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Abstract

In neural network binarization, BinaryConnect (BC) and its variants are consid-1

ered the standard. These methods apply the sign function in their forward pass2

and their respective gradients are backpropagated to update the weights. How-3

ever, the derivative of the sign function is zero whenever defined, which con-4

sequently freezes training. Therefore, implementations of BC (e.g., BNN) usu-5

ally replace the derivative of sign in the backward computation with identity or6

other approximate gradient alternatives. Although such practice works well em-7

pirically, it is largely a heuristic or “training trick.” We aim at shedding some8

light on these training tricks from the optimization perspective. Building from9

existing theory on ProxConnect (PC, a generalization of BC), we (1) equip PC10

with different forward-backward quantizers and obtain ProxConnect++ (PC++)11

that includes existing binarization techniques as special cases; (2) derive a prin-12

cipled way to synthesize forward-backward quantizers with automatic theoretical13

guarantees; (3) illustrate our theory by proposing an enhanced binarization algo-14

rithm BNN++; (4) conduct image classification experiments on CNNs and vision15

transformers, and empirically verify that BNN++ generally achieves competitive16

results on binarizing these models.17

1 Introduction18

The recent success of numerous applications in machine learning is largely fueled by training big19

models with billions of parameters, e.g., GPTs in large language models [7, 8], on extremely large20

datasets. However, as such models continue to scale up, end-to-end training or even fine-tuning21

becomes prohibitively expensive, due to the heavy amount of computation, memory and storage22

required. Moreover, even after successful training, deploying these models on resource-limited23

devices or environments that require real-time inference still poses significant challenges.24

A common way to tackle the above problems is through model compression, such as pruning [36, 38,25

41], reusing attention [6], weight sharing [45], structured factorization [39], and network quantiza-26

tion [16, 28, 29, 31]. Among them, network quantization (i.e., replacing full-precision weights with27

lower-precision ones) is a popular approach. In this work we focus on an extreme case of network28

quantization: binarization, i.e., constraining a subset of the weights to be only binary (i.e., ±1), with29

the benefit of much reduced memory and storage cost, as well as inference time through simpler30

and faster matrix-vector multiplications, which is one of the main computationally expensive steps31

in transformers and the recently advanced vision transformers [14, 30, 42].32

For neural network binarization, BinaryConnect [BC, 11] is considered the de facto standard. BC33

applies the sign function to binarize the weights in the forward pass, and evaluates the gradient at34
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the binarized weights using the Straight Through Estimator [STE, 4]1. This widely adopted training35

trick has been formally justified from an optimization perspective: Dockhorn et al. [13], among36

others, identify BC as a nonconvex counterpart of dual averaging, which itself is a special case of37

the generalized conditional gradient algorithm. Dockhorn et al. [13] further propose ProxConnect38

(PC) as an extension of BC, by allowing arbitrary proximal quantizers (with sign being a special39

case) in the forward pass.40

However, practical implementations [e.g., 2, 12, 21] usually apply an approximate gradient of the41

sign function on top of STE. For example, Hubara et al. [21] employ the hard tanh function as42

an approximator of sign. Thus, in the backward pass, the derivative of sign is approximated by43

the indicator function 1[−1,1], the derivative of hard tanh. Later, Darabi et al. [12] consider the44

sign-Swish function as a more accurate and flexible approximator in the backward pass (but still45

employs the sign in the forward pass).46

Despite their excellent performance in practice, approximate gradient approaches cannot be readily47

understood in the PC framework of Dockhorn et al. [13], which does not equip any quantization48

in the backward pass. Thus, the main goal of this work is to further generalize PC and improve49

our understanding of approximate gradient approaches. Specifically, we introduce PC++ that comes50

with a pair of forward-backward proximal quantizers, and we show that most of the existing approx-51

imate gradient approaches are special cases of our proximal quantizers, and hence offering a formal52

justification of their empirical success from an optimization perspective. Moreover, inspired by our53

theoretical findings, we propose a novel binarization algorithm BNN++ that improves BNN+ [12]54

on both theoretical convergence properties and empirical performances. Notably, our work provides55

direct guidance on designing new forward-backward proximal quantizers in the PC++ family, with56

immediate theoretical guarantees while enabling streamlined implementation and comparison of a57

wide family of existing quantization algorithms.58

Empirically, we benchmark existing PC++ algorithms (including the new BNN++) on image clas-59

sification tasks on CNNs and vision transformers. Specifically, we perform weight (and activation)60

binarization on various datasets and models. Moreover, we explore the fully binarized scenario,61

where the dot-product accumulators are also quantized to 8-bit integers. In general, we observe that62

BNN++ is very competitive against existing approaches on most tasks, and achieves 30x reduction63

in memory and storage with a modest 5-10% accuracy drop compared to full precision training.64

We summarize our main contributions in more detail:65

• We generalize ProxConnect with forward-backward quantizers and introduce ProxConnect++66

(PC++) that includes existing binarization techniques as special cases.67

• We derive a principled way to synthesize forward-backward quantizers with theoretical guaran-68

tees. Moreover, we design a new BNN++ variant to illustrate our theoretical findings.69

• We empirically compare different choices of forward-backward quantizers on image classification70

benchmarks, and confirm that BNN++ is competitive against existing alternatives.71

