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A TRAINING DETAILS

Experiments on Control Suite and Matrix Game tasks were conducted on a single NVIDIA V100
GPU with 4 CPU cores (state-based) or 20 CPU cores (pixel-based). Experiments in MetaWorld and
Isaac Gym were conducted on a single NVIDIA 2080Ti with 4 CPU cores. Benchmark performance
of DecQN is reported in terms of the mean and one standard deviation around the mean on 10 seeds.
We implemented DecQN within the Acme framework (Hoffman et al., 2020) in TensorFlow. For
the Mini Cheetah (Katz et al., 2019) task we implement a version of DecQN in PyTorch.

Hyperparameters We provide hyperparameter values of DecQN used for benchmarking in Ta-
ble 2] A constant set of hyperparameters is used throughout all experiments, with modifications
to the network architecture for vision-based tasks. For the matrix games, we further set the n-step
parameter to 1 to account for the underlying timescale and direct impact that actions have on both
the state transition and reward. Results for DQN were obtained with the same parameters without
decoupling. The baseline algorithms used the default parameter settings provided in the official
implementations by the original authors, within the Acme library in the case of D4PG and DMPO.

Table 2: DecQN hyperparameters for state- and pixel-based control.

Parameter Value [State]  Value [Pixel]
Optimizer Adam Adam
Learning rate 1x 1074 1x1074
Replay size 1 x 10° 1 x 10°
n-step returns 3 3
Action repeat 1 1
Discount vy 0.99 0.99
Batch size 256 256
Hidden size 500 1024
Bottleneck size — 100
Gradient clipping 40 40
Target update period 100 100
Imp. sampling exponent 0.2 0.2
Priority exponent 0.6 0.6
Exploration € 0.1 0.1

Architecture For the state-based experiments, we leverage a fully-connected architecture that in-
cludes a single residual block followed by a layer norm. For the vision-based experiments, we
leverage the convolutional encoder with bottleneck layer from Yarats et al. (2021) followed by two
fully-connected layers. In both cases, a fully-connected output layer predicts the decoupled state-
action values so that the torso up to the final layer remains shared among the decoupled critics.

Action discretization The continuous action space is discretized along each action dimension into
evenly spaced discrete actions including the boundary values. Assuming symmetric action bounds,
for axis ¢ this yields bang-bang control in the case of 2 bins with A, _, ; = {—@bound,i, +bound,i }
and bang-off-bang control in the case of 3 bins with A, . ; = {—@bound,i, 0, +@bound,; }» and so on.

Decoupling The decoupling based on value decomposition (Sunehag et al., 2017) only requires
small modifications of the original DQN structure (see also Sharma et al. (2017)). The output layer
size is adapted to predict all state-action utilities for action dimensions n, and discrete bins 7
to yield output size [...,n,np), where [...] indicates the batch dimensions. This is reshaped into
[..., na, np], where the combined state-action value is computed either by indexing with the observed
bin at the current state or maximizing over bins at the next state, followed by a mean over action
dimensions to recover state-action values.

Licenses The Acme library is distributed under the Apache-2.0 license and available on |GitHub.
The D4PG and DMPO agents are part of the Acme library, while both DecQN and DQN for con-
tinuous control were implemented within the Acme framework. Both Dreamer-v2 and DrQ-v2 are
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Figure 9: State distribution and action-values for DecQN on the two-step game from Section 5.1. We
consider 3 training stages pre-convergence across b seeds. Color indicates cumulative state-action
occurrence, numbers represent predicted mean action values. While the decoupled agent struggles
to represent action values under a uniform distribution (¢ = 1.0, bottom), it accurately represents
values under the current policy when directly influencing the state distribution (¢ = 0.5, top).

distributed under the MIT license and are available with their benchmarking results on GitHub here
and here, respectively.

