
Appendix

Organization In Appendix, we provide detailed descriptions of the materials that are not fully covered in
the main paper, and provide additional experimental results, which are organized as follows:

• Section A - We describe the implementation details of our model-zoo construction, query and model
encoders, and meta-surrogate performance predictor.

• Section B - We provide the details of the model training, such as the learning rate and hyper-parameters,
of meta-train/test and constructing model-zoo.

• Section C - We provide the proof of injectiveness with the proposed query and model encoding
functions over the cross-modal latent space.

• Section D - We elaborate on the detailed experimental setups, such as architecture space, baselines,
and datasets, corresponding to the experiments introduced in the main document.

• Section E - We provide additional analysis of the experiments introduced in the main document and
present the experiment with different model-zoo settings.

• Section F - We discuss the societal impact and the limitation of our work.

A Implementation Details

A.1 Efficient Model Zoo Construction

Algorithm 1: Model Zoo Construction
Input : D,M: collection of datasets and models, respectively,

Z(0) ⇢ D ⇥M⇥ R[0,1]: set of Ninit initial tuples of (dataset, model, test accuracy)
t 0;
while termination condition is not met do

if t is divisible by Ntrain then
Train accuracy predictor parameters zoo on data Z(t);

C(t) Choose a subset of candidate pairs from D ⇥M not present in Z(t);
(D,M) max(D,M)2C(t)

fzoo(C;Z(t));
↵⇤ Evaluate the actual accuracy of (D,M) by training M on D;
Z(t+1) Z(t) [(D,M,↵⇤

);
t t+ 1;

Output :Efficiently constructed model zoo Z(t).

The algorithm that is used to efficiently construct the model-zoo is described in Algorithm 1. The score function
fzoo(D,M ;Z), which measures how much adding a pair (D,M) will improve upon the model zoo Z , is
defined as

fzoo(D,M ;Z) := Eŝacc⇠S((D,M); zoo)[gD(Z [(D,M, ŝacc))� gD(Z)] (8)

where S indicates the accuracy predictor, and gD is the normalized volume under the pareto-dominated pairs for
dataset D:

gD
⇣n

(D(i),M (i), s(i)acc)

on

i=1

⌘
(9)

:= Hypervolume

⇣n⇣
s(i)acc, s̃latency(M

(i)
), s̃parameters(M

(i)
)

⌘ ���D(i)
= D

o⌘
(10)

where s̃latency(M) and s̃parameters(M) indicates the normalized latency and the normalized number of
parameters of the model M , respectively. The latency and parameters are normalized so that the maximum
value across all models becomes 1.0 and the minimum value becomes 0.0. The hypervolume can be computed
efficiently with the PyGMO library [5].

The accuracy predictor used in the model-zoo construction is very similar to the structure of the performance
predictor described in Section A.4, but we used a functional embedding obtained from the model pretrained on
Imagenet-1K, instead of a functional embedding obtained from a model already trained on the target dataset,
since training the model on the target dataset just to obtain the functional embedding would defeat the purpose
of this algorithm. Also, to incorporate uncertainty about the accuracy predictions, we use 10 samples from the
accuracy predictor with MC dropout to evaluate the expectation in (8). The dropout probability is set to 0.5.

A.2 Query Encoder

Our query encoder takes sampled instances (e.g. 10 unseen random images per class) as an input from the query
dataset. We use image embeddings from ResNet18 [23] pretrained on ImageNet 1K [13], whose dimensions

16

are 512 (except for the last classification layer), rather than using raw images, simply to reduce computation
costs. We then use a linear layer with 512 dimensions, followed by Mean pooling and L2 normalization, which
outputs encoded vectors with 128 dimensions. As we use Deep set [69], we tried performing Sum pooling,
instead of Mean pooling, however, we observe that taking the average on instances shows better R@k scores
for the correct pair retrieval, and thus we use Mean pooling when encoding query samples.

A.3 Model Encoder

Our model encoder takes both OFA flat topology [8] and functional embedding as an input. For the flat topology,
it contains information such as kernel size, width expansion ratio, and depth, in a 45-dimensional vector. In
addition, the functional embedding, which bypasses the need for direct parameter encoding, represents models’
learned knowledge in a 1536-dimensional vector. We first concatenate both vectors and normalize the vector.
Then, we learn a projection layer, which is a 1581-length fully-connected layer, followed by L2 norm operation,
which outputs encoded vectors with 128 dimensions.

A.4 Meta-Surrogate Performance Predictor

Our performance predictor takes both query and model embeddings simultaneously. Both embedding vectors are
128-dimensional vectors. We first concatenate the embeddings into 256-dimensional vectors and then forward
them through a 256-length fully connected layer. We then produce a single continuous value for a predicted
accuracy. We perform a sigmoid operation on the values to range the values into a scale from 0.0 to 1.0.

B Training Details

There are two steps of training required for our Task-Adaptive Network Search (TANS): 1) training the cross-
modal latent space and 2) fine-tuning the retrieved model on an unseen meta-test dataset.

B.1 Learning the Cross-modal Latent Space

For the model-zoo encoding, we set the batch size to 140 as we have 140 different datasets. Since, for each
dataset, we randomly choose one model among 100 models from each dataset. Then we minimize the contrastive
loss on the 140 samples. Although we train our encoders over a large number of dataset-network pairs (14,000
models), the entire training time takes less than two hours based on NVIDIA’s RTX 2080 TI GPU. We initialize
our model weights with the same value across all encoders and experiments, rather than differently initializing
the encoders for every experimental trial. We use the Adam optimizer (We use the learning rate of 1e-2).

