
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SYGRID: SYNTHETICALLY GENERATED REALISTIC
INDUSTRIAL DATASET

Anonymous authors
Paper under double-blind review

SUPPLEMENTARY MATERIALS

1 RENDERER IMPLEMENTATION AND GENERATION DETAILS

In Fig. 1 we show a schematized version of the pipeline of operations needed to generate annotated
data to be then stored in the dataset.

Figure 1: Pipeline of operation for generating a single image and respective labels.

The scene description is a json file containing the necessary parameters for both rigid body interaction
and rendering simulations. It marks the initial phase of the pipeline, detailing the objects involved
(file paths to 3D models). For the subsequent rigid body simulation phase, only mesh geometry
information is necessary; the number of instances per object is specified as an additional input to the
physics block. These are variables subject to change for each data item to be featured in the output
dataset.

As far as rendering parameters are concerned, the same scene description file also specifies camera
parameters and environment map. These are variables for data item to generate. In the same file, we
also specify a number of fixed parameters that we did not change during data generation, namely the
total number of frames (samples) needed to generate an RGB image (fixed to 5000), image resolution
(fixed at 640x480), and the number of maximum ray-light interactions (path tracing depth, fixed to
32).

In the rigid body physics simulation phase, the V-HACD1algorithm is employed to decompose
complex, concave objects into simpler convex hulls. This decomposition is crucial for performing
efficient and accurate physics simulations. Following this, the pybullet2 library is used to calculate
the interactions, movements, and collisions of these objects based on physical laws, hence, outputting
transformation matrices for each instance. These 4x4 matrices encode the position, rotation transfor-
mations necessary to accurately position each object instance within the 3D scene. Those matrices are
stored in another file, that is going to be read (together with the scene description) by the rendering
process.

The rendering process begins with the construction of a Bounding Volume Hierarchy (BVH) to
expedite rendering. The BVH groups objects hierarchically, facilitating efficient traversal and shading.

1https://github.com/kmammou/v-hacd
2https://pybullet.org/

1

https://github.com/kmammou/v-hacd
https://pybullet.org/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

For each frame, the renderer traverses the BVH to determine which objects are visible from the
camera’s perspective and need to be shaded. Shading involves computing the final colour of each
pixel using Physically Based Rendering (PBR) techniques. A denoiser is then applied to the shaded
image to reduce any noise introduced during shading, enhancing image quality.

The renderer outputs an RGB image, its depth map, and instance masks. This data item is stored in
the dataset. With our system configuration (Nvidia RTX 2080, Intel-Core I7-7700k), a data item is
generated in less than 10 seconds on average, depending on the number and kind of instances.

2 REAL ANNOTATED DATASET

To fairly test the effectiveness of our dataset in the real world we annotated real, camera-taken pictures.
Then, we evaluate those pictures with different networks, as trained on the proposed SyGRID dataset.
In this Section, we detail the annotation procedures and highlight their limitations. The labelling
phase requires significant effort, hence we reassert the advantage of using only-simulated datasets
and the importance of closing domain-gap between reality and simulation.

2.1 INSTANCE SEGMENTATION AND 2D ANNOTATIONS

We used a tool (3) to manually annotate polygons of the objects. The tool is based on Segment
Anything ? and it makes it possible to edit the obtained polygons. After labelling, we converted labels
into the YOLO format, repairing the broken polygons of single masks by connecting them. Visual

Figure 2: Real Images manually annotated with Segment Anything.

results show annotations on real images. Given the segmentation polygon we can easily compute the
instance masks, hence obtaining 2D bounding boxes.

2.2 DEPTH GROUND TRUTH

Depth maps were acquired through a RealSense 435i, as explained in the paper. Then the predicted
and ground truth depth maps on real images are compared. Observing the metrics on reality, we
must consider that RealSense suffers of an error around 2%, as claimed by the manufacturer (4). In
addition, we observed larger errors in highly reflective surfaces.

Recently, some more powerful and accurate depth sensors exist, but they are much more expensive.

On the other side, our dataset generator provides accurate ground truth depths at no cost and it allows
us to train a network and predict more accurate depth maps. This is particularly useful in industrial
environments, where settings are often repetitive and reproducible with our images. Therefore it
is not necessary for the network to have generalization capabilities to move from one scenario to
another. It is sufficient to create the appropriate dataset for that specific scene and train a network on
it.

Furthermore, we used depth maps only as ground truth labels, but it would be possible to use them
also as input for a learning process. In this case, to generalize to the real domain, a different level of
noise, depending on depth sensor used, should be applied to the ground truth images.