B STATE-ACTION DISTRIBUTION: TWO-STEP GAME

Expanding on the discussion of the two-step matrix game in Section 5.1 we provide state-action
distribution data for the DecQN agent in Figure[9] We evaluate three stages of early training before
convergence for 5 seeds. Color of state-action pairings indicates cumulative frequency within replay
memory, while numbers represent mean predicted state-action values. We consider different degrees
of randomness in the policy by varying the ¢ parameter. It can be noted that the agent fails to
accurately represent the optimal state-action value in state 3 when learning based on a uniform state-
action distribution (bottom row). However, enabling the agent to directly influence the underlying
distribution through its policy results in accurate learning of state-action values around this policy
(top and middle rows). While the decoupled agent may not be able to accurately reflect the full
state-action value function, it can be sufficient to do so over a subspace relevant for solving the task.

C ENVIRONMENTS

A brief overview of the environments evaluated throughout this paper is provide in Table[3] grouped
based on their distributors. In particular, we highlight the dimensionality of the state space S and
action space A as well as the total number of timesteps used for training on each environment. For
the Mini Cheetah task, we note that the number of steps - marked with an * - denotes the approximate
number of steps per environment, where we use 1024 parallel environments within Isaac Gym.

D ADDITIONAL BASELINES

We provide additional baselines on a selection of Control Suite environments in Figure [T0] The
baselines consist of a continuous-control algorithm with Categorical head based on MPO from Seyde
et al. (2021), the continuous-control SAC agent from Yarats & Kostrikov (2020), as well as the
critic-only methods QT-Opt and AQL-Seq based on data from Van de Wiele et al. (2020). DecQN is
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Table 3: Description of benchmark environments used throughout the paper.

Suite Task dim(S) dim(A) Steps [State] Steps [Pixel]
Control Suite  Ball in Cup Catch 8 2 — 1 x 10°
Cartpole Swingup 4 1 1 x 108 1 x 108
Cartpole Swingup Sparse 4 1 2 x 108 1 x 108
Cheetah Run 18 6 3 x 106 1 x 108
Dog Run 158 38 5 x 106 —
Dog Trot 158 38 5 x 10° —
Dog Walk 158 38 5 x 106 —
Finger Spin 6 2 2 x 106 1 x 108
Finger Turn Hard 6 2 2 x 10° 1 x 108
Humanoid Run 54 21 30 x 10° —
Humanoid Stand 54 21 10 x 108 —
Humanoid Walk 54 21 20 x 10° 30 x 106
Quadruped Run 56 12 5 x 109 10 x 106
Reacher Hard 4 2 2 x 10° 1 x 10°
Walker Run 18 6 3% 10° —
Walker Walk 18 6 1 x 108 1 x 108
Isaac Gym Mini Cheetah Tracking 48 12 3 x 105* —
Matrix Games Two Step 3 4 6 x 10* —
Penalty 4 9 2 x 10° —
Climbing 4 9 2 x 10° —
Meta World Assembly 39 4 2 x 106 —
Door Open 39 4 2 x 106 —
Drawer Open 39 4 2 x 108 —
Hammer 39 4 2 x 109 —
Pick Place 39 4 2 x 10° —
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Figure 10: Comparison of DecQN to MPO with Categorical policy head, continuous SAC, as well
as critic-only QT-Opt and AQL-Seq. DecQN displays state-of-the-art performance without relying
on actor-critic methods or continuous control, while remaining sample-efficient in high-dimensional
action spaces by avoiding sampling-based methods.
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Figure 11: Ablations of the DecQN agent on multi-step returns, double Q-learning, and prioritized
experience replay (top to bottom). The agent is robust to changes in individual components while
profiting from PER to select useful interactions on complex multi-phase tasks such as the Humanoid.

competitive with discretized MPO, further underlining that actor-critic methods are not required to
obtain strong benchmark performance. The additional SAC baseline shows improved performance
on Humanoid at the cost of being unable to learn on the Dog task, mirroring results of Hansen et al.
(2022). Generally, we believe that most current state-of-the-art continuous control algorithms are
capable of achieving comparable benchmark performance. However, these results do not appear to
be conditional on using continuous control or actor-critic methods, and can be achieved with much
simpler Q-learning over discretized bang-bang action spaces with constant e-greedy exploration.
We further provide converged performance of QT-Opt and AQL-Seq. While these methods remain
competitive on low-dimensional tasks, their performance quickly deteriorates for high-dimensional
action spaces due to their reliance on sampling this space.