B.2 Fine-tuning on Meta-test Datasets

For the fine-tuning phase, we set all settings, such as hyper-parameters, learning rate, optimizer, etc., exactly
the same across all baseline models and our method, and the differences are clearly mentioned in this section
otherwise. We use the SGD optimizer with an initial learning rate (1e-2), weight decay (4e-5), and momentum
(0.9). Also, we use the Cosine Annealing learning rate scheduler. We train the models with 224 sized images
(after resizing) and we set batch-size to 32, except PC-DARTS which has memory issues with 224 sized images
(for PC-DARTS, we set to 12 as the batch-size), and DrNAS which we train with 32 sized images due to heavy

training time costs. We train all models for 50 epochs and we show that our model converges faster than all
baseline models.

B.3 Constructing the Model-Zoo

For the model-zoo consisting of 14,000 random pairs used in the main experiment, we fine-tune the ImageNet1K
pretrained OFA models on the dataset for 625 epochs, following the progressive shrinking method described in
[8]. We then choose 100 random OFA architectures for each dataset and evaluate their test accuracies on the test
split.

For the efficiently constructed model zoo experiment, we use the algorithm described in Section 3.3 and further
elaborated in Section A.1, using the 14,000-pair model zoo as the search space. For the initial samples, we use
Ninit = 750, where 5-6 samples are taken from each dataset. The accuracy predictor is retrained from scratch
every 64 iterations until the validation accuracy no longer improves for 5 epochs.

C Proof for Uniqueness of the Query and Model Encoding Functions

In this section, we show that the proposed query and model encoders can represent the injective function on the
input query D 2 Q and model M 2M, respectively.

17

Proposition 1 (Injectiveness on Query Encoding). Assume Q and D are finite sets. A query encoder EQ :

Q! Rd
can injectively map two different queries D1, D2 into distinct embeddings q1, q2, where D 2 Q and

q 2 Rd
.

Proof. A query encoder EQ maps a query dataset D 2 Q to a vector q 2 Rd as follows: EQ : D 7! q, where
Q is a set of queries, which contains a set of data instances X for constructing a dataset D = {X1, X2, ..., Xn}.
Then, our goal here is to make a query encoder that uniquely maps two different queries D1, D2 into two distinct
embeddings q1, q2.

Each dataset D consists of n data instances: D = {X1, X2, ..., Xn}, where n is smaller than the number of
elements in N. To encode each query dataset D into a vector space, as described in query encoder paragraph of
section 3.2, we first transform each instance Xi into the representation space with a continuous function ⇢, and
then aggregate all set elements, which is adopted from Zaheer et al. [69]. In other words, a query encoder can be
defined as follows: q =

P
Xi2D ⇢(Xi).

We assume that Q is a finite set, and each D = {X1, X2, ..., Xn} 2 Q is also a finite set with |D| = n elements.
Therefore, a set of data instances X is countable, since the product of two nature numbers (i.e. |Q|⇥ n) is a
natural number. For this reason, there can be a unique mapping Z from the element X to the nature number in
N. If we let ⇢(X) = 4

�Z(X), then the form of a query encoder
P

Xi2D ⇢(Xi) constitutes an unique mapping
for every set D 2 Q (see Zaheer et al. [69], Wagstaff et al. [57] for details). In other words, the output of the
query encoder is unique for each input dataset D that consists of n data instances.

Thanks to the universal approximation theorem [25, 24], we can construct a mapping function ⇢ using multi-layer
perceptrons (MLPs).

Proposition 2 (Injectiveness on Model Encoding). Assume M is a countable set. A model encoder EM :

M ! Rd
can injectively map two different architectures M1,M2 into distinct embeddings m1,m2, where

M 2M and m 2 Rd.

Proof. As described in the model encoder paragraph of Section 3.2, we represent each neural network M 2M
with both topological embedding vt and functional embedding vf . Thus, if one of two embeddings can uniquely
represent each neural network, then the injectiveness on model encoding EM : M! Rd is satisfied.

We first show that the topological encoding function EMT : M 7! vt can uniquely represent each architecture
M in the embedding space. As described in the Model Encoder part of section A, we use a 45-dimensional
vector that contains topological information, such as the number of layers, channel expansion ratios, and kernel
sizes (See Cai et al. [8] for details), for the topological encoding. Also, each topological information uniquely
defines each neural architecture. Therefore, the embedding vt from the topological encoding function EMT is
unique on each neural network M .

While we can obtain the distinct embedding of each neural network with the topological encoding function
alone, we also consider the injectiveness of the functional encoding in the following. To consider the functional
embedding, we first model a neural architecture as its computational graph, which can be further denoted as a
directed acyclic graph (DAG). Using this computational graph scheme, a functional model encoder EMF maps
an architecture (computational graph) M 2M into a vector vf as follows: EMF : M 7! vf . Then, our goal
here is to make the functional encoder EMF that uniquely maps two different neural architectures M1,M2 into
two different embeddings vf 1,vf 2, with the computational graph represented as the DAG structure.

Assume that a computational graph for a neural network M has n nodes. Then, each node vi on the graph has
its corresponding operation oi, which transforms incoming features for the node vi to an output representation
Ci. In other words, Ci indicates the output of the composition of all operations along the path from v1 to vi.

Particularly, in our model encoder case, we have an arbitrary input signal x that is the fixed Gaussian noise,
where we insert this fixed input into the starting node v1 (See Model Encoder paragraph of section 3.2 for details).
Also, for the simplicity of the notation, we set C0 = x that is the output of the virtual node v0 and the incoming
representation of the starting node of the computational graph. Then, the output representation for the node vi is
formally defined as follows: Ci(x) = oi({Cj(x) : vj ! vi}), where {Cj(x) : vj ! vi} denotes a multiset
for the output representation of vi’s predecessors, and the operation oi transforms the incoming representations
over the multiset into the output representation. Note that, to consider the multiplicity of the nodes on a graph,
we use a multiset scheme, rather than a set [64].

