
A Benchmark Details419

A.1 Task Setup420

Robots and Cameras. The robot is placed at the front of the scene Figure 9, with +x axis facing421

forward. The base position is determined by the positions of the support surfaces and the scene type422

category. For example, for DoubleDoorCabineet type, we place the robot [0.2, 0.5]m beneath the423

lower deck, to mimic cases when the robot needs to fetch items from the cupboard in the kitchen. The424

camera positions are also sampled based on the supports. To be specific, we use simple heuristic425

to set position and look-at position [27], to ensure that the scene objects (shelves, tables) and all426

surfaces are visible in the field of view. This prevents cases where the robot collide into objects that427

are completely out of the view. However, we should emphasize that occlusion, e.g., shelf boards,428

baskets, is still a common challenge and primary cause for failure and collision.429

Initialization. The robot is initialized with a default joint state. All objects are placed at the pose430

specified by the configuration file, which is stored after the filtering in Section 4.1.431

Evaluation. After the algorithm terminates, we wait for an extra 10s for the scene to be stabilized.432

Then, the grasping is considered successful if the following criterion are satisfied:433

1. The center of mass of the target object has a z-value > 0.3m in the robot-base frame.434

2. The center of mass of the target object has a x-value < 0.0m in the robot-base frame. (x+435

points the front of the robot)436

3. The center of mass of all other objects in the scene has a movement < 0.1m from its initializa-437

tion.438

Here, these thresholds are carefully tuned to prevent outlier scenarios.439

A.2 Procedural Scenes440

We create 13 types of procedural scenes. Figure 8 shows some examples of the scenes. For the441

EketShelf, we randomize the size of the cells and its placement on the wall. For the LargeShelf, we442

randomize the height, width, depth of the shelf, the height of each cell, the basket geometry and size,443

and the placement of the baskets on each layer of the shelf. For the TriangleShelf, we randomize444

the board, leg thickness and placement, the board contour geometry, the gap between boards and the445

IKEA Products Procedural Scenes

Figure 8: Examples of procedural scenes and their IKEA counterparts. The procedural scenes are
rendered with Infinigen [10]. The first row is the EketShelf type, the second row is the LargeShelf
type, and the last row is the TriangleShelf type.

13

Table 4: Statistics of different types of procedural scenes of the testing tasks.

Scenes # Tasks # On-Table # On-Shelf # In-Drawer # In-Basket

CellShelfDesk 10 600 265 235 0 100
Desk 6 360 360 0 0 0
DeskWall 7 420 255 165 0 0
DoubleDoorCabinet 6 360 0 353 0 7
Drawer 6 0 0 0 360 0
DrawerShelf 10 600 0 48 499 53
EketShelf 5 300 0 300 0 0
LargeShelf 10 600 0 481 0 119
LargeShelfDesk 9 540 208 266 0 66
LayerShelf 10 600 0 362 0 238
RoundTable 9 540 237 0 0 303
SingleDoorCabinetDesk 7 420 201 214 0 5
TriangleShelfDesk 5 300 0 300 0 0

Total 100 6000 1526 2724 891 859

size and height of the table-top and the position and rotation of 2 shelves. In Table 4, we show all446

types of the scenes and statistics in the 6k testing tasks.447

A.3 Task Examples448

In Figure 9, we show the examples of our evaluation task from the view of one of the camera, with449

the Franka robot in place.450

B Baseline Implementations451

B.1 Sense-Plan-Act452

For all sense-plan-act methods, i.e, CGN-CuRobo, CGN-RRTConnect, CGN-Cabinet, the CGN453

takes the point-cloud and the target-object segmentation mask as input, and outputs the candidate454

grasp poses. The pre-grasp pose is 4cm retracted along the approach direction [32] and the post-455

grasp pose is 2cm lifted from the grasp pose. These offset values are carefully tuned on held-456

out validation tasks. For CuRobo [13] and RRTConnect [42] algorithms, the scene point-cloud is457

converted to mesh with marching cube algorithm with a voxel size of 5mm. For Cabinet [9], the458

input points to the collision checker and waypoint predictor are first moved to the origin based on459

the position of the target object. For CGN-CuRobo, we use sample-surface approximation for the460

partially observed object in the retrieval phase (when it is attached to the end-effector). For CGN-461