E ABLATIONS ON RAINBOW COMPONENTS

We provide ablations on three components of the underlying Rainbow agent, namely multi-step re-
turns, double Q-learning, and prioritized experience replay in Figure [TT|(rows, respectively). Learn-
ing is generally robust to removal of individual components in light of cumulative reward at con-
vergence, improving learning speed primarily on the more complex tasks. In particular, double
Q-learning and PER provide a boost on the Humanoid task to enable state-of-the-art performance.
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Figure 12: Comparison of DecQN with the original and BDQ loss for 3 (top) and 21 bins (bottom).
Aggregating per-dimension utilities transforms independent into joint learners, yielding significant
improvements in final performance and learning stability particularly for high-dimensional tasks.
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Figure 13: Comparison of DecQN and BDQ for 3 (top) and 21 bins (bottom). DecQN provides sig-
nificant advantage on the more complex domains, underlining the importance of design choices such
as strong architectural centralization and value decomposition via single-action utility functions.

F DiscussioN oF BDQ AND HGQN

In the following, we provide a more detailed discussion of the relation to Branching Dueling Q-
Networks (BDQ) Tavakoli et al. (2018) as well as Hypergraph Q-Networks (HGQN) Tavakoli et al.
(2021) together with associated ablations. Generally, our motivation is to highlight that minimal
changes to the original DQN agent enable state-of-the-art performance on continuous control bench-
marks solely based on bang-bang Q-learning with constant exploration.

The BDQ agent from Tavakoli et al. (2018) considers independent learning of per-dimension state
action values, employing a dueling architecture with separate branches for each action dimension
and exploration based on a Gaussian with scheduled noise in combination with fine-grained dis-
cretizations. DecQN forces a higher degree of centralization by predicting per-dimension state-
action utilities without intermediate branching or dueling heads for joint learning within a value
decomposition, while using constant e-greedy exploration with a focus on only coarse bang-bang
control. The most important difference is independent learning in comparison to joint learning
based on value decomposition. We provide an ablation of our approach that does not aggregate per-
action dimension values and thereby mimics BDQ’s independent learning in Figure T2} Particularly
for high-dimensional tasks learning a value decomposition can significantly improve performance,
an effect that is amplified when selecting more fine-grained discretizations. We furthermore eval-
uated the original BDQ agent after modifying the default parameters (i.e. batch size, target update
frequency, learning frequency, gradient clipping, exploration strategy, multi-step returns). The re-
sults provided in Figure [T3] were obtained based on the best configuration we found by increasing
the batch size and treating each episode as infinite-horizon. While we believe that the results in
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Figure 14: Comparison of DecQN with original and HGQN aggregation. Aggregating via the mean
induces a more favorable scaling of the reward in the TD-error, which we found to enable graceful
scaling to complex task with high-dimensional action spaces to achieve state-of-the-art performance.

Figure offer a more informative comparison, we observe a similar trend regarding scaling to
high-dimensional tasks in both cases.

The hypergraph Q-networks (HGQN) framework from Tavakoli et al. (2021) considers value decom-
position across subsets of action dimensions and introduces higher-order hyperedges between action
groupings. DecQN can therefore be interpreted as an instance of the conceptual HGQN (r=1) for-
mulation that leverages single-action decomposition without higher-order edges as had previously
been investigated with the Atari-based FARAQL agent (Sharma et al., 2017). Our primary focus
is on simplicity and showing how far we can push basic concepts that constitute capable alterna-
tives to more sophisticated recent algorithms. There are further several differences in per-dimension
utility aggregation, architectural choices regarding the use of branching, loss function, exploration
scheduling, as well as in the usage of PER and double Q-learning for continuous control. We pro-
vide a brief ablation on using the mean compared to sum aggregation when computing Bellman
targets in Figure While this appears as a subtle difference, we found that leveraging the mean
yields graceful scaling to complex tasks with high-dimensional action spaces without any parameter
adjustments. This enables state-of-the-art performance across a wide range of environments and
input-output modalities with a single set of hyper-parameters.