2 Background72

In neural network quantization, we aim at minimizing the usual (nonconvex) objective function ℓ(w)73

with discrete weights w:74

min
w∈Q

ℓ(w), (1)
75

where Q ⊆ Rd is a discrete, nonconvex quantization set such as Q = {±1}d. The acquired discrete76

weights w ∈ Q are compared directly with continuous full precision weights, which we denote77

as w∗ for clarity. While our work easily extends to most discrete set Q, we focus on Q = {±1}d78

since this binary setting remains most challenging and leads to the most significant savings. Existing79

binarization schemes can be largely divided into the following two categories.80

Post-Training Binarization (PTB): we can formulate post-training binarization schemes as the81

following standard forward and backward pass:82

wt = PQ(w
∗
t ), w∗

t+1 = w∗
t − ηt∇̃ℓ(w∗

t ),

1Note that we refer to STE as its original definition by Bengio et al. [4] for binarizing weights, and other
variants of STE (e.g., in BNN) as approximate gradient.
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where PQ is the projector that binarizes the continuous weights w∗ deterministically (e.g., the sign83

function) or stochastically2, and ∇̃ℓ(w∗
t ) denotes a sample (sub)gradient of ℓ at w∗

t . We point out84

that PTB is merely a post-processing step, i.e., the binarized weights wt do not affect the update85

of the continuous weights w∗
t , which are obtained through normal training. As a result, there is no86

guarantee that the acquired discrete weights wt is a good solution (either global or local) to eq. (1).87

Binarization-Aware Training (BAT): we then recall the more difficult binarization-aware train-88

ing scheme BinaryConnect (BC), first initialized by Courbariaux et al. [11]:89

wt = PQ(w
∗
t ), w∗

t+1 = w∗
t − ηt∇̃ℓ(wt), (2)

where we spot that the gradient is evaluated at the binarized weights wt but used to update the90

continuous weights w∗
t . This approach is also known as Straight Through Estimator [STE, 4]. Note91

that it is also possible to update the binarized weights instead, effectively performing the proximal92

gradient algorithm to solve (1), as shown by Bai et al. [2]:93

wt = PQ(w
∗
t ), w∗

t+1 = wt − ηt∇̃ℓ(wt).

This method is known as ProxQuant, and will serve as a baseline in our experiments.94

2.1 ProxConnect95

Dockhorn et al. [13] proposed ProxConnect (PC) as a broad generalization of BinaryConnect in (2):96

wt = Pµt
r (w∗

t ), w∗
t+1 = w∗

t − ηt∇̃ℓ(wt), (3)

where µt := 1 +
∑t−1

τ=1 ητ , ηt > 0 is the step size, and Pµt
r is the proximal quantizer:97

Pµ
r (w) := argmin

z

1
2µ∥w − z∥22 + r(z), and

Mµ
r (w) := min

z

1
2µ∥w − z∥22 + r(z).

In particular, when the regularizer r = ιQ (the indicator function of Q), Pµt
r = PQ (for any µt) and98

we recover BC in (2). Dockhorn et al. [13] showed that the PC update (3) amounts to applying the99

generalized conditional gradient algorithm to a smoothened dual of the regularized problem:100

min
w

[ℓ(w) + r(w)] ≈ min
w∗

ℓ∗(−w∗) +Mµ
r∗(w

∗),

where f∗(w∗) := maxw⟨w,w∗⟩− f(w) is the Fenchel conjugate of f . The theory behind PC thus101

formally justifies STE from an optimization perspective. We provide a number of examples of the102

proximal quantizer Pµt
r in Appendix A.103

Another natural cousin of PC is the reversed PC (rPC):104

wt = Pµt
r (w∗

t ), w∗
t+1 = wt − ηt∇̃ℓ(w∗

t ),

which is able to exploit the rich landscape of the loss by evaluating the gradient at the continuous105

weights w∗
t . Thus, we also include it as a baseline in our experiments.106

We further discuss other related works in Appendix B.107

3 Methodology108

One popular heuristic to explain BC is through the following reformulation of problem (1):109

min
w∗

ℓ
(
PQ(w

∗)
)
.

Applying (stochastic) “gradient” to update the continuous weights we obtain:110

w∗
t+1 = w∗

t − ηt · P′
Q(w

∗
t ) · ∇̃ℓ(PQ(w

∗
t )).

2We only consider deterministic binarization in this paper.
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Unfortunately, the derivative of the projector PQ is 0 everywhere except at the origin, where the111

derivative actually does not exist. BC [11], see (2), simply “pretended” that P′
Q = I . Later works112

propose to replace the troublesome P′
Q by the derivative of functions that approximate PQ, e.g.,113

the hard tanh in BNN [21] and the sign-Swish in BNN+ [12]. Despite their empirical success,114

it is not clear what is the underlying optimization problem or if it is possible to also replace the115

projector inside ∇̃ℓ, i.e., allowing the algorithm to evaluate gradients at continuous weights, a clear116

advantage demonstrated by Bai et al. [2] and Dockhorn et al. [13]. Moreover, the theory established117

in PC, through a connection to the generalized conditional gradient algorithm, does not apply to118

these modifications yet, which is a gap that we aim to fill in this section.119

3.1 ProxConnect++120

To address the above-mentioned issues, we propose to study the following regularized problem:121

min
w∗

ℓ(T(w∗)) + r(w∗), (4)

as a relaxation of the (equivalent) reformulation of (1):122

min
w∗

ℓ(PQ(w
∗)) + ιQ(w

∗).

In other words, T : Rd → Rd is some transformation that approximates PQ and the regularizer123

r : Rd → R approximates the indicator function ιQ. Directly applying ProxConnect in (3) we124

obtain3:125

wt = Pµt
r (w∗

t ), w∗
t+1 = w∗

t − ηtT
′(wt) · ∇̃ℓ

(
T(wt)

)
. (5)

Introducing the forward and backward proximal quantizers:126

Fµ
r := T ◦ Pµ

r , Bµ
r := T′ ◦ Pµ

r , (6)

we can rewrite the update in (5) simply as:127

w∗
t+1 = w∗

t − ηt · Bµt
r (w∗

t ) · ∇̃ℓ
(
Fµt
r (w∗

t )
)
. (7)

It is clear that the original ProxConnect corresponds to the special choice128

Fµ
r = Pµ

r , Bµ
r ≡ I.