3https://github.com/haochenheheda/segment-anything-annotator
4https://www.intelrealsense.com/depth-camera-d435i/

2

https://github.com/haochenheheda/segment-anything-annotator
https://www.intelrealsense.com/depth-camera-d435i/


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 3: On the left: real RGB images. On the centre: depth maps on RGB acquired by RealSense,
there are some errors given by reflections or transparencies. On the right: predictions of DepthAny-
thing ? based on the simulated dataset training.

Figure 4: Examples of 6d cad models on the image with the tool 6d-pat, for 6D pose annotation.

2.3 6D POSE ANNOTATION

To annotate the 6D pose labels, we follow an autolabelling procedure. First, we take the prediction
from our trained network, GDR-Net, and visualize the object CAD model on the real image. After
that, we edit the position directly on the image by moving the CAD model as shown in Figure 4. To
do this, we used a tool called 6D-PAT 5. This annotation phase is extremely time-consuming. Despite
this, the accuracy is not guaranteed, especially in the case of small objects, like the nut.

3 METRICS FOR EVALUATION

For 2D detection and instance segmentation, we used the well-known mAP (mean Average Precision),
with a threshold between 50 and 95%, as written in the paper.
We use the Absolute Relative Error and the δ1 for depth metrics. The first is defined as the average
value over all the image pixels of the L1 distance between estimated and ground truth depth (as

5https://github.com/florianblume/6d-pat

3

https://github.com/florianblume/6d-pat


162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

explained in ?). It is scaled.

AbsRel =
1

N

N∑
i=1

|D∗
i −Di|2

Di

The δ1 is expressed as:

δ1 =
1

N

N∑
i=1

(max(D∗
i /Di, Di/D

∗
i ) < 1.25)

where D∗ is the ground truth depth and D is the estimated depth. N is the total number of pixels and
Di and D∗

i represent the estimated and ground truth depth values at the pixel indexed by i.

For 6D pose estimation we used ADD as metric (Average Distance of Model Points). Given the CAD
model M, the estimated rotation R̂ and translation t̂ and the ground-truth rotation R and translation
t we define the error:

eADD = avgx∈M∥(R̂x+ t̂)− (Rx+ t)∥
If the model M has simmetries, then

eADDs = avgx1∈M min
x2∈M

∥(R̂x1 + t̂)− (Rx2 + t)∥

The estimated pose is considered correct if

e < θADD = kmd

where:

• km is a constant generally equal to 0.1,
• d is the object diameter.

The rotational error re between the estimated rotation matrix R̂ and the ground truth rotation matrix
R can be computed as follows:

re = arccos

(
trace(R̂Rx

T
)− 1

2

)
where:

• trace(·) denotes the trace of a matrix, which is the sum of the diagonal elements.

The translational error te between the estimated translation vector t̂ and the ground truth translation
vector t can be computed as follows:

te =
∥∥t− t̂

∥∥
where ∥·∥ denotes the Euclidean norm, measuring the distance between two points in 3-dimensional
space.

4 IMAGE GALLERY

In Table 1 we present 10 different examples of the RGB images generated by our dataset, as produced
by the renderer described in the paper.

5 REAL-WORLD DEMONSTRATION

To demonstrate the effectiveness of our dataset, we implemented the pipeline composed of YOLOv8
and GDR-Net on a real cobot (Collaborative Robot). In detail, we used a Universal Robot UR5e 6and
a RealSense 435i. We shared a video with a demonstration of picking with our pipeline 7.

6https://www.universal-robots.com/it/prodotti/robot-ur5/
7https://mega.nz/file/a7QlwToQ#4UR2-ZS6hxKM6VmLNOpsqlJoUJd4znJZA4dgGtWcpLU

4

https://www.universal-robots.com/it/prodotti/robot-ur5/
https://mega.nz/file/a7QlwToQ##4UR2-ZS6hxKM6VmLNOpsqlJoUJd4znJZA4dgGtWcpLU


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Example RGB images produced for the dataset

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 5: Inference of our pipeline on a real-world experiment of picking. On the left: YOLOv8
predictions. On the centre: bounding boxes given by the predicted masks. On the right: 3D bounding
box based on the pose prediction from GDR-Net.

6


	Renderer Implementation and Generation Details
	Real Annotated Dataset
	Instance Segmentation and 2D Annotations
	Depth Ground Truth
	6D pose annotation

	Metrics for evaluation
	Image Gallery
	Real-world demonstration