Generally, our motivation is not to advocate for a novel algorithm that should be the go-to method for
solving continuous control problems. Our core objective is to highlight that current state-of-the-art
continuous control benchmark performance is at the level of decoupled Q-learning over bang-bang
parameterized action spaces with constant exploration. This requires only minor if well-directed
modification to the original DQN algorithm and yields strong performance for both feature- and
pixel-based observation spaces as well as acceleration-, velocity-, and position-based action spaces.
Our investigation provides additional motivation for existing work while establishing closer connec-
tions to classical MARL coordination challenges, as well as extensive experimental evaluation in
comparison to current state-of-the-art algorithms.

G RAINBOW DQN AGENT

We leverage several modifications of vanilla DQN that accelerate learning and improve stability
based on the Rainbow implementation provided by Acme (Hessel et al., 2018; Hoffman et al., 2020):

Target Network Bootstrapping directly from the learned value function can lead to instabilities.
Instead, evaluating actions based on a target network Qg (s¢, a;) improves learning (Mnih et al.,
2015). The target network’s weights 6~ are updated periodically to match the online weights 6.

Double Q-learning Direct maximization based on the value target can yield overestimation error.
Decoupling action selection from action evaluation improves stability (Van Hasselt et al., 2016).
Action selection then queries the online network, while action evaluation queries the target network.
Our implementation further leverages two sets of critics, where we bootstrap based on their average
during learning and take their maximum during action selection.

Prioritized Experience Replay Uniform sampling from replay memory limits learning efficiency.
Biasing sampling towards more informative transitions can accelerate learning (Schaul et al., 2015).
The observed temporal difference error can serve as a proxy for expected future information content.
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Figure 15: Comparison of DecQN, DecQN with a distributional C51 critic, and the distributional
IQN agent. The distributional version of DecQN generally yields slightly improved performance at
convergence, while decoupling improves performance over the non-decoupled IQN baseline.
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Figure 16: Comparison of DQN, DQN with a distributional C51 critic, and the distributional IQN
agent. Without decoupling, we do not observe benefits of distributional critics in these domains.
Slower convergence on Walker Walk with distributional representations could indicate that the as-
sociated increased parameter count translates to a more difficult optimization problem.

Multi-step Returns Instead of directly bootstrapping from the value function at the next state,
evaluating the reward explicitly over several transitions as part of a multi-step return, such that
Giisn =R+ +9" 'Rt 1 +7"Viin(Si1rn) can improve learning (Sutton & Barto, 2018).

H CONTROL-AFFINE DYNAMICS AND LINEAR REWARDS

Under deterministic environment dynamics and policy we can simplify the Bellman equation as
Q7 (se,a¢) = 7(se, ae) + 7V (5141).- )

Consider a reward structure that is linear in the action dimensions with r(s¢, a;) = ijvio i (s¢,al).
Under given transition tuples and fixed target values, the TD(0) objective can then be formulated as

M

QW(Shat) = Z (rj(stva{) + %Vw(st-‘rl)) ) (6)

Jj=0

which can be solved exactly based on a linear value decomposition Q(s;, a;) = Zﬁo Q,(s¢,af).
Particularly for robotics applications, many common reward structures depend (approximately)
linearly on the next state observation while the system dynamics are control-affine such that
si+1 = f(se) + g(s¢)ar, with f(s;) and g(s;) only depending on the current state s,. While these
are strong assumptions, it may provide intuition for why the problem structures considered here may
be amenable to decoupled local optimization and for the observed highly competitive performance.