Of course, one may now follow the recipe in (6) to design new forward-backward quantizers. We call129

this general formulation in (7) ProxConnect++ (PC++), which covers a broad family of algorithms.130

Conversely, the complete characterization of proximal quantizers in Dockhorn et al. [13] allows us131

also to reverse engineer T and r from manually designed forward and backward quantizers. As we132

will see, most existing forward-backward quantizers turn out to be special cases of our proximal133

quantizers, and thus their empirical success can be justified from an optimization perspective. In-134

deed, for simplicity, let us restrict all quantizers to univariate ones that apply component-wise. Then,135

the following result is proved in Appendix C.136

Theorem 1. A pair of forward-backward quantizers (F,B) admits the decomposition in (6) (for137

some smoothing parameter µ and regularizer r) iff both F and B are functions of P(w) :=138 ∫ w

−∞
1

B(ω) dF(ω), which is proximal (i.e., monotone, compact-valued and with a closed graph).139

Importantly, with forward-backward proximal quantizers, the convergence results established by140

Dockhorn et al. [13] for PC directly carries over to PC++ (see Appendix C for details). Let us141

further illustrate the convenience of Theorem 1 by some examples.142

Example 1 (BNN). Hubara et al. [21] proposed BNN with the choice143

F = sign and B = 1[−1,1],

which satisfies the decomposition in (6). Indeed, let144

T(w) = min{1,max{−1, w}}, (8)

3We assume throughout that T, and any function whose derivative we use, are locally Lipschitz so that their
generalized derivative is always defined, see Rockafellar and Wets [40].
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Figure 1: Forward and backward pass for ProxConnect++ algorithms (red/blue arrows indicate the
forward/backward pass), where fp denotes full precision, bn denotes binary and back-prop denotes
backpropagation.

Pµ
r (w) =

{
1
µw + sign(w)(1− 1

µ ), if |w| > 1

sign(w), if |w| ≤ 1
. (9)

Since B is constant over [−1, 1], applying Theorem 1 we deduce that the proximal quantizer Pµ
r , if145

exists, must coincide with F over the support of B. Applying monotonicity of Pµ
r we may complete146

the reverse engineering by making the choice over |w| > 1 as indicated above. We can easily verify147

the decomposition in (6):148

F = sign = T ◦ Pµ
r , B = 1[−1,1] = T′ ◦ Pµ

r .

Thus, BNN is exactly BinaryConnect applied to the transformed problem in (4), where the transfor-149

mation T is the so-called hard tanh in (8) while the regularizer r is determined (implicitly) by the150

proximal quantizer Pµ
r in (9).151

To our best knowledge, this is the first time the (regularized) objective function that BNN aims to152

optimize has been identified. The convergence properties of BNN hence follow from the general153

result of Dockhorn et al. [13] on ProxConnect, see Appendix C.154

Example 2 (BNN+). Darabi et al. [12] adopted the derivative of the sign-Swish (SS) function as a155

backward quantizer while retaining the sign function as the forward quantizer:156

B(w) = ∇SS(w) := µ[1− µw
2 tanh(µw2 )] tanh′(µw2 ), F = sign,

where µ is a hyperparameter that controls how well SS approximates the sign. Applying Theorem 1157

we find that the derivative of SS (as backward) coupled with the sign (as forward) do not admit the158

decomposition in (6), for any regularizer r. Thus, we are not able to find the (regularized) objective159

function (if it exists) underlying BNN+.160

We conclude that BNN+ cannot be justified under the framework of PC++. However, it is possible to161

design a variant of BNN+ that does belong to the PC++ family and hence enjoys the accompanying162

theoretical properties:163
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Table 1: Variants of ProxConnect++.
Forward Quantizer Backward Quantizer Algorithm

identity identity FP
PQ identity BC
Lϱ
ρ identity PC

PQ 1[−1,1] BNN
PQ ∇SS BNN+
SS ∇SS BNN++

Example 3 (BNN++). We propose that a simple fix of BNN+ would be to replace its sign forward164

quantizer with the sign-Swish (SS) function:165

F(w) = SS(w) := µw
2 tanh′(µw2 ) + tanh(µw2 ),

which is simply the primitive of B. In this case, the algorithm simply reduces to PC++ applied on (4)166

with r = 0 (and hence essentially stochastic gradient descent). Of course, we could also compose167

with a proximal quantizer to arrive at the pair (F ◦ Pµ
r ,B ◦ Pµ

r ), which effectively reduces to PC++168

applied on the regularized objective in (4) with a nontrivial r. We call this variant BNN++.169

We will demonstrate in the next section that BNN++ is more desirable than BNN+ empirically.170

In summary: (1) ProxConnect++ enables us to design forward-backward quantizers with infinite171

many choices of T and r, (2) it also allows us to reverse engineer T and r from existing forward-172

backward quantizers, which helps us to better understand existing practices, (3) with our theoretical173

tool, we design a new BNN++ algorithm, which enjoys immediate convergences properties. Figure 1174

visualizes ProxConnect++ with a variety of forward-backward quantizers.175

4 Experiments176

In this section, we perform extensive experiments to benchmark PC++ on CNN backbone models177

and the recently advanced vision transformer architectures in three settings: (a) binarizing weights178

only (BW); (b) binarizing weights and activations (BWA), where we simply apply a similar forward-179

backward proximal quantizer to the activations; and (c) binarizing weights, activations, with 8-bit180

dot-product accumulators (BWAA) [35].181

4.1 Experimental settings182

Datasets: We perform image classification on CIFAR-10/100 datasets [25] and ImageNet-1K183

dataset [26]. Additional details on our experimental setting can be found in Appendix D.184