Following the proof of Theorem 2 in Zhang et al. [72], we rewrite the Ci(x) = oi({Cj(x) : vj ! vi})
as follows: Ci(x) = !(oi, {Cj(x) : vj ! vi}), where ! is an injective function over two inputs oi and
{Cj(x) : vj ! vi}. Then, Ci can uniquely embed the output representation of node vi, and this is an injective
(Please refer to the proof of Theorem 2 in Zhang et al. [72] for details). Thus, the output of the computational

18

Query Retrieval Query Retrieval

Figure 9: Retrieved Examples from 10 Meta-test Real-world Datasets. We present all query-retrieval pairs
on meta-test datasets. Each row includes two pairs of query dataset (left) and the retrieved dataset (right). Please
see detailed explanations of the pairs in Section D.3 and Table 5.

graph for the network M with the fixed Gaussian input noise x is uniquely represented with the functional
encoder EMF : M 7! vf , where vf = Cn with n nodes on the graph.

Note that we use a network M that is task-adaptively trained for a specific target dataset to not only obtain high
performance on the target dataset but also reduce the fine-tuning cost on it. Thus, while we might further need to
consider the parameters on the computational graph, we show the injectiveness on the functional encoding only
with the computational graph structure and leave the consideration of parameters as a future work, since it is
complicated to formally define the injectiveness with trainable parameters.

To sum up, we show the injectiveness of the model representation with both topological encoding and functional
encoding schemes, although only one encoding function can injectively represent the entire neural network.
While we further concatenate and transform two output representations with a function g, to obtain the final
model representation: m = g([vt,vf]), the representation m is also unique on each neural network M with an
injective function g.

Similar to the universal approximation theorem [25, 24], we might construct an injective mapping function g
and ! with learnable parameters on it.

D Experimental Setup

D.1 Architecture Space

Before constructing a model zoo that contains a large number of dataset-architecture pairs, we first need to
define an architecture search space on it to handle all architectures in a consistent manner. To easily obtain the
task-adaptive parameters for the given task with consideration of various factors, such as a number of layers,
kernel sizes, and width expansion ratios, we use the supernet-based OFA architecture space [8], which the same
as the well-known MobileNetV3 space [26]. Each neural architecture in the search space consists of a stack of
20 mobile-block convs (MBconvs), where the number of units is 5, and the number of layers on each unit ranges
across {2, 3, 4}. Moreover, for each layer, we select the kernel size is from {3, 5, 7}, and the width-depth ratio
from {3, 4, 6}. This strategy allows us to generate around 10

19 neural architecture candidates in theory.

19

D.2 Model Zoo

To construct a model zoo consisting of a large number of dataset-architecture pairs, we collect 89 real-world
datasets for image classification from Kaggle* and obtain 100 random architectures per dataset from the OFA
space. Specifically, we first divide the collected datasets into two non-overlapping sets for meta-training and
meta-testing. If the dataset has more than 20 classes, then we randomly split it into multiple datasets such that a
dataset can consist of up to 20 classes. For meta-testing, we randomly selected only one of the splits for each
original dataset for diversity. This process yields 140 datasets for meta-training and 10 datasets for meta-testing.
To generate a validation set for each dataset, we randomly sample 20% of data instances from each dataset and
use the sampled instances for the validation, while using the remaining 80% as the training instances.

For statistics, the number of classes ranges from 2 to 20 with a median of 16, and the number of instances for
each dataset ranges from 8 to 158K with a mean of 2,847. We then construct the model-zoo by fine-tuning
100 random OFA architectures on training instances of each dataset and obtaining their performances on its
respective validation instances, which yields 14K (dataset, architecture, accuracy) tuples in total. We use this
database throughout this paper.

D.3 Dataset Details

In Table 5, we provide information of all datasets that we utilize for model-zoo construction and meta-test
experiments, including the dataset name, a brief description of the dataset, the number of splits for train and test
sets, and corresponding Kaggle URL. Please refer to the table if you look into a certain dataset more closely.
Particularly, we further provide an explanation of all query and retrieval pairs in Figure 9. Beginning from the
left column on the first row, we present pairs of Colorectal Histology (query) & Breast Histopathology (retrieval)
and Real or Drawing (query) & Tiny Images (retrieval). In the second row, we show pairs of Dessert (query) &
Food Kinds (retrieval) and Chinese Characters (query) & Vehicles (retrieval). For the third row, there are pairs of
Speed Limit Signs (query) & Traffic Signs (retrieval) and Alien vs Predator (query) & Grid Anomaly (retrieval).
In the fourth row, we illustrate pairs of COVID-19 (query) & Chest X-Rays (retrieval) and Gemstones (query) &
Stanford Dogs (retrieval). In the last row, we present pairs of Dog Breeds (query) & Stanford Dogs (retrieval)
and Honeybee Pollen (query) & Breast Cancer Tissues (retrieval). Please see Table 5 for the detailed information
for each dataset.

D.4 Baseline NAS Methods

Here we describe the baselines we use in the experiments in the main document. We compare the performance
of the models retrieved with our method against pretrained neural networks as well as the ones searched by
several efficient NAS methods that are closely related to ours:

1) MobileNetV3 [26] MobileNetV3 is a representative resource-efficient neural architecture tuned considering
mobile phone environments. In our experiments, MobileNetV3 is pretrained on ImageNet-1K, which is fine-tuned
for 50 epochs on each meta-testing task.

