHAI on only one 8-billion param-622

eter version of an open-source LLM (Llama-3.1-623

8B-Instruct). Conducting experiments with larger624

base models is highly challenging in an academic625

research setting due to computational constraints.626

Therefore, we focused on evaluating one of the627

most powerful open-source base models available.628

Next, the study mainly focuses on a single NLP629

task: machine translation (except for experiments630

in Table 5). In future work, we aim to experiment631

with other directionalities of translation and more632

general NLP tasks such as code-mixed summariza-633

tion, word-level language identification, etc. Next,634

we hypothesize that the performance drop observed635

in the SFT (Supervised Fine-Tuning) model can636

be attributed to the inherent challenges posed by637

the quality of the code-mixed data used in the ex-638

periment. Code-mixed data, by its nature, often639

contains noise and inconsistencies that may not640

be present in monolingual datasets (we found a641

lot of evidence of this noise in our starting code-642

mixed datasets), which can significantly impact643

the model’s performance during fine-tuning. Fi-644

nally, while we recognize that there are other im-645

portant dimensions for evaluating translation qual-646

ity such as the presence/absence of bias, helpful-647

ness/harmfulness of translations, etc., this study648

evaluates performance solely based on translation649

accuracy. We leave the exploration of these other650

evaluation dimensions for future work.651

7 Ethical Considerations652

The problem studied in this paper - development653

of LLMs for code mixed translation - presents sev-654

eral ethical challenges that need to be discussed655

and contemplated. First, it is important that such656

code-mixed LLMs output fair and unbiased trans-657

lation outputs. In particular, it is necessary to be658

vigilant about situations in which biases in code-659

mixed training data lead to biased or skewed trans-660

lations that may end up reinforcing problematic661

social norms, or misrepresenting cultural nuances.662

Additionally, preserving the intent and sentiment of663

speakers is essential, particularly in settings where 664

such code-mixed translations are used to interact 665

with code-mixed speakers. 666

Perhaps most importantly, the ethics of circum- 667

venting human feedback with AI feedback (as is the 668

norm in RLAIF procedures) needs to be discussed 669

carefully. On the one hand, as the results of this pa- 670

per show, leveraging AI feedback in RLAIF proce- 671

dures will speed up the developmennt of inclusive 672

code-mixed LLMs which will help bridge the digi- 673

tal divide, by making the benefits of LLMs avail- 674

able to lots of code-mixed speakers from places 675

like South Asia. On the other hand, utilizing AI 676

feedback (in RLAIF) might mean fewer opportuni- 677

ties for human crowd workers (a majority of whom 678

live in South Asia) to provide annotations and re- 679

ceive renumeration in return. Thus, the ethics of 680

leveraging LLMs as annotators deserves serious 681

discussion (especially with regards to the associ- 682

ated negative impacts on the livelihoods of human 683

crowd annotators). 684
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A Appendix 898

A.1 Prompt Template to Create Parallel 899

Corpus 900

See template at Table A1. 901

Prompt template I:
Translate this from {Source} to {Target}:
[Source]: {x}
[Target]: {y}

Table A1: Prompt template to create parallel corpus,
where ’Source’ and ’Target’ represent the names of the
source language and the target language,respectively.

A.2 Positional Bias in Code-mixed Texts 902

We use the same test set (previously used for sec- 903

tion A.3) to evaluate the positional bias problem 904

in annotating code-mixed texts. For each example 905

in the test set, we ask different LLM labelers to 906

generate preference labels for a pair of candidates 907

through the basic prompt in A8. Then the candidate 908

order presented in the prompt is swapped, and the 909

same LLMs are requested to generate preference 910

labels again. If an LLM favors the same opinion on 911

both the original and reversed order of candidates 912

in the prompt, we consider it to be biased. 913

In this section, we measure position bias by com- 914

puting the alignment score between the LLM an- 915

notated results and human preference labels. From 916

Table A2, we see that both LLM labelers(GPT-4o 917

and Gemini) shows different alignment score on 918

same preference labeling task. This observation 919

indicates the positional bias of LLM labelers also 920

exists through the preference annotation task on 921

code-mixed texts. 922
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LLM labeler Alignment score
GPT-4o (default order) 59.7%

GPT-4o (switched order) 54.3%
Gemini (default order) 59.0%

Gemini (switched order) 55.2%

Table A2: Performance of LLM labelers with different
positional orders.