I DISTRIBUTIONAL CRITICS

We briefly investigate replacing our deterministic critic with a distributional C51 head (Bellemare
et al., 2017) The decomposition now proceeds at the probability level via logits I = Z;‘il lj/M
during the C51 distribution matching. We do not make any parameter adjustments and compare
performance with and without a distributional critic for both DecQN and DQN in Figures[T3|and[T6]
respectively, and provide the IQN agent as an extension of the QR-DQN agent for reference (Dabney
et al., 2018a;b). Our empirical evaluation suggests that a distributional critic can slightly increase
performance at convergence and sample-efficiency. Both DecQN and DecQN + C51 yield similar
performance on average with some environment specific variations. Without decoupling, DQN
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Figure 17: Comparison of the distributional versions of DecQN, DQN, and IQN. Decoupling of the
value representation in conjunction with bang-bang action representations plays a key role in scaling
these approaches to high-dimensional continuous control tasks.
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Figure 18: DecQN + C51 on tasks where regular DecQN did not perform at least as good as the best
baseline. Adding a distributional critic can further boost performance, underlining the strength and
versatility of this very simple approach (vertical line = current training status due to time constraints).

yields slightly faster convergence than DQN + C51 on Walker Walk which could indicate that the
increased parameter count of distributional critics translates to a more challenging optimization
problem (see also the immediate memory error of non-decoupled distributional agents on Quadruped
Run in Figure[T6]) Both DecQN and DQN with or without distributional critic improve performance
over the IQN baseline. We further provide performance of only the distributional agents in Figure[I7]
for ease of comparison. It is likely that given sufficient tuning the performance of our distributional
variations could be increased even further, while we note that the deterministic DecQN agent already
matches performance of the distributional D4PG and DMPO actor-critic agents. A more extensive
investigation into decoupled distributional Q-learning provides promising avenues for future work.

We note that without any parameter adjustments or tuning, replacing the deterministic critic with
the distributional C51 critic in DecQN significantly boosts performance on the few environments
where DecQN did not perform at least as good as the best baseline. This applies to large bin sizes,
feature inputs and pixel inputs as exemplified in Figure [T8] (vertical line in Humanoid Walk from
pixels denotes current training status, subject to time constraints). These results further underline
the versatility and strength of this very simple approach.

J STOCHASTIC ENVIRONMENTS

We extend our study to stochastic versions of a selection of Control Suite tasks. The results in
Section 5.1 indicate that coordination among decoupled actors becomes more difficult if the action
selection of other actors is less stationary from the perspective of each individual actor. To increase
stochasticity, we consider both observation and reward noise represented by additive Gaussian white
noise with standard deviation i = 0.1. Figures@and@provide results for DecQN, D4PG, and
the distributional DecQN + C51 under observation and reward noise, respectively. While we observe
similar performance of DecQN and D4PG on most tasks, performance of DecQN is visibly reduced
on Humanoid Walk. Humanoid Walk combines several aspects that can hinder exploration, includ-
ing implicit staged reward (first get up, then walk) and action penalties, which likely exacerbate
coordination challenges when combined with stochasticity. We therefore believe that special care
should be taken when applying regular DecQN in environments that have the potential to amplify
the coordination challenges observed in the simple matrix game domains of Section 5.1. Adding
a distributional critic to DecQN allows for better modelling of stochasticity and visibly improves
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Figure 19: Stochastic observation tasks adding Gaussian white noise to the observations (oypise =
0.1). DecQN appears less robust to observation noise than D4PG, mirroring the findings regarding
coordination challenges under high stochasticity in matrix games of Section 5.1. Adding a distribu-
tional critic improves performance and yields faster convergence than D4PG on Quadruped Run.
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Figure 20: Stochastic reward tasks adding Gaussian white noise to the rewards (opoise = 0.1).
DecQN is less robust to reward noise than the distributional D4PG, mirroring the findings regarding
coordination challenges under high stochasticity in matrix games of Section 5.1. With a distribu-
tional critic, DecQN can directly account for stochastic returns and matches or outperforms D4PG.

performance in stochastic environments, where DecQN + C51 even improves on the distributional
D4PG agent in some environments.
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