Backbone architectures: (1) CNNs: we evaluate CIFAR-10 classification using ResNet20 [18], and185

ImageNet-1K with ResNet-50 [18]. We consider both fine-tuning and end-to-end training; (2) Vision186

transformers: we further evaluate our algorithm on two popular vision transformer models: ViT [14]187

and DeiT [42]. For ViT, we consider ViT-B model and fine-tuning task across all models4. For DeiT,188

we consider DeiT-B, DeiT-S, and DeiT-T, which consist of 12, 6, 3 building blocks and 768, 384 and189

192 embedding dimensions, respectively; we consider fine-tuning task on ImageNet-1K pre-trained190

model for CIFAR datasets and end-to-end training on ImageNet-1K dataset.191

Baselines: For ProxConnect++, we consider the 6 variants in Table 1. With different choices of the192

forward quantizer Fµ
r and the backward quantizer Bµ

r , we include the full precision (FP) baseline and193

5 binarization methods: BinaryConnect (BC) [11], ProxConnect (PC) [13], Binary Neural Network194

(BNN) [21], the original BNN+ [12], and the modified BNN++ with Fµ
r = SS. Note that we linearly195

increase µ in BNN++ to achieve full binarization in the end. We also compare ProxConnect++ with196

the ProxQuant and reverseProxConnect baselines.197

Hyperparameters: We apply the same training hyperparameters and fine-tune/end-to-end training198

for 100/300 epochs across all models. For binarization methods: (1) PQ (ProxQuant): similar to199

Bai et al. [2], we apply the LinearQuantizer (LQ), see (10) in Appendix A, with initial ρ0 = 0.01200

4Note that we use pre-trained models provided by Dosovitskiy et al. [14] on the ImageNet-21K/ImageNet-
1K for fine-tuning ViT-B model on the ImageNet-1K/CIFAR datasets, respectively.
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Table 2: Binarizing weights (BW), binarizing weights and activation (BWA) and binarizing weights,
activation, with 8-bit accumulators (BWAA) on CNN backbones. We consider the fine-tuning (FT)
pipeline and the end-to-end (E2E) pipeline. We compare five variants of ProxConnect++ (BC, PC,
BNN, BNN+, and BNN++) with FP, PQ, and rPC. For the end-to-end pipeline, we omit the results
for BWAA due to training divergence and report the mean of three runs with different random seeds.

Dataset Pipeline Task FP PQ rPC
ProxConnect++

BC PC BNN BNN+ BNN++

CIFAR-10
FT

BW 92.01% 89.94% 89.98% 90.31% 90.31% 90.35% 90.27% 90.40%
BWA 92.01% 88.79% 83.55% 89.39% 89.95% 90.01% 89.99% 90.22%
BWAA 92.01% 85.39% 81.10% 89.11% 89.21% 89.32% 89.55% 90.01%

E2E
BW 92.01% 81.59% 81.82% 87.51% 88.05% 89.92% 89.39% 90.03%
BWA 92.01% 81.51% 81.60% 86.99% 87.26% 89.15% 89.02% 89.91%

ImageNet-1K
FT

BW 78.87% 66.77% 69.22% 71.35% 71.29% 71.41% 70.22% 72.33%
BWA 78.87% 56.21% 58.19% 65.99% 65.61% 66.02% 65.22% 68.03%
BWAA 78.87% 53.29% 55.28% 58.18% 59.21% 59.77% 59.10% 63.02%

E2E
BW 78.87% 63.23% 66.39% 67.45% 67.51% 67.49% 66.99% 68.11%
BWA 78.87% 61.19% 64.17% 65.42% 65.31% 65.29% 65.98% 66.08%

and linearly increase to ρT = 10; (2) rPC (reverseProxConnect): we use the same LQ for rPC; (3)201

ProxConnect++: for PC, we apply the same LQ; for BNN+, we choose µ = 5 (no need to increase202

µ as the forward quantizer is sign); for BNN++, we choose µ0 = 5 and linearly increase to µT = 30203

to achieve binarization at the final step.204

Across all the experiments with random initialization, we report the mean of three runs with different205

random seeds. Furthermore, we provide the complete results with error bars in Appendix F.206

4.2 CNN as backbone207

We first compare PC++ against baseline methods on various tasks employing CNNs:208

(1) Binarizing weights only (BW), where we simply binarize the weights and keep the other com-209

ponents (i.e., activations and accumulations) in full precision.210

(2) Binarizing weights and activations (BWA), while keeping accumulation in full precision. Similar211

to the weights, we apply the same forward-backward proximal quantizer to binarize activations.212

(3) Binarizing weights, activations, with 8-bit accumulators (BWAA). BWAA is more desirable in213

certain cases where the network bandwidth is narrow, e.g., in homomorphic encryption. To achieve214

BWAA, in addition to quantizing the weights and activations, we follow the implementation of215

WrapNet [35] and quantize the accumulation of each layer with an additional cyclic function. In216

practice, we find that with 1-bit weights and activations, the lowest bits we can successfully em-217

ploy to quantize accumulation is 8, while any smaller choice would raise a high overflow rate and218

cause the network to diverge. Moreover, BWAA highly relies on a good initialization and cannot be219

successfully trained end-to-end in our evaluation (and hence omitted).220

Note that for the fine-tuning pipeline, we initialize the model with their corresponding pre-trained221

full precision weights. For the end-to-end pipeline, we utilize random initialization. We report our222

results in Table 2 and observe: (1) the PC family outperforms baseline methods (i.e., PQ and rPC),223

and achieves competitive performance on both small and larger scale datasets; (2) BNN++ performs224

consistently better and is more desirable among the five variants of PC++, especially on BWA and225

BWAA tasks. Its advantage over BNN+ further validates our theoretical guidance.226

4.3 Vision transformer as backbone227

Next, we perform similar experiments on the three tasks on vision transformers.228

Implementation on vision transformers: While network binarization is popular for CNNs, its229

application for vision transformers is still rare5. Here we apply four protocols for implementation:230

5Notably, Y. He et al. [19] also consider binarizing vision transformers, which we compare our implemen-
tation details and experimental results against in Appendix E.
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Table 3: Our results on binarizing vision transformers (binarizing weights only). We compare five
variants of ProxConnect++ (BC, PC, BNN, BNN+, and BNN++) with FP, PQ, and rPC. End-to-end
training tasks are marked as bold (i.e., ImageNet-1K for DeiT-T/S/B), where the results are the mean
of three runs with different random seeds.