A.3 Details of Evaluation Set for Alignment923

Score Calculation924

We downsampled from the training set Drm and925

create a evaluation set containing 1000 data points.926

Each data point contains one English sentence and927

two corresponding code-mixed Hinglish transla-928

tions. Each sample is assessed by three indepen-929

dent human annotators. The human preference930

labels are obtained through the majority voting of931

three human annotators’ results.932

A.4 Statistical Information about Test Sets933

See details of test sets in Table A3.934

A.5 Additional Evaluation for the Impact of935

CHAI on Translation Quality936

To further strengthen the evaluation, we addi-937

tionally employ 10% of data from the MT-AUG938

dataset Dhar et al. (2018) as another independent939

test sets to compare the quality of code-mixed940

translation generated by the CHAI-powered LLM941

against the translations generated by the base model942

(πbase). All evaluation settings are the same as Ta-943

ble 3. The new evaluation results are shown in Ta-944

ble A4. Across all evaluation metrics on both test945

sets, the translation performance of CHAI-LLM946

consistently outperforms πbase, indicating the the947

effectiveness of RAILF procedure in enhancing the948

LLMs’ machine translation capabilities.949

A.6 Compare the Performance of RLAIF with950

DPO Pipeline951

RLAIF pipeline and direct preference optimiza-952

tion (DPO) pipeline represent two prominent ap-953

proaches for utilizing feedbacks to improve the per-954

formance of LLMs. By reformulating the objective955

function, DPO (Rafailov et al., 2023) eliminates the956

need for an explicit reward model, and is therefore957

often considered a simplified and efficient alter-958

native to RLHF. We conduct an ablation study to959

compare the effectiveness of the RLAIF and DPO960

pipelines in improving translation performance un- 961

der comparable training conditions (Training de- 962

tails could be checked at Appendix A.9). 963

Table A5 shows the translation performance 964

in CHAI-LLM and πdpo. The results based on 965

MixMT-2022 indicate that translations generated 966

by the CHAI-powered LLM achieve a win rate im- 967

provement of 40.08% over the dpo model (πdpo) 968

according to LLM-based evaluators, and a 45.04% 969

improvement according to human evaluators. In 970

terms of automatic metrics, CHAI-LLM surpasses 971

πdpo with a 25.01% increase in ChrF, a 24.28% in- 972

crease in ChrF++, and a 24.56% improvement in 973

COMET score. 974

As shown in the HinGE test set, the CHAI- 975

powered LLM demonstrates substantial gains over 976

the dpo model (πdpo), achieving a 46.3% higher 977

win rate according to LLM-based evaluations and a 978

46.2% higher win rate based on human judgments. 979

