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1 ARCHITECTURE OF THE 3D REASONING MODULE

We show the architecture of the 3D reasoning module in Fig. 1. Each 3D reasoning block consists
of a self-attention layer and a cross-attention layer, which excel at capturing intra-view and inter-
view relationships, respectively. The input 2D feature map is flattened from RC×Hf×Wf to RN×C ,
where N = Hf × Wf . A position embedding, denoted as PE, is added to the flattened feature
map. Fig. 1(b) illustrates the attention layer. The context refers to the input feature map itself in
the self-attention layer and it represents the feature map of another view in the cross-attention layer.
We use the standard multi-head attention (Vaswani et al., 2017) and layer normalization (Ba et al.,
2016) in our attention layers.

2 DATA CONFIGURATION

The synthetic images are generated by rendering objects of Objaverse from randomly sampled view-
points (Liu et al., 2023). We attach these images to random backgrounds which are sampled from
COCO (Lin et al., 2014). We randomly sample 128 objects from Objaverse and use 5 objects from
LINEMOD sampled by Liu et al. (2022) as testing data, reserving the remaining objects for training.
This design guarantees that all objects are previously unseen during the testing phase. We train the
network on both synthetic and real data, alleviating the problem of domain gap.

Recall that we assume we have access to only one reference image and the objective is to estimate
the relative object pose between the reference and the query. Therefore, the selection of the reference
image is a crucial aspect of our benchmark. As multi-view images are available in Objaverse and
LINEMOD datasets, one could randomly sample a reference given a query. However, such a strategy
may yield an inappropriate reference. As shown in Fig. 2, the object depicted in the reference
image barely overlaps with the one in the query, which makes the relative object pose estimation too
challenging. Therefore, we filter out the inappropriate references from the datasets during training
and testing, which makes our evaluation more reasonable.

Specifically, we convert the object rotation matrices Rr and Rq to Euler angles (αr, βr, γr) and
(αq, βq, γq), which indicate azimuth, elevation, and in-plane rotation, respectively. Note that only
azimuth and elevation lead to viewpoint changes, which thus determine the co-visible regions be-
tween the reference and query. Consequently, we set the in-plane rotation to 0 and convert the Euler
angle back to the rotation matrix, i.e., R̃ = h(α, β, 0). We then measure the difference of the new
rotation matrices R̃r and R̃q by computing the geodesic distance. We exclude the image pair with a
distance larger than a predefined threshold (90◦ by default in our experiments). As illustrated in Fig.
4 in our main paper, the retained image pairs display acceptable variations in object pose. Moreover,
we utilize the synthetic images on Objaverse generated by Liu et al. (2023). Each 3D object model
is rendered from 10 randomly sampled viewpoints, which yields synthetic images without in-plane
rotations. To introduce in-plane rotations, we rotate the reference and query images using randomly
sampled 2D in-plane rotations during training and testing.

Fig. 3 shows the histograms of object pose variations between the reference and query images. We
measure the variations based on the geodesic distance between the two object rotation matrices Rr

and Rq . The histograms show that the image pairs we used in our experiments exhibit a diverse
range of object pose variations, which makes our evaluation results convincing.
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(a) 3D reasoning block
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(b) Attention layer

Figure 1: Architecture of the 3D reasoning module.
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Figure 2: Examples of inappropriate references.
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(a) Objaverse
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(b) LINEMOD
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(c) CO3D

Figure 3: Histograms of the object pose variation between the reference and query. We measure
the object pose variation as the geodesic distance between the two object rotation matrices Rr and
Rq . The histogram depicts the number of image pairs falling within different distance intervals.

3 QUALITATIVE RESULTS OF 6D OBJECT POSE ESTIMATION

We extend our method to 6D pose estimation for unseen objects by utilizing an off-the-shelf gener-
alizable object detector (Liu et al., 2022). More concretely, instead of using dense-view reference
images, we feed the one reference we have in our benchmark to the pretrained detection network,
which predicts the object bounding box in the query image. We use the parameters of the object
bounding box to compute 3D object translation, following the implementation in (Liu et al., 2022).
Subsequently, we crop the object from the query and employ our approach to predict the relative 3D
object rotation. The object rotation in the query is derived as Rq = ∆RRr. Fig. 4 shows some qual-
itative results of 6D pose estimation for the unseen objects on LINEMOD. We draw the 3D object
bounding boxes in blue and green, using the predicted 6D object pose and the ground truth, respec-
tively. The promising results demonstrate the potential of our approach in terms of generalizable 6D
object pose estimation.
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Figure 4: Qualitative results of 6D pose estimation for unseen objects on LINEMOD. The blue
and green 3D object bounding boxes are drawn using the predicted 6D object pose and the ground
truth, respectively.

Figure 5: Verification scores of all sampled pose hypotheses. The x-axis and y-axis represent
the geodesic distance between the pose samplings and the ground-truth relative object pose, and the
verification scores, respectively.

4 MORE DETAIL ABOUT THE ABLATION STUDIES

As we introduced in the main paper, we performed an ablation study, evaluating the robustness
against the noise added to the 2D object bounding boxes. We simulate the bounding boxes in real-
world applications by performing jittering to the ground truth with different levels of noise. We
denote the object center and the size of the bounding box as c and s. We then randomly sample the
perturbed parameters from the intervals (c − 0.5 ∗ n ∗ s, c + 0.5 ∗ n ∗ s) and ( s

1+n , s ∗ (1 + n)),
respectively, where n indicates the noise. We varied n from 0.05 to 0.3 in our experiments. Please
refer to Fig. 5 (b) in our main paper for the experimental results.

5 EFFICIENCY

It is worth noting that during testing, our method utilizes 50,000 pose samples, while RelPose++ uses
500,000. Despite processing fewer samples, our method achieves better accuracy in relative object
pose estimation. To further evaluate the efficiency, we measure the computation cost in multiply-
accumulate operations (MACs) and show the results in Table 1. All evaluated methods process the
pose samples in parallel. “RelPose++-5000 and “Ours-5000” refer to RelPose++ and our method
with 5,000 samples, respectively. The results clearly show that our method achieves a better trade-
off between efficiency and accuracy in relative object pose estimation. Additionally, our method
with only 5,000 samples still delivers more accurate results than RelPose++ with 500,000 samples.
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Method RelPose++ Ours RelPose++-5000 Ours-5000
MACs 94.6 54.7 11.3 16.3
Angular Error 38.5 28.5 50.7 35.3

Table 1: Efficiency. Relpose++ uses 500,000 pose samples by default, while we sample 50,000
poses for our method in our experiments. RelPose++-5000 and Ours-5000 denote RelPose++ and
our method with 5,000 pose samples, respectively. The multiply-accumulate operations (MACs) are
used to measure the computation consumption.
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