Model Dataset FP PQ rPC
ProxConnect++

BC PC BNN BNN+ BNN++

ViT-B
CIFAR-10 98.13% 85.07% 86.21% 87.97% 90.13% 89.07% 88.13% 90.22%

CIFAR-100 87.13% 72.09% 73.51% 76.35% 78.13% 77.22% 77.11% 79.21%
ImageNet-1K 77.91% 57.66% 55.31% 63.23% 66.33% 65.33% 63.53% 66.33%

DeiT-T
CIFAR-10 94.85% 82.77% 82.25% 83.09% 85.15% 86.11% 85.92% 86.40%
CIFAR-100 72.37% 54.53% 55.67% 59.66% 60.15% 60.04% 59.78% 60.33%

ImageNet-1K 72.20% 61.23% 60.36% 63.23% 66.15% 64.99% 66.67% 67.32%

DeiT-S
CIFAR-10 95.09% 81.66% 80.23% 84.85% 85.13% 85.09% 85.16% 86.17%
CIFAR-100 73.19% 45.57% 46.66% 60.11% 61.59% 60.55% 60.15% 62.99%

ImageNet-1K 79.90% 69.88% 68.75% 73.16% 73.51% 73.77% 73.25% 73.51%

DeiT-B
CIFAR-10 98.72% 85.21% 86.35% 88.97% 90.53% 90.21% 89.03% 90.66%
CIFAR-100 86.66% 72.11% 73.39% 75.39% 78.55% 76.22% 76.51% 78.29%

ImageNet-1K 81.80% 72.53% 70.11% 76.55% 76.61% 75.59% 76.63% 76.72%

Table 4: Results on binarizing vision transformers (BW, BWA, and BWAA) on DeiT-T. We compare
5 variants of ProxConnect++ (BC, PC, BNN, BNN+, and BNN++) with FP, PQ, and rPC. End-to-
end training tasks are marked as bold (i.e., ImageNet-1K), where we omit the results for BWAA due
to training divergence and the reported results are the mean of 3 runs with different random seeds.

Dataset Task FP PQ rPC
ProxConnect++

BC PC BNN BNN+ BNN++

CIFAR-10
BW 94.85% 82.77% 82.25% 83.09% 85.15% 86.11% 85.92% 86.40%
BWA 94.85% 82.56% 82.02% 82.89% 85.01% 85.99% 85.66% 86.12%
BWAA 94.85% 81.34% 80.97% 82.08% 84.31% 84.87% 84.72% 85.31%

CIFAR-100
BW 72.37% 54.53% 55.67% 59.66% 60.15% 60.04% 59.78% 60.33%
BWA 72.37% 53.77% 54.98% 59.21% 59.71% 59.66% 59.12% 59.85%
BWAA 72.37% 52.15% 54.36% 58.15% 59.01% 58.72% 58.15% 59.06%

ImageNet-1K
BW 72.20% 61.23% 60.36% 63.23% 66.15% 64.99% 66.67% 67.32%
BWA 72.20% 60.01% 58.77% 62.13% 65.29% 63.75% 65.29% 65.65%

DeiT-T DeiT-S DeiT-B ViT-B

50

100

FP BNN++ PTB

Figure 2: Comparison between Full
Precision (FP) model, BNN++, and
Post-training Binarization (PTB) on
the fine-tuning task on CIFAR-10.

(1) We keep the mean sn of full precision weights w∗
n for231

each layer n as a scaling factor (can be thus absorbed into232

Fµt
r ) for the binary weights wn. Such an approach keeps233

the range of w∗
n during binarization and significantly re-234

duces training difficulty without additional computation.235

(2) For binarized vision transformer models, LayerNorm is236

important to avoid gradient explosion. Thus, we add one237

more LayerNorm layer at the end of each attention block.238

(3) When fine-tuning a pre-trained model (full precision),239

the binarized vision transformer usually suffers from a bad240

initialization. Thus, a few epochs of pre-training on the241

binarized vision transformer is extremely helpful and can242

make fine-tuning much more efficient and effective.243

(4) We apply the knowledge distillation technique in BiBERT [37] to boost the performance. We244

use full precision pre-trained models as the teacher model.245

Main Results: We report the main results of binarizing vision transformers in Table 3 (BW) and246

Table 4 (BW, BWA, BWAA), where we compare ProxConnect++ algorithms with the FP, PQ, and247

rPC baselines on fine-tuning and end-to-end training tasks. We observe that: (1) ProxConnect++248

variants generally outperform PQ and rPC and are able to binarize vision transformers with less249

than 10% accuracy degradation on the BW task. In particular, for end-to-end training, the best250

performing ProxConnect++ algorithms achieve ≈ 5% accuracy drop; (2) Among the five variants,251

we confirm BNN++ is also generally better overall for vision transformers. This provides evidence252

8



Table 5: Ablation study on the effect of the scaling factor, normalization, pre-training, and knowl-
edge distillation. Experiments are performed on CIFAR-10 with ViT-B.