Furthermore, across standard automatic metrics, 980

CHAI-LLM consistently outperforms the baseline, 981

with improvements of 81.57% in ChrF, 71.02% in 982

ChrF++, and 69.04% in COMET scores. In a word, 983

Table A5 suggests that the RLAIF pipeline is a 984

more effective approach for enhancing the perfor- 985

mance of LLMs in code-mixed translation scenar- 986

ios. 987

A.7 Training Details of RLAIF Procedure 988

SFT stage. From the ablation study called Impact 989

of Supervised Fine Tuning, we see that SFT step 990

cannot boost LLM’s final performance. Therefore, 991

we do not include the SFT stage in training. 992

Reward model training stage. The reward model 993

is initialized from LlaMA-3.1-8b-Instruct. The 994

whole training data are used to form the chosen- 995

rejected pairs with translated results collected from 996

the open-source dataset of code-mixed machine 997

translation tasks. We train 3 epochs with the learn- 998

ing rate of 1.0e-4, warm up ratio of 0.1, and maxi- 999

mum input length of 1024. 1000

RL fine-tuning stage. We use the LlaMA-3.1-8b- 1001

Instruct as the initial policy. We reuse the input 1002

from the training data during the reward model 1003

training phase as queries. During RL fine-tuning, 1004

we sample from LLM with a temperature T=0.6 1005

and nucleus sampling top_p=0.9 and limit the 1006

maximum of generated length to 512. We train 1007

the model with a batch size of 16 and the learning 1008

rate of 1.0e-5 for 5 epochs. We set up the β=0.04 1009

for the KL divergence loss (this coefficient value 1010

is obtained through one ablation study, selecting 1011
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Task Dataset Input
Input

Length
Output

Label
Type

Size

Machine
Translation

MixMT2022(Srivastava
and Singh, 2022)

English 16.85
English
+Hindi;

sentence 376

HinGE(Srivastava
and Singh, 2021)

English 14.54
English
+Hindi;

sentence 395

MT-Aug(Dhar et al.,
2018)

English 10.8
English
+Hindi;

sentence 610

Cross-Lingual
Transfer

Multilingual
Controlled
Generation

(Gupta et al., 2024c)

English 8.11
English

+Bengali;
sentence 549

English 8.81
English

+Spanish;
sentence 350

English 7.84
English

+French;
sentence 248

General
Classification

SemEval-2020
(Patwa et al., 2020)

English
+Hindi

26.12 English label
neg,

neural,
pos

3000

SentMix-3L
(Raihan et al., 2023)

English
+Hindi

88.27 English label
neg,

neural,
pos

1007

Table A3: Statistical information for code-mixing test sets used in the evaluation part.

Dataset Evaluator Results
En ->

Hinglish

MT
AUG

Gemini
πbase 31.09%
CHAI-LLM 68.91%

Human
πbase 46.89%
CHAI-LLM 53.11%

chrF
πbase 25.97
CHAI-LLM 34.64

chrF++
πbase 22.45
CHAI-LLM 30.02

COMET
πbase 0.66
CHAI-LLM 0.78

Table A4: Measuring CHAI’s ability in improving code-
mixed translation ability on one additional test sets.