RRTConnect, we use PyBullet and Trimesh for mesh-based collision checking.462

B.2 Imitation Learning463

For our imitation learning models, we use PointNet++ [44] as the encoder on point cloud of the464

target object, the scene and the robot separately. Furthermore, we encode the proprioceptive states465

with a MLP encoder. We concatenate all embeddings, i.e., target object point cloud embedding,466

scene point cloud embedding, robot point cloud embedding and the proprioceptive state embedding.467

Then, we project it to a fixed size as the final embedding to feed into the policy network.468

For the MLP variant, we use the embedding of current step and use a 3-layer MLP to output the delta469

joint movement. The output is parameterized as a Tanh Gaussian distribution. For the Transformer470

variant, we use the consecutive last 4 steps’ embeddings to feed into an Optimus policy head [45]471

and output a Tanh Gaussian mixture distribution for the joint movement.472

Additionally, we downsample the input point cloud with farthest point sampling and the delta joint473

commands are re-scaled to fit the Tanh distribution. For E2EImit methods, we train a approach474

14

Figure 9: Examples of grasping tasks from one of the camera view when the robot is in place. The
scenes are rendered with Isaac-Sim [8].

phase model and a retrieval phase model separately. The retrieval phase model is also used for the475

CGN-CuRobo-Imit methods. All models are trained on our demonstration dataset with Adam [46]476

optimizer. We select the best hyper-parameters by validating on held-out validation tasks.477

C Real Robot Experiment478

C.1 Experiment Setup479

We demonstrate that robot fetching from complex environment is a challenging problem in prac-480

tice. Here, we implement the CGN-RRTConnect baseline and test on a diverse set of objects and481

environments in order to compare performance between different scenes.482

Hardware and Evaluation Setup. For our hardware, we used the 7-DOF Franka Emika Research483

3 as our robot arm, and a Intel Realsense L515 LiDAR camera to capture the RGB-D images of484

15

Figure 10: Hardware setup of our real world experiment. The Franka Emika Research 3 is placed
in front of the scene and we use Realsense L515 pointing towards the scene to capture RGB-D
information.

the scene [1]. In order to evaluate on a diverse set of environments, we performed experiments on485

a tabletop, two distinct shelves and various baskets. Figure 10 shows our hardware setup and the486

example scenes are shown in Figure 7.487

We tested on a diverse set of objects in our experiment. Figure 11 shows examples of the objects488

used in our experiments.

Figure 11: Examples of objects used in our real world experiments.

489

Algorithm. With our real-world robot, the CGN-RRTConnect baseline is implemented as follows.490

1. Capture the RGB-D image of the scene and get the target object segmentation mask by prompt-491

ing Seg-Any.492

2. Use the point-cloud and the mask to query CGN for candidate grasp poses on the target object.493

3. Use MoveIt! [12] to search for motion to the pre-grasp poses based on the confidence scores.494

4. Move from pre-grasp pose to grasp pose with linear motion from pilz’s LIN planner [12].495

16

5. Crop out the object from the point-cloud, add a placeholder to the robot, and plan the motion496

to the initial pose.497

C.2 Experiment Results498

Table 5 shows the detailed results of our real-world experiment. Comparing between table-top499

and shelf cases, we see the % success significantly decreases in shelf scenes due to the increased500

difficulty of the environment. In addition, we also show that grabbing objects from baskets within501

each respective scene also results in lower % success due to physical constraints.502

Success # Attempts % Success

TableTop 20 52 38.5 %
TableTop-Basket 3 16 18.8 %
Shelf 11 83 13.3 %
Shelf-Basket 1 16 6.25%

Total 35 167 21.0 %

Table 5: Results of real-world fetching experiment by environment types.

Failure Analysis. To further understand the behavior of the CGN-RRTConnect baseline, we broke503

down each unsuccessful attempt into four categories of failure:504

1. No Grasp Poses (NGP), where CGN failed to find any grasps.505

2. Motion Planning Failure (MPF), where CGN returned grasps, but RRT-Connect found no valid506

trajectories.507

3. Invalid Grasp Pose (INV), where the robot attempts to grab the object, but the grasp is unstable.508

4. Collision Failure (CF), where the robot or target object collides/disrupts the environment.509

% Success % NGP % MPF % INV % CF

TableTop 38.5 13.5 0 36.5 11.5
TableTop-Basket 18.8 31.3 18.8 25.0 6.25
Shelf 13.3 15.7 31.3 12.1 27.7
Shelf-Basket 6.25 37.5 43.8 6.3 6.3

Total 21.0 18.6 21.6 20.4 18.6

Table 6: Results of different failure types in each type of environment.