Method Scaling Normalization Pre-train KD Accuracy

PC

✗ ✗ ✗ ✗ 0.10%
✓ ✗ ✗ ✗ 12.81%
✓ ✓ ✗ ✗ 66.51%
✓ ✓ ✓ ✗ 88.53%
✓ ✓ ✓ ✓ 90.13%

BNN++

✗ ✗ ✗ ✗ 1.50%
✓ ✗ ✗ ✗ 23.55%
✓ ✓ ✗ ✗ 77.22%
✓ ✓ ✓ ✗ 89.05%
✓ ✓ ✓ ✓ 90.22%

that our Theorem 1 allows practitioners to easily design many and choose the one that performs best253

empirically; (3) With a clear underlying optimization objective, BNN++ again outperforms BNN+254

across all tasks, which empirically verifies our theoretical findings on vision transformers; (4) In255

general, we find that weight binarization achieves about 30x reduction in memory footprint, e.g.,256

from 450 MB to 15 MB for ViT-B.257

Figure 3: Results of binarizing different compo-
nents (blocks) of ViT-B architecture on CIFAR-
10. Warmer color indicates significant accuracy
degradation after binarization.

Ablation Studies: We provide further ablation258

studies to gain more insights and verify our bi-259

narization protocols for vision transformers.260

(1) Post-training Binarization: in Figure 2,261

we verify the difference between PTB (post-262

training binarization) and BAT (binarization-263

aware training) on the fine-tuning task on264

CIFAR-10 across different models. Note that265

we use BNN++ as a demonstration of BAT. We266

observe that without optimization during fine-267

tuning, the PTB approach fails in general, thus268

confirming the importance of considering BAT269

for vision transformers.270

(2) Effect of binarizing protocols: here we271

show the effect of the four binarizing protocols272

mentioned at the beginning, including scaling273

the binarized weights using the mean of full274

precision weights (scaling), adding additional275

LayerNorm layers (normalization), BAT on the276

full precision pre-trained models (pre-train) and277

knowledge distillation. We report the results in278

Table 5 and confirm that each protocol is essen-279

tial to binarize vision transformers successfully.280

(3) Which block should one binarize: lastly, we281

visualize the sensitivity of each building block282

to binarization in vision transformers (i.e., ViT-B) on CIFAR-10 in Figure 3. We observe that bina-283

rizing blocks near the head and the tail of the architecture causes a significant accuracy drop.284

5 Conclusion285

In this work we study the popular approximate gradient approach in neural network binarization. By286

generalizing ProxConnect and proposing PC++, we provide a principled way to understand forward-287

backward quantizers and cover most existing binarization techniques as special cases. Furthermore,288

PC++ enables us to easily design the desired quantizers (e.g., the new BNN++) with automatic289

theoretical guarantees. We apply PC++ to CNNs and vision transformers and compare its variants290

in extensive experiments. We confirm empirically that PC++ overall achieves competitive results,291

whereas BNN++ is generally more desirable. Limitations and broader impacts are addressed in292

Appendix G.293
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Appendix for Understanding Neural Network Binarization with400

Forward and Backward Proximal Quantizers401

A More on Proximal Quantizers402

Dockhorn et al. [13] gave a complete characterization of the proximal quantizer Pr: a (multi-valued)403

mapping P is a proximal quantizer (of some underlying regularizer r) iff it is monotone, compact-404

valued and with a closed graph. We now give a few examples to illustrate the ubiquity of proximal405

quantizers, as well as the generality of PC:406

• Identity function: apparently, choosing Pµt
r as the identity function recovers the full preci-407

sion training.408

• Pµt
r = PQ: as Q = {±1}, this choice recovers exactly BC in (2).409

• Pµt
r = Lϱ

ρ: This is the general piecewise linear quantizer designed by Dockhorn et al. [13].410

Recall that Q = {qk}2k=1, where q1 = −1, q2 = +1, such that p2 = 0 is the middle point.411

By introducing two parameters ρ, ϱ ≥ 0, we can define two shifts:412

horizontal:q−1 = q1, q
+
1 = p2 ∧ (q1 + ρ)

q−2 = p2 ∨ (q2 − ρ), q+2 = q2

vertical: p−2 = q1 ∨ (p2−ϱ), p+2 = q2 ∧ (p2+ϱ).

Then, we define Lϱ
ρ as the piece-wise linear map (that simply connects the points by straight413

lines):414

Lϱ
ρ(w

∗
)=



q1, if q−1 ≤ w∗ ≤ q+1

q1 + (w∗ − q+1 )
p
−
2 −q1

p2−q
+
1

, if q+1 ≤ w∗ < p2

p+
2 + (w∗−p2)

q2−p
+
2

q
−
2 −p2

if p2 < w∗ ≤ q−2

q2, if q−2 ≤ w∗ ≤ q+2

. (10)

For the middle points, Lϱ
ρ(w

∗) can be regarded as the intermediate state between the identity415

function and PQ such that, where Lϱ
ρ(w

∗) may take any value within the two limits. Note416

that ρ controls the discretization vicinity, such that in practice, ρ is linearly increased over417

time to fulfill binary weights in the end. We visualize examples of Lϱ
ρ(w

∗) in Figure 4.418

−1 1

−1

1

p−2

p+2 w∗

Lϱ
ρ(w

∗)

(a) ρ = 0, ϱ = 0.2.

−1 1

−1

1

p−2

p+2 w∗

Lϱ
ρ(w

∗)

(b) ρ = ϱ = 0.2.

−1 1

−1

1

w∗

Lϱ
ρ(w

∗)

(c) ρ = 0.2, ϱ = 0.

Figure 4: Different instantiations of the proximal map Lϱ
ρ in (10) for Q = {−1, 1}.