2) PC-DARTS [65], a differentiable NAS method based on a weight sharing scheme that reduces search time
efficiently and especially improves memory usage, search time, performance compared to DARTS [35] by
designing partial channel sampling and edge normalization. We search for architectures for each meta-testing
task by following the official code at https://github.com/yuhuixu1993/PC-DARTS.

3) DrNAS [10], a differentiable NAS method that handles NAS as a distribution problem, modeled by Dirichlet
distribution. We use the official code at https://github.com/xiangning-chen/DrNAS.

4) OFA [8], a NAS method that provides a subnet sampled from a larger network (supernet) pretrained on
ImageNet-1K, which alleviates the performance degeneration of prior supernet-based methods. We use the code
at https://github.com/mit-han-lab/once-for-all.

5) MetaD2A [31], a meta-NAS model that rapidly generates data-dependent architecture for a given task that is
meta-learned on subsets of ImageNet-1K. From the ImageNet-1K dataset and architectures of OFA search space,
we randomly use 3296 and 14,000 meta-training tasks for the generator and predictor, respectively as a source
database.

6) FBNet [61], a collection of convolutional models obtained via Differentiable Neural Architecture Search. We
use FBNet-A pretrained on ImageNet-1K and fine-tune it on each meta-testing task for 50 epochs.

We use the same hyper-parameters for all baselines for a fair comparison. We fine-tune the architecture for 50
epochs on each meta-testing task. The SGD optimizer is used with a learning rate of 0.01, the momentum of 0.9,
and 4e-5 weight decay. The image size is 224⇥224 and the batch size is 32.

*https://www.kaggle.com/

20

https://github.com/yuhuixu1993/PC-DARTS
https://github.com/xiangning-chen/DrNAS
https://github.com/mit-han-lab/once-for-all
https://www.kaggle.com/

Table 3: Performance Comparison on 5 Unseen Real-world Datasets All reported results are average
performances over 3 different runs with 95% confidence intervals.

Target Dataset Method Params Search Time Training Time Speed Up Accuracy
(M) (GPU sec) (GPU sec) (%)

Averaged
Performance

MobileNetV3 [26] 4.00 - 178.45±06.18 1.00⇥ 96.86±0.47

PC-DARTS [65] - 500 Epochs 3.45 943.17±15.44 4255.74±1366.92 0.03⇥ 80.48±14.33
DrNAS [10] - 500 Epochs 4.12 873.44±25.78 2445.22±76.54 0.05⇥ 83.58±2.79

FBNet-A [61] 4.30 - 218.40±42.79 0.82⇥ 96.15±2.51
OFA [8] 6.74 121.90±0.00 162.33±03.35 0.63⇥ 96.04±1.00
MetaD2A [31] 6.15 2.56±0.15 228.87±26.64 0.77⇥ 97.34±1.10

TANS (Ours) w/ OFA-Based Model-Zoo 5.50 0.002±0.00 121.18±10.71 1.47⇥ 97.79±0.28
TANS (Ours) w/ Real-world Model-Zoo 5.43 0.001±0.00 115.06±16.82 1.55⇥ 98.59±0.38

E Additional Experiments & Analysis

E.1 Experiment on Real-world Networks

While the proposed TANS shows outstanding performances in a number of neural network search tasks with
the manicured architecture search space described in Section D.1, it could be more beneficial if we search the
best-fitted model on a given query dataset from the pretrained networks with real-world neural architectures
(e.g. ResNet) trained on various datasets. For this even more realistic scenario for Neural Network Search
(NNS), we construct our model-zoo including ten real-world architectures, such as ResNet18 [23], ShuffleNet
V2 [39], MobileNet v2 [45], SqueezeNet [28], GoogLeNet [50], ResNeXt [62], AlexNet [29], MNASNet [53],
EfficientNet-B0 [51], and LambdaResNet [4].

Experimental Setup To construct the new real-world model-zoo, we first meta-train the real-world archi-
tectures and merge the new dataset-network pairs (1,400 pairs) with the random subset of the previous model-zoo
(about 5,000 OFA-based models), yielding about 6,500 models in the new model-zoo. The way of training is
the same as the experiment introduced in the main document (Section 4.1) except that we only use functional
embeddings, while topology information is not used when learning the cross-modal latent space (we exclude
the topology information since encoding the topologies of real networks across various search spaces into a
single uniform format is too complicated.) Including the real-world architectures, we first verify the retrieval
performance of our model on the meta-train datasets, and our TANS achieves 90 for the R@1, 100 for the R@5
scores. The way of evaluating on the meta-test dataset is also the same as the experiments that we conducted in
the main document (10 real-world meta-test datasets), except that we conduct experiments only on five datasets
out of the ten datasets used in the experiments of the main document, due to the heavy training costs required
for meta-testing. The selected datasets are Speed Limit Signs, Honey-bee Pollen, Alien-vs-Predator, Chinese
Characters, and COVID-19 datasets (for detailed information for each dataset, please see Table D.3.)

Experimental Results In Table 3, our methods, both with OFA and the real-world architectures, outperform
all baseline models, including MobileNetV3 (about 1.0%p to 1.5%p higher), PC-DARTS (about 17.5%p to
18.0%p higher), DrNAS (about 14.5%p to 15.0%p higher), FBNet (about 1.5%p to 2.0%p higher), OFA (about
1.5%p to 2.0%p higher), and MetaD2A (about 0.5%p to 1.0%p higher). We observe that collecting more
lightweight real-world neural network and dataset pairs (TANS w/ Real-world Model-Zoo) will allow our model
to retrieve computationally efficient pretrained networks in a task-adaptive manner. Such data-driven nature is
another advantage of our method since we can easily increase the performance of the model by collecting more
pretrained networks that are readily available in many public databases.