the value that yielded the best performance for the1012

final model).1013

1014

A.8 Training Details of the SFT Baseline1015

We start with LlaMA-3.1-8b (or LlaMA-3.1-8b-1016

Instruct) to train the SFT baselines. The train-1017

ing data also comes from the same open source1018

datasets: MixMT 2022 shared task and ALL-CS 1019

dataset. In both datasets, each data point consists 1020

of an English source sentence and may include 1021

multiple corresponding Hinglish translations. For 1022

training purposes, we use the English sentence as 1023

the input and select the first corresponding Hinglish 1024

translation as the target label. We train 3 epochs 1025

with the learning rate of 1.0e-4, warm up ratio of 1026

0.1, and maximum input length of 1024. 1027

A.9 Training Details of the DPO Pipeline 1028

We start with LlaMA-3.1-8b-Instruct to train the 1029

DPO model. Based on the preference label ob- 1030

tained from GPT-40, we transform the whole 1031

RLAIF training set into the DPO format training 1032

set. We train 3 epochs with the learning rate of 1033

5.0e-6, warm up ratio of 0.1, β of 0.1, DPO loss 1034

function of sigmoid, and maximum input length of 1035

1024. 1036

A.10 Human Evaluation Rules 1037

We set up human evaluation rules from four aspects: 1038

(i) accuracy; (ii) naturalness; (iii) syntactic correct- 1039

ness; (iv) code-switching Correctness. Details of 1040

each aspect are below. 1041

Accuracy. It evaluates how effectively the trans- 1042

lated sentence retains the meaning and information 1043

13



Dataset Evaluator Results
En ->

Hinglish

MixMT
2022

Gemini
πdpo 29.96%
CHAI-LLM 70.04%

Human
πdpo 27.48%
CHAI-LLM 72.52%

chrF
πdpo 34.14
CHAI-LLM 42.68

chrF++
πdpo 30.84
CHAI-LLM 38.33

COMET
πdpo 0.57
CHAI-LLM 0.71

HinGE

Gemini
πdpo 26.85%
CHAI-LLM 73.15%

Human
πdpo 26.90%
CHAI-LLM 73.10%

chrF
πdpo 33.28
CHAI-LLM 43.92

chrF++
πdpo 29.82
CHAI-LLM 39.56

COMET
πdpo 0.55
CHAI-LLM 0.71

Table A5: Translation quality evaluation (based on
LlaMA-3.1-8b-Instruct): CHAI-LLM vs DPO pipeline.

of the original sentence, while ensuring the correct1044

usage of code-switched terms. For example, does1045

the translation faithfully reflect the content of the1046

original meaning? Is the key information missing,1047

altered, or repeated in translated sentences? Does1048

the translation introduce new information that is1049

not covered in the original sentences?1050

Naturalness. It assesses how natural and easy to1051

understand the translated sentence is. For example,1052

is the new translation elegant? Does the translated1053

sentence seem difficult to understand, awkward, or1054

contain unnatural phrasing?1055

Syntactic correctness. It considers grammar, syn-1056

tax, and the seamless integration of code-switching1057

in translated sentences. Are there any grammar or1058

syntax issues in translations? Does code-mixing1059

disrupt the flow of the sentence? Is it somewhat1060

smooth but not perfectly integrated? Or is it smooth1061

and seamless?1062

Code-switching Correctness. It evaluates whether1063

the given sentence is a correct instance of code-1064

switching (CS). Specifically, we define a sentence 1065

as a correct CS sentence if it meets the following 1066

constraints: (a) it is not entirely in Hindi or English, 1067

and (b) no language other than Hindi or English is 1068

used. 1069

A.11 Analysis about Translation Examples 1070

Generated by Different Baselines 1071

See Table A6 for the comparison between trans- 1072

lation generated by πsft and CHAI-LLM. See 1073

Table A7 for the comparison between πbase and 1074

CHAI-LLM. 1075

A.12 Prompts for Preference Labeling 1076

See different prompt strategies at Table A8, Ta- 1077

ble A9, Table A10, and Table A11. 1078

A.13 Prompt for LLM-based Evaluation 1079

See LLM evaluation prompt at Table A12. 1080

A.14 Recruitment Details 1081

All three human annotators are recruited from the 1082

university using convenience sampling. Each per- 1083

son was given 25 U.S. dollars per hour. 1084
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Results English -> Hinglish

Input (English) The game has no solution. Undo or start again.
Sample-3 πsft output (Hinglish) Game mai koi hal nahi. undo ya fir se shuru kare.

CHAI output (Hinglish) Game mein koi solution nahi hai. Undo karo ya phir se
start karo.

Comments πsft uses the incorrect Hindi word “hal” for “solution,”
which may not convey the computational/game-specific
meaning of “solution.” It also fails to convey the proper
command structure (“undo ya fir se shuru kare” feels
fragmented). Instead, CHAI more accurately captures the
original intent using Hinglish, keeps the imperative tone
intact, and is grammatically natural. Hence, it’s preferred.

Input (English) Failed to load remote file.
Sample-4 πsft output (Hinglish) Durg file load karne mein vifal.

CHAI output (Hinglish) Remote file load karne mein fail ho gaya hai.
Comments πsft uses “Durg” which is not a correct word, making the

translation unnatural and harder to understand in everyday
Hinglish usage. Instead, CHAI uses the correct form of
the sentence with correct grammar as well.

Table A6: Comparing the translations generated from πsft and the CHAI-powered LLM.

Results English -> Hinglish
Input (English) You can see a gleam in their eye.