B Related works419

Vision Transformer. In computer vision, vision transformers have become one of the most pop-420

ular backbone architectures. Dosovitskiy et al. [14] is the first to modify the transformer model to421

enable images as input, namely the ViT model. Specifically, Dosovitskiy et al. [14] translates an422

image to a sequence of flattened image patches as input, and applies a self-attention mechanism423

to retrieve patch-wise information in the feature representation. Touvron et al. [42] further equips424

ViT with knowledge distillation and proposes DeiT that generalizes well on smaller models and425

datasets. Liu et al. [30] further proposes Swin as a hierarchical vision transformer that computes426

representation with shifted windows.427
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In vision transformers, the main computation overhead is the multi-head attention layer, whose cost428

is quadratic with the length of the image patches. As a result, such models are in general expensive to429

train. To reduce the computational cost, different compression techniques have been explored. For430

instance, Pan et al. [36] performs dynamic pruning for less important patches; Bhojanapalli et al.431

[6] reuses attention scores computed for one layer in multiple building blocks; Hou and Kung [20]432

applies multi-dimensional model compression. In this paper, we focus on an alternative approach,433

namely network quantization.434

Network Quantization. We consider two possible scenarios of network quantization:435

(1) Post-training Quantization: We first discuss the easier post-training quantization methods. Such436

approaches usually quantize the full-precision pre-trained model and directly apply it for inference.437

Post-training quantization is widely used in CNNs [1, 3, 9, 27, 33, 34, 43]. Liu et al. [31] is the first438

to explore PTQ for vision transformers. It optimizes the quantization intervals and considers ranking439

information in the loss function. However, it only considers quantization to a 6-bit model without440

severe performance degradation. For lower-bit quantization, it is essential to leverage training.441

(2) Quantization-Aware Training (QAT): different from post-training quantization, quantization-442

aware training leverage quantization during pre-training or fine-tuning. Thus it can be formulated443

as an optimization problem for learning the optimal quantized weights [5, 10, 15, 17, 22–24, 32,444

46]. Compared with PTQ, QAT can obtain less accuracy drop in low-bit quantization compared to445

the full-precision model. Z. Li et al. [28] and Xu et al. [44] demonstrate that QAT requires a unique446

design to quantize vision transformers and it is possible to perform quantization to 3 bit without se-447

vere performance degradation. [19] further performs binarization with softmax-aware binarization448

and information preservation.449

C Additional Theoretical Results450

Theorem 1. A pair of forward-backward quantizers (F,B) admits the decomposition in (6) (for451

some smoothing parameter µ and regularizer r) iff both F and B are functions of P(w) :=452 ∫ w

−∞
1

B(ω) dF(ω), which is proximal (i.e., monotone, compact-valued and with a closed graph).453

Proof. We first recall the decomposition in (6):454

Fµ
r := T ◦ Pµ

r , Bµ
r := T′ ◦ Pµ

r . (19)

Suppose first that (F,B) satisfies the above decomposition. Clearly, both F and B are functions of455

P = Pµ
r . Moreover,456

F′(ω)

B(ω)
=

Pµ
r
′
(ω) · T′ ◦ Pµ

r

T′ ◦ Pµ
r

= Pµ
r
′
(ω)

and thus457 ∫ w

−∞

1

B(ω)
dF(ω) = Pµ

r (w)− Pµ
r (−∞),

which is clearly proximal.458

Conversely, let P(w) :=
∫ w

−∞
1

B(ω) dF(ω) be proximal. Taking (generalized) derivative we obtain459

P′(ω) =
F′(ω)

B(ω)
.

Since B is a function of P, say B = T′ ◦ P, performing integration we obtain460

F = T ◦ P,

up to some immaterial constant (that can be absorbed into T). Thus, (F,B) satisfies the decomposi-461

tion (6).462

The following convergence guarantee for PC++ follows directly from the results in Dockhorn et al.463

[13]:464
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Theorem 2. Fix any w, the iterates in (7) satisfy:465

t∑
τ=s

ητ [⟨wτ −w, ∇̃ℓ(Twτ )⟩+ r(wτ )− r(w)] ≤ ∆s−1(w)−∆t(w) +

t∑
τ=s

∆τ (wτ ), (11)

where ∆τ (w) := rτ (w)− rτ (wτ+1)−
〈
w −wτ+1,w

∗
τ+1

〉
is the Bregman divergence induced by466

the (possibly nonconvex) function rτ (w) := µτ+1 ·r(w)+ 1
2∥w∥22. (Recall that µt := 1+

∑t−1
τ=1 ητ .)467

The summand on the left-hand side of (11) is related to the duality gap, which is a natural measure468

of stationarity for the nonconvex problem (4). Indeed, it reduces to the familiar ones when convexity469

is present:470

Theorem 3. For convex ℓ ◦ T and any w, the iterates in (7) satisfy:471

min
τ=s,...,t

E[f(wτ )−f(w)] ≤ 1∑t
τ=s ητ

· E
[
∆s−1(w)−∆t(w)+

∑t

τ=s
∆τ (wτ )

]
. (12)

If r is also convex, then472

min
τ=s,...,t

E[f(wτ )−f(w)] ≤ 1∑t
τ=s ητ

· E
[
∆s−1(w)+

∑t

τ=s

η2
τ

2 ∥∇̃ℓ(wτ )∥22
]
, (13)

and473

E
[
f(w̄t)−f(w)