E.2 Additional Performance Comparison with NAS Methods

Table 4: Comparison with NAS methods
Method Meta-test Datasets

Colorectal Food

MetaD2A 96.57% 89.72%
DrNAS w/ ImageNet 84.27% 75.90%
PC-DARTS w/ ImageNet 96.77% 86.75%
TANS 1/10 (Ours) 96.83% 94.31%
TANS (Ours) 97.67% 93.71%

In the experiment introduced in the main document (Table 1),
we train DrNAS and PC-DARTS, which only generate ar-
chitectures without pretrained weights, for 10 times more
iterations (500 epochs) for a fair comparison (while the other
methods, which share ImageNet pretrained knowledge, are
trained for 50 epochs). In this experiment, rather than training
for 500 epochs, we pretrain networks obtained by DrNAS
and PC-DARTS on “ImageNet” and then fine-tune on two
meta-test datasets (Colorectal Histology & Food Classifica-
tion Datasets). As shown in Table 4, although pretraining on ImageNet improves their results, our methods,
including TANS with 1/10 sized model-zoo (1400), still outperforms all baselines, which shows that retrieving
and utilizing pretrained weights of relevant tasks is more effective than using ImageNet pre-trained weights.

21

E.3 Synergistic Effect of TANS and State-of-the-Art NAS Methods

Not only the real-world architectures but also any existing NAS methods can be successfully integrated with our
retrieval framework by simply adding searched networks into our model-zoo. We demonstrate such synergistic
effect of TANS and NAS methods in Figure 6 (e) of the main document. Constructing the model-zoo with
neural architectures generated by MetaD2A, which is a state-of-the-art NAS method, improves our performance
compared to the previous model-zoo that are simply sampled from the OFA search space. Considering that
NAS approaches have been actively studied [31, 52, 7, 51, 49, 15] and pretrained models are often shared
via open-source, we believe that the TANS framework has powerful potential to continuously improve its
performance by absorbing such new models into the model-zoo.

F Discussion

F.1 Societal Impacts

Our framework, TANS, has the following beneficial societal impacts: (1) enhanced accessibility, (2) preservation
of data privacy, and (3) the reduction of reproducing efforts.

Enhanced accessibility Since our Task-Adaptive Neural Network Search (TANS) framework allows anyone

to instantly retrieve a full neural network that works well on the given task, by providing only a small set of
data samples, it can greatly enhance the accessibility of AI to users with little knowledge and backgrounds.
Moreover, it does not require large computational resources, unlike existing NAS or AutoML frameworks, which
further helps with its accessibility. Finally, to allow everyone to benefit from our task-adaptive neural network
search framework, we will publicly release our model-zoo, which currently contains more than 15K models, and
open-source it. Then, anyone will be able to freely retrieve/update any models from our model-zoo.

Preservation of data-privacy Our framework requires only a small set of sampled data instances to
retrieve the task-adaptive neural network, unlike existing NAS/AutoML methods that require a large number of
data instances to search optimal architectures for the target datasets. Thus, the data privacy is largely improved,
and we can further allow the set encoding to take place on the client-side, rather than at the server. This will
result in enhanced data privacy, as none of the raw data samples need to be submitted to the system.

Reduction of reproducing efforts Many ML researchers and engineers are wasting their time and labors,
as well as the computational and monetary resources in reproducing existing models and fine-tuning them. TANS,
since it instantly retrieves a task-relevant model from a model zoo that contains a large number of state-of-the-art
networks pretrained on diverse real-world datasets, the users need not redesign networks or retrain them at
excessive costs. Since we plan to populate the model zoo with more pretrained networks, the coverage of the
dataset and architectures will become even broader as time goes on. Since training deep learning models often
requires extremely large computing cost, which is costly in terms of energy consumption, and results in high
carbon emissions, our method is also environment-friendly.

F.2 Limitations

As a prerequisite condition, our method must have a model-zoo which contains pretrained models that can cover
diverse tasks and perform well on each given task. There exists a chance that TANS could be affected by biased
initialization if the meta-training pool contains biased pretrained models. To prevent this issue, we can use
existing techniques that ensure fairness when constructing a model-zoo, which identify and discard inappropriate
datasets or models. There have been various studies for alleviating unjustified bias in machine learning systems.
Fairness can be classified into individual fairness, treating similar users similarly [16, 68], and group fairness,
measuring the statistical parity between subgroups, such as race or gender [70, 36, 22]. Optimizing fair metrics
during training is achieved by regularizing the covariance between sensitive attributes and model predictions [59]
and minimizing an adversarial ability to estimate sensitive attributes from model predictions [71]. At evaluation
times, [3, 12] improves the generalizability for a fair classifier via two-player games. All these methods can be
adopted when building our model-zoo.

22

Table 5: Dataset Details Detailed information, such as dataset name, description, and download link, about
all datasets that we utilize are described (Due to the space limit, we provide hyperlinks to the webpage for the
datasets, rather than printing the full website links.)