Sample-1 πbase output (Hinglish) Aapko unke aankhon mein ek chhupi hui chot dikh rahi
hai.

CHAI output (Hinglish) Arre, aapko unke aankhon mein ek gleam dikh raha hai.
Comments In the CHAI output, "gleam" remains unchanged, while

the rest of the sentence is translated into Hindi. However,
in the πbase output, "gleam" is mistranslated as "chhupi
hui chot" (’hidden injury’ in Hinglish), incorrectly trans-
lating "gleam" into ’injury’, and also adding an unin-
tended descriptor ’hidden’.

Input (English) Get our egotism out of the way.
Sample-2 πbase output (Hinglish) Aapke aap mein khelna band kar dena hai.

CHAI output (Hinglish) Arre, humari egotism ko aside kar do.
Comments πbase output misinterprets ’egotism’ literally (psychologi-

cally) where the translation means "we have to stop play-
ing amongst ourselves", which is unrelated to the given
sentence. Instead, CHAI preserves the original meaning.

Table A7: Comparing the translations generated from πbase and the CHAI-powered LLM.
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Prompt_text: You are a fluent Hinglish speaker. Fluent Hinglish speakers are able to switch between Hindi and
English in the same sentence effortlessly while having a conversation.
You have an English sentence for which you’d like to choose the best Hinglish translation.
The English sentence is: {original_sent};
Translated-sentence-0 is: {first_translation};
Translated-sentence-1 is: {second_translation};

Choose a translated statement that best aligns with how a fluent Hinglish speaker talks. The format of the output
should be as follows: “My preference is:”,followed by the number 0 or 1 (which signifies the corresponding translated
sentence) based on your preference.

Table A8: Basic zero-shot prompt for preference labeling on code-mixed texts.

Prompt_text: A good code-mixed translation seamlessly blends elements of two or more languages while maintain-
ing the original meaning and context. It ensures clarity and fluency in both languages, allowing the message to be
easily understood by speakers of all involved languages.
Below we define four evaluation axes for code-mixed translation quality: accuracy, naturalness, syntactic correctness,
and Code-switching Correctness.
1.Accuracy: It evaluates how effectively the translated sentence retains the meaning and information of the original
sentence, while ensuring the correct usage of code-switched terms. For example, does the translation faithfully reflect
the content of the original meaning? Is the key information missing, alternated or repeated in translated sentences?
Does the translation introduce the new information which are not covered in original sentences?
2.Naturalness: It assesses how natural and easy to understand the translated sentence is. For example, is the new
translation elegant? Does the translated sentence seem difficult to understand, awkward, or contain unnatural
phrasing?
3.Syntactic correctness: It considers grammar, syntax, and the seamless integration of code-switching in translated
sentences. Are there any grammar or syntax issues in translation? Does code-mixing disrupt the flow of the sentence?
Is it somewhat smooth but not perfectly integrated? Or is it smooth and seamless?
4.Code-switching Correctness: It evaluates whether the given sentence is a correct instance of code-switching (CS).
Specifically, we define a sentence as a correct CS sentence if it meets the following constraints: (a) it is not entirely
in Hindi or English, and (b) no language other than Hindi or English is used.

You are a fluent Hinglish speaker. Fluent Hinglish speakers are able to switch between Hindi and English in the
same sentence effortlessly while having a conversation.
You have an English sentence for which you’d like to choose the best Hinglish translation.
The English sentence is: {original_sent};
Translated-sentence-0 is: {first_translation};
Translated-sentence-1 is: {second_translation};

Choose a translated statement that best aligns with how a fluent Hinglish speaker talks. The format of the output
should be as follows: “My preference is:”,followed by the number 0 or 1 (which signifies the corresponding translated
sentence) based on your preference.

Table A9: rule-augmented zero-shot prompt for preference labeling on code-mixed texts.
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Prompt-1 (output_rationale): You are a fluent Hinglish speaker. Fluent Hinglish speakers are able to switch
between Hindi and English in the same sentence effortlessly while having a conversation.
You have an English sentence and two of its possible Hinglish translation.
Explain the reason that which translation is better.
The format of the output should be as follows: “Rationale:”,followed by the reasons in one paragraph.