Table 6 shows the failure types of all attempts in each environment category. Comparing table top510

scenes to shelf scenes, shelves have a much higher failure rate due to a higher number of motion511

planning and collisions. This is attributed to the difficulty of motion planning within a shelf scene.512

In addition, basket scenes had a higher rate of NGP failure compared to their normal counterparts, as513

the baskets produce occlusions that limit the pointcloud input into CGN. We also found that many of514

the perspectives in shelf and basket scenes caused CGN to output very few + low confidence grasp515

propositions, leading us to believe that CGN is sensitive to perspective and produces better results516

on table top scenes.517

Limitations. Due to limited resources, we can only evaluate on a smaller number of fetching cases,518

comparing to the simulation benchmark.519

D Video Demos520

In the appendix, we show the examples of success and failure cases of the baselines, both in sim-521

ulation benchmark and real-world experiments. Additionally, we show the examples of the issues522

mentioned in the ablation analysis (Section 6.2).523

17

E Additional Related Works524

Grasp Pose Prediction. Predicting grasp poses for various novel objects has been an important525

long-standing research challenge in robotics [47]. It becomes more challenging to predict accurate526

and diverse grasp poses from noisy and partially observed sensory readings like depth maps and par-527

tial point clouds [1, 5]. Recently, learning-based grasp pose synthesis has become a crucial solution528

paradigm to this problem [32], owing to the power of neural networks to handle high-dimensional529

inputs and flexibility to various objects with different geometries and physical properties. To train530

the neural network, methods create and utilize large-scale object grasp pose datasets [40, 2, 48]. The531

valid grasp poses of each object are labeled with analytic metrics [3, 5, 2], or with physics simulation532

[34, 1]. Notably, researchers have applied the grasp pose prediction models to build robust grasping533

systems that can clear various unknown objects from cluttered bins [5] and table-tops [1].534

Grasp pose prediction models play a crucial role in the baselines we tested. We use the Contact-535

GraspNet [1] to predict 6D grasp poses from partial point clouds to command the motion generation536

module. However, as we will show in Section 6.2, the model is not powerful enough to solve537

the benchmark. Furthermore, having an accurate grasp pose is not the only bottleneck challenge to538

grasping objects from more challenging cluttered environments, e.g., shelves, cabinets, and drawers,539

that are crucial for applications like service robots [7].540

Motion Generation for Robot Arm. To generate collision-free trajectories is one of the fundamen-541

tal problems for robot arm control. Given the obstacles of the environment, sampling-based motion542

planning algorithms like RRT [49] and its variants [42] are the common choice to command the arm543

to the target pose [12]. Meanwhile, optimization-based motion generation methods [13] have been544

proposed as an alternative to the classical approach. CuRobo [13] has much higher efficiency than545

the sampling-based motion planning algorithms, as it can be computed in parallel on GPUs. How-546

ever, these methods assume a known environment and obstacles. They do not account for the partial547

observation problem, which is a common challenge for in-the-wild applications like home robots.548

To overcome this issue, [9, 50] propose to learn a neural collision checker for partially observed549

scenes and movable objects. After training on large-scale synthetic data, these models have shown550

promising results in tackling the partial observation problem in robot object rearrangement tasks.551

However, in Section 6.2, we find that the partial observation problem still remains a challenge to552

existing motion generation methods in grasping. This suggests huge space for improvement in the553

motion generation methods to tackle real-world challenges.554

Imitation Learning. Imitation learning [51, 52, 45] has become a promising approach to learning555

large-scale behavior models [35, 36] for robots. However, despite great effort from the community,556

researchers still lack enough data to train powerful large behavior models. Moreover, a majority557

of the expert data [35, 53, 54, 55] are collected on table-top environments and lack diversity in558

scene variation. With our procedural scenes and tasks, our simulation benchmark can generate a559

large quantity of diverse grasping demonstrations in various environments. Thus, our benchmark560

also serves as a platform for imitation learning research of large behavior models on grasping. We561

provide a procedural demonstration synthetic data generator for diverse and abundant expert demos.562

Furthermore, in Section 6.1, we find that combining imitation learning and the common grasping563

pipeline achieves SOTA performance on our benchmark, which suggests a promising direction for564

new grasping systems.565

18