]
≤ 1∑t

τ=s ητ
· E

[
∆s−1(w)+

∑t

τ=s

η2
τ

2 ∥∇̃ℓ(wτ )∥22
]
, (14)

where wt =
∑t

τ=s ητwτ∑t
τ=s ητ

, and f := ℓ ◦ T+ r is the regularized and transformed objective.474

The right-hand sides of (13) and (14) diminish iff ηt → 0 and
∑

t ηt = ∞ (assuming boundedness of475

the stochastic gradient). We note some trade-off in choosing the step size ητ : both the numerator and476

denominator of the right-hand sides of (13) and (14) are increasing w.r.t. ητ . The same conclusion477

can be drawn for (12) and (11), where ∆τ also depends on ητ (through the accumulated magnitude478

of w∗
τ+1).479

D Additional Experimental Settings480

Hardware and package: All experiments were run on a GPU cluster with NVIDIA V100 GPUs.481

The platform we use is PyTorch. Specifically, we apply ViT and DeiT models implemented in482

Pytorch Image Models (timm) 6.483

Pre-trained models: In this work, we applied pre-trained full precision models for fine-tuning484

tasks. Here we specify the links to the models we used (note that we choose patch size equal to 16485

across all models):486

• ViT-B (ImageNet-1K): https://storage.googleapis.com/vit_models/487

augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.488

0--imagenet2012-steps_20k-lr_0.01-res_224.npz;489

• ViT-B (ImageNet-21K): https://storage.googleapis.com/vit_models/augreg/490

B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz;491

• DeiT-T (ImageNet-1K): https://dl.fbaipublicfiles.com/deit/deit_tiny_492

patch16_224-a1311bcf.pth;493

• DeiT-S (ImageNet-1K): https://dl.fbaipublicfiles.com/deit/deit_small_494

patch16_224-cd65a155.pth;495

• DeiT-B (ImageNet-1K): https://dl.fbaipublicfiles.com/deit/deit_base_496

patch16_224-b5f2ef4d.pth.497

6https://timm.fast.ai/
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Table 6: Error bar for binarizing weights (BW), binarizing weights and activation (BWA) and bina-
rizing weights, activation, with 8-bit accumulators (BWAA) on CNN backbones. We consider the
end-to-end (E2E) pipeline. We compare five variants of ProxConnect++ (BC, PC, BNN, BNN+, and
BNN++) with FP, PQ, and rPC. For the end-to-end pipeline, we report the mean of three runs with
different random seeds.

Dataset Task FP PQ rPC
ProxConnect++

BC PC BNN BNN+ BNN++

CIFAR-10
BW

92.01% 81.59% 81.82% 87.51% 88.05% 89.92% 89.39% 90.03%
±0.19 ±0.11 ±0.16 ±0.07 ±0.05 ±0.11 ±0.13 ±0.06

BWA
92.01% 81.51% 81.60% 86.99% 87.26% 89.15% 89.02% 89.91%
±0.13 ±0.16 ±0.09 ±0.11 ±0.23 ±0.08 ±0.16 ±0.09

ImageNet-1K
BW

78.87% 63.23% 66.39% 67.45% 67.51% 67.49% 66.99% 68.11%
±0.06 ±0.11 ±0.22 ±0.04 ±0.09 ±0.12 ±0.26 ±0.02

BWA
78.87% 61.19% 64.17% 65.42% 65.31% 65.29% 65.98% 66.08%
±0.18 ±0.22 ±0.19 ±0.22 ±0.17 ±0.21 ±0.15 ±0.13

Table 7: Error bar on binarizing vision transformers (BW and BWA). We consider the end-to-end
(E2E) pipeline. We compare five variants of ProxConnect++ (BC, PC, BNN, BNN+, and BNN++)
with FP, PQ, and rPC. The results are the mean of three runs with different random seeds.

Model Task FP PQ rPC
ProxConnect++

BC PC BNN BNN+ BNN++

DeiT-T
BW

72.20% 61.23% 60.36% 63.23% 66.15% 64.99% 66.67% 67.32%
±0.11 ±0.07 ±0.19 ±0.21 ±0.11 ±0.15 ±0.09 ±0.07

BWA
72.20% 60.01% 58.77% 62.13% 65.29% 63.75% 65.29% 65.65%
±0.13 ±0.12 ±0.08 ±0.06 ±0.19 ±0.18 ±0.06 ±0.03

DeiT-S BW
79.90% 69.88% 68.75% 73.16% 73.51% 73.77% 73.25% 73.51%
±0.21 ±0.26 ±0.16 ±0.19 ±0.22 ±0.08 ±0.11 ±0.13

DeiT-B BW
81.80% 72.53% 70.11% 76.55% 76.61% 75.59% 76.63% 76.72%
±0.17 ±0.15 ±0.23 ±0.07 ±0.24 ±0.17 ±0.13 ±0.07

E Comparison with BiViT498

Y. He et al. [19] propose BiViT, which considers the same binarization task on vision transformers499

(specifically, Swin-T and Nest-T). Y. He et al. [19] follow a different implementation with softmax-500

aware binarization and information preservation. To fairly compare with this work, we follow the501

same setting and run PC++ on Swin-T and NesT-T on ImageNet-1K. We observe that BNN++502

achieves 71.3% Top-1 accuracy (BiViT:70.8%) and 69.3% Top-1 accuracy (BiViT:68.7%) respec-503

tively on Swin-T and NesT-T. Note that BiViT simply applies BNN as the main algorithm and may504

be further improved with PC++ algorithms.505

F Additional results for end-to-end training506

Finally, we provide the error bars for our main experiments in Table 6 and Table 7 for CNN back-507

bones and vision transformer backbones, respectively.508

G Broader Impacts and Limitations509

We anticipate our work to further enable training and deploying advanced machine learning models510

to resource limited devices and environments, and help reducing energy consumption and carbon511

footprint at large. We do not foresee any direct negative societal impact.512

One limitation we hope to address in the future is to build a theoretical framework that will allow513

practitioners to quickly evaluate different forward-backward quantizers for a variety of applications.514
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