The English sentence is: {original_sent};
Translated-sentence-0 is: {first_translation};
Translated-sentence-1 is: {second_translation};
Prompt-2 (output_preference): You are a fluent Hinglish speaker. Fluent Hinglish speakers are able to switch
between Hindi and English in the same sentence effortlessly while having a conversation.
You have an English sentence, two of its possible Hinglish translation, and corresponding rationale.
Choose a translated statement that best aligns with how a fluent Hinglish speaker talks.
The format of the output should be as follows: “My preference is:”,followed by the number 0 or 1 (which signifies
the corresponding translated sentence) based on your preference.

The English sentence is: {original_sent};
Translated-sentence-0 is: {first_translation};
Translated-sentence-1 is: {second_translation};
Rationale: {rationale}

Table A10: Basic zero-shot chain-of-thought prompt for preference labeling on code-mixed texts, where we first
generate the rational based on prompt-1 and then concatenate it with prompt-2 to generate the final preference label.

Prompt: You are a fluent Hinglish speaker. Fluent Hinglish speakers are able to switch between Hindi and English
in the same sentence effortlessly while having a conversation.
You have an English sentence for which you’d like to choose the best Hinglish translation.
Choose a translated statement that best aligns with how a fluent Hinglish speaker talks.
You could only output 0 (if you prefers Translated-sentence-0) or output 1 (if you prefers Translated-sentence-1)

»»»» Example »»»»
The English sentence is: <original_sent for example-1>;
Translated-sentence-0 is: <first_translationfor example-1>;
Translated-sentence-1 is: <second_translation for example-1>;
My preference is: <label for example-1>

»»»» Follow the instructions and the example(s) above »»»»
The English sentence is: {original_sent};
Translated-sentence-0 is: {first_translation};
Translated-sentence-1 is: {second_translation};
My preference is:

Table A11: Basic 1-shot prompt for preference labeling on code-mixed texts.
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System_role: You are a translation expert in {source_language}, {target_language}, code-mixing of
{source_language} and {target_language}. I need your help in impartially judging the quality of two transla-
tions.
Prompt_text: Below we define four evaluation axes for code-mixed translation quality: accuracy, naturalness,
syntactic correctness, and Code-switching Correctness.
1.Accuracy: It evaluates how effectively the translated sentence retains the meaning and information of the original
sentence, while ensuring the correct usage of code-switched terms. For example, does the translation faithfully reflect
the content of the original meaning? Is the key information missing, alternated or repeated in translated sentences?
Does the translation introduce the new information which are not covered in original sentences?
2.Naturalness: It assesses how natural and easy to understand the translated sentence is. For example, is the new
translation elegant? Does the translated sentence seem difficult to understand, awkward, or contain unnatural
phrasing?
3.Syntactic correctness: It considers grammar, syntax, and the seamless integration of code-switching in translated
sentences. Are there any grammar or syntax issues in translation? Does code-mixing disrupt the flow of the sentence?
Is it somewhat smooth but not perfectly integrated? Or is it smooth and seamless?
4.Code-switching Correctness: It evaluates whether the given sentence is a correct instance of code-switching (CS).
Specifically, we define a sentence as a correct CS sentence if it meets the following constraints: (a) it is not entirely
in Hindi or English, and (b) no language other than Hindi or English is used.

Next, I will provide you with the original text under the <Original> tag, first translation under the <Translation_1>,
and second translation under the <Translation_2>.
Please let me know which one is better according to these criteria. Please give your judgment directly (output
"Translation_1" or "Translation_2" only) and do not output additional explanations.
<Original>
{original_sent}
</Original>

<Translation_1>
{first_translation}
</Translation_1>

<Translation_2>
{second_translation}
</Translation_2>

Table A12: Prompt for LLM-based evaluation.
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