No. Dataset Name Brief Description Instances Cls. Splits URL
MetaTrain-1 Store Items Classify store item images by

color
4984 / 624 12 1 Link

MetaTrain-2 Big Cats Classify big cats by species 2875 / 360 4 1 Link
MetaTrain-3 Deepfake Detection Deepfake detection 12000 / 1500 2 1 Link
MetaTrain-4 Food Kinds Classify kinds of food 10580 / 1322 11 1 Link
MetaTrain-5 Hair Color Classify people by hair color 2560 / 320 4 1 Link
MetaTrain-6 Apparels Classify apparel images by kind

and color
9091 / 1137 24 2 Link

MetaTrain-7 Manual Alphabet Classify manual alphabet letters 69600 / 8700 29 2 Link
MetaTrain-8 Artworks Classify artworks by artist 6997 / 877 51 3 Link
MetaTrain-9 Blood Cells Identify blood cell types 9954 / 1244 4 1 Link
MetaTrain-10 Breast Cancer Tis-

sues
Idenify breast cancer with micro-
scope images

6323 / 789 8 1 Link

MetaTrain-11 Breast Histopathol-
ogy

Identify breast cancer with sample
images

222018 / 27753 2 1 Link

MetaTrain-12 Aerial Cactus Identify cacti in aerial photos 17199 / 2150 2 1 Link
MetaTrain-13 Car Models Classify cars by model 3229 / 405 45 3 Link
MetaTrain-14 Cassava Leaf Dis-

ease
Identify type of leaf disease 17115 / 2141 5 1 Link

MetaTrain-15 Celebrity Images Classify celebrity images by at-
tractiveness

161985 / 20248 2 1 Link

MetaTrain-16 Chess Pieces Identify chess pieces 437 / 54 6 1 Link
MetaTrain-17 Russian Handwrit-

ten Letters
Classify Russian handwritten let-
ters

11350 / 1419 33 2 Link

MetaTrain-18 CT Images Identify intracranial hemorrhage
in CT scans

4255 / 532 2 1 Link

MetaTrain-19 Corals Identify types of coral 489 / 62 14 1 Link
MetaTrain-20 Cracks Detect cracks in pavements and

walls
13570 / 1697 2 1 Link

MetaTrain-21 Cactus Identifica-
tion

Identify cactus in images 17199 / 2150 2 1 Link

MetaTrain-22 Animals Classify animal pictures by
species

320 / 32 16 1 Link

MetaTrain-23 Blink Identify which eye is closed 3874 / 484 5 1 Link
MetaTrain-24 Dogs Classify breeds of dogs 12558 / 1571 120 6 Link
MetaTrain-25 Furniture Identify type of furniture 5186 / 648 5 1 Link
MetaTrain-26 Forest Fire Detect whether there is a fire in

forest images
794 / 100 3 1 Link

MetaTrain-27 Devanagari Charac-
ters

Identify Devanagari characters 73580 / 9197 46 3 Link

MetaTrain-28 COVID Chest
X-Ray

Identify COVID by chest x-ray
pictures

599 / 75 2 1 Link

MetaTrain-29 Bottles Identify how full a soda bottle is 11992 / 1499 5 1 Link
MetaTrain-30 Indoor Scenes Identify the kind of indoor place 2498 / 312 10 1 Link
MetaTrain-31 Flowers Recognize flower types 3455 / 431 5 1 Link
MetaTrain-32 Four Shapes Identify basic shapes 11976 / 1496 4 1 Link
MetaTrain-33 Fruits Identify fruits in different lighting

conditions
35091 / 4386 15 1 Link

Continued on next page

23

https://kaggle.com/imoore/6000-store-items-images-classified-by-color
https://kaggle.com/c/DL2020
https://kaggle.com/c/ads5035-01
https://kaggle.com/c/ai2020f
https://kaggle.com/c/aia-dl-mid
https://kaggle.com/trolukovich/apparel-images-dataset
https://kaggle.com/grassknoted/asl-alphabet
https://kaggle.com/ikarus777/best-artworks-of-all-time
https://kaggle.com/paultimothymooney/blood-cells
https://kaggle.com/ambarish/breakhis
https://kaggle.com/paultimothymooney/breast-histopathology-images
https://kaggle.com/irvingvasquez/cactus-aerial-photos
https://kaggle.com/c/car-classificationproject-vision
https://kaggle.com/c/cassava-leaf-disease-classification
https://kaggle.com/jessicali9530/celeba-dataset
https://kaggle.com/niteshfre/chessman-image-dataset
https://kaggle.com/olgabelitskaya/classification-of-handwritten-letters
https://kaggle.com/vbookshelf/computed-tomography-ct-images
https://kaggle.com/c/corales
https://kaggle.com/c/crack-identification-ce784a-2020-iitk
https://kaggle.com/c/cs4487-2020fall
https://kaggle.com/c/cs4670spring2020pa3
https://kaggle.com/c/csep546-aut19-kc2
https://kaggle.com/c/cv2020-classification-challenge
https://kaggle.com/c/day-3-kaggle-competition
https://kaggle.com/c/defi1-ia
https://kaggle.com/rishianand/devanagari-character-set
https://kaggle.com/c/dlai3
https://kaggle.com/c/e4040fall2019-assignment-2-task-5
https://kaggle.com/c/fcis-sc-deeplearning-competition
https://kaggle.com/alxmamaev/flowers-recognition
https://kaggle.com/smeschke/four-shapes
https://kaggle.com/chrisfilo/fruit-recognition

Table 5 – continued from previous page
No. Dataset Name Brief Description Instances Cls. Splits URL

MetaTrain-34 Fruits 360 Identify fruits in various orienta-
tions

72225 / 9057 131 7 Link

MetaTrain-35 Garbage Classify garbage types 2019 / 252 6 1 Link
MetaTrain-36 Handwritten digits Identify handwritten digits 47995 / 5999 10 1 Link
MetaTrain-37 Emojis Identify the type of emojis from

various styles
5324 / 667 50 3 Link

MetaTrain-38 German Traffic
Signs

Classify german traffic signs 31367 / 3921 43 3 Link

MetaTrain-39 Flowers 2 Identify type of flower 5194 / 651 102 6 Link
MetaTrain-40 Scraped Images Classify web images into four

generic categories
27258 / 3408 4 1 Link

MetaTrain-41 Natural Images Classify natural images into six
generic categories

13620 / 1703 6 1 Link

MetaTrain-42 Animals and Ob-
jects

Identify images of objects and an-
imals

4000 / 500 10 1 Link

MetaTrain-43 Ships Identify types of ships 3998 / 500 5 1 Link
MetaTrain-44 Surgical Tools Classify surgical tools 648 / 81 4 1 Link
MetaTrain-45 Land Use Detect kind of land use from satel-

lite images
14399 / 1801 10 1 Link

MetaTrain-46 Lego Bricks Classify Lego bricks by shape 5103 / 638 16 1 Link
MetaTrain-47 Lego Bricks 2 Classify Lego bricks by shape 7319 / 915 20 1 Link
MetaTrain-48 Lego Minifigures Classify Lego minifigures by fran-

chise
128 / 14 14 1 Link

MetaTrain-49 Real or Fake Legos Identify off-brand lego bricks
from real ones

36606 / 4576 4 1 Link

MetaTrain-50 Makeup Identify whether a person is wear-
ing makeup

1203 / 150 2 1 Link

MetaTrain-51 Male Female Identify gender of a person 46913 / 5864 2 1 Link
MetaTrain-52 Messy vs Clean

Room
Classify pictures of rooms as ei-
ther messy or clean

168 / 22 2 1 Link

MetaTrain-53 Cats vs Dogs Identify cats from dogs 19975 / 2497 2 1 Link
MetaTrain-54 Flowers 3 Identify type of flower 3109 / 388 5 1 Link
MetaTrain-55 Tiny Images Identify type of object from tiny

images
15995 / 2000 10 1 Link

MetaTrain-56 Mushroom classifi-
cation

Classify mushrooms by genus 5312 / 662 9 1 Link

MetaTrain-57 Carpet Anomaly Identify type of anomaly on car-
pets

315 / 41 6 1 Link

MetaTrain-58 Grid Anomaly Identify type of anomaly on a grid 270 / 33 6 1 Link
MetaTrain-59 Leather Anomaly Identify type of anomaly on

leather
293 / 38 6 1 Link

MetaTrain-60 Natural Images 2 Identify types of natural images 11221 / 1402 6 1 Link
MetaTrain-61 Printed Letters Identify printed Latin letters in

various fonts
381052 / 47630 10 1 Link

MetaTrain-62 Bengali Digits Identify handwritten Bengali dig-
its

57620 / 7203 10 1 Link

MetaTrain-63 Flowers 4 Identify type of flower 2855 / 356 5 1 Link
MetaTrain-64 Oregon Wildlife Identify type of wildlife in pic-

tures taken in Oregon
5655 / 708 20 1 Link

MetaTrain-65 Parkinsons Draw-
ings

Identify stage of Parkinson’s dis-
ease by drawing

162 / 20 2 1 Link

MetaTrain-66 Dogs 2 Classify types of dogs 7216 / 902 10 1 Link
Continued on next page

24

https://kaggle.com/moltean/fruits
https://kaggle.com/asdasdasasdas/garbage-classification
https://kaggle.com/c/gen-2-ai-force-challenge-1
https://kaggle.com/c/gpa759-2020
https://kaggle.com/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign
https://kaggle.com/spaics/hackathon-blossom-flower-classification
https://kaggle.com/duttadebadri/image-classification
https://kaggle.com/puneet6060/intel-image-classification
https://kaggle.com/c/khu-deep-learning-competition
https://kaggle.com/c/kunstmatigeintelligentie20192020
https://kaggle.com/dilavado/labeled-surgical-tools
https://kaggle.com/c/land-cover-class
https://kaggle.com/joosthazelzet/lego-brick-images
https://kaggle.com/pacogarciam3/lego-brick-sorting-image-recognition
https://kaggle.com/ihelon/lego-minifigures-classification
https://kaggle.com/pacogarciam3/lego-vs-generic-brick-image-recognition
https://kaggle.com/petersunga/make-up-vs-no-make-up
https://kaggle.com/c/malefemale-for-drr
https://kaggle.com/cdawn1/messy-vs-clean-room
https://kaggle.com/shaunthesheep/microsoft-catsvsdogs-dataset
https://kaggle.com/c/mis583-hw2-part-2
https://kaggle.com/c/mllabgame
https://kaggle.com/maysee/mushrooms-classification-common-genuss-images
https://mvtec.com/company/research/datasets/mvtec-ad
https://mvtec.com/company/research/datasets/mvtec-ad
https://mvtec.com/company/research/datasets/mvtec-ad
https://kaggle.com/c/nnfl-cnn-lab2
https://kaggle.com/jwjohnson314/notmnist
https://kaggle.com/BengaliAI/numta
https://kaggle.com/c/nuu-me-midterm-exam-image-classification
https://kaggle.com/virtualdvid/oregon-wildlife
https://kaggle.com/kmader/parkinsons-drawings
https://kaggle.com/c/perritos

Table 5 – continued from previous page
No. Dataset Name Brief Description Instances Cls. Splits URL

MetaTrain-67 Seedlings Determine type of plant from a
picture of its seedling

3792 / 474 12 1 Link

MetaTrain-68 Traffic Signs Identify traffic signs 5735 / 717 8 1 Link
MetaTrain-69 Real vs Fake Faces Identify fake face images from

real ones
1632 / 204 2 1 Link

MetaTrain-70 Casting Products Idendify defects in products man-
ufactured by casting

6866 / 858 2 1 Link

MetaTrain-71 Rock Paper Scissors Identify hand gestures 1749 / 219 3 1 Link
MetaTrain-72 Chest X-ray Identify various information from

chest x-ray images
4484 / 560 2 1 Link

MetaTrain-73 Furniture 2 Classify type of furniture 2400 / 200 200 10 Link
MetaTrain-74 Sheep Classify sheep breeds 1344 / 168 4 1 Link
MetaTrain-75 Simpsons Identify characters from a popular

TV show
15969 / 1999 39 2 Link

MetaTrain-76 Simpsons 2 Identify characters from a popular
TV show

16709 / 2090 39 2 Link

MetaTrain-77 Skin Cancer Classify type of Skin Cancer 1785 / 224 9 1 Link
MetaTrain-78 Signed Digits Identify sign language digits 1644 / 208 10 1 Link
MetaTrain-79 Stanford Dogs Identify dog breeds 16376 / 2050 120 6 Link
MetaTrain-80 Preprocessed Stan-

ford Dogs
Preprocessed version of Stanford
Dogs

16418 / 2052 120 6 Link

MetaTrain-81 Synthetic Digits Identify digits on randomly gener-
ated backgrounds

9600 / 1200 10 1 Link

MetaTrain-82 Ethiopic Digits Classify Ethiopic Digits 48000 / 6000 10 1 Link
MetaTrain-83 Simpsons 3 Identify characters from a TV

show
16709 / 2090 39 2 Link

MetaTrain-84 Traffic Signs 2 Identify traffic signs 20288 / 2530 67 4 Link
MetaTrain-85 Vehicles Classify types of auto vehicles 22427 / 2803 17 1 Link
MetaTrain-86 Clothes Identify types of clothes 12935 / 1617 6 1 Link

MetaTest-1 Alien vs Predator Tell apart characters from a movie 711 / 89 2 - Link
MetaTest-2 Colorectal Histol-

ogy
Classify colorectal tissue images 4000 / 496 8 - Link

MetaTest-3 COVID-19 Identify lung diseases from radio-
graphic images

2298 / 288 3 - Link

MetaTest-4 Speed Limit Signs Classify road speed limit signs 272 / 35 4 - Link
MetaTest-5 Gemstones Classify different kinds of gem-

stones
2206 / 278 18 (87)† - Link

MetaTest-6 Honeybee Pollen Detect whether a honeybee is car-
rying pollen

571 / 71 2 - Link

MetaTest-7 Chinese Characters Identify handwritten Chinese
characters

13762 / 1715 20 (200)† - Link

MetaTest-8 Real or Drawing Identify real images from draw-
ings in tiny images

4000 / 500 10 - Link

MetaTest-9 Dessert Identify types of dessert 1324 / 166 5 - Link
MetaTest-10 Dog Breeds Classify dog breeds 5295 / 656 19 (133)† - Link

†The original dataset’s number of classes are written in parentheses.

25

https://kaggle.com/c/plant-seedlings-classification
https://kaggle.com/c/proptit-aif-homework-1
https://kaggle.com/ciplab/real-and-fake-face-detection
https://kaggle.com/ravirajsinh45/real-life-industrial-dataset-of-casting-product
https://kaggle.com/drgfreeman/rockpaperscissors
https://kaggle.com/nih-chest-xrays/sample
https://kaggle.com/c/sfu-cmpt-computer-vision-course-cnn
https://kaggle.com/divyansh22/sheep-breed-classification
https://kaggle.com/c/simpsons-challenge-gft
https://kaggle.com/c/simpsons4
https://kaggle.com/nodoubttome/skin-cancer9-classesisic
https://kaggle.com/c/sldc
https://kaggle.com/jessicali9530/stanford-dogs-dataset
https://kaggle.com/miljan/stanford-dogs-dataset-traintest
https://kaggle.com/prasunroy/synthetic-digits
https://kaggle.com/c/tau-ethiopic-digit-recognition
https://kaggle.com/alexattia/the-simpsons-characters-dataset
https://kaggle.com/c/tl-signs-hse-itmo-2020-winter
https://kaggle.com/c/vehicle
https://kaggle.com/dqmonn/zalando-store-crawl
https://www.kaggle.com/pmigdal/alien-vs-predator-images
https://www.kaggle.com/kmader/colorectal-histology-mnist
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/c/drr-sign
https://www.kaggle.com/lsind18/gemstones-images
https://www.kaggle.com/ivanfel/honey-bee-pollen
https://www.kaggle.com/anokas/kuzushiji
https://www.kaggle.com/c/ml2020spring-hw12
https://www.kaggle.com/c/recognizance1
https://www.kaggle.com/c/ucfai-core-fa19-cnns

	Introduction
	Related Work
	Methodology
	Problem Definition
	Meta-Training
	Meta-Test

	Encoding Datasets and Networks
	Model-Zoo Construction

	Experiments
	Experimental Setup
	Experimental Results

	Conclusion
	Implementation Details
	Efficient Model Zoo Construction
	Query Encoder
	Model Encoder
	Meta-Surrogate Performance Predictor

	Training Details
	Learning the Cross-modal Latent Space
	Fine-tuning on Meta-test Datasets
	Constructing the Model-Zoo

	Proof for Uniqueness of the Query and Model Encoding Functions
	Experimental Setup
	Architecture Space
	Model Zoo
	Dataset Details
	Baseline NAS Methods

	Additional Experiments & Analysis
	Experiment on Real-world Networks
	Additional Performance Comparison with NAS Methods
	Synergistic Effect of TANS and State-of-the-Art NAS Methods

	Discussion
	Societal Impacts
	Limitations

