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This material is organized as follows. Section[I] presents more numerical Results. Section [2|proves
Theorem 2.1 and Theorem 2.2. Section 3| proves Theorem 3.1 and Theorem 3.2. Section @] presents
parameter settings used in the numerical experiments.

1 More Numerical Results

1.1 A Multi-label Classification Example

We validate the effectiveness of the StoNet on the MNIST handwritten digits classification task
(LeCun et al.,|1998). The MNIST dataset contains 10 different classes (0 to 9) of images, including
60,000 images in the training set and 10,000 images in the test set. Each image is of size 28 x 28
pixels with 256 gray levels. Due to inscalability of the existing nonlinear SDR methods with respect
to the sample size, we worked on a sub-training set which consisted of 20,000 images equally selected
from 10 classes of the original training set.

We applied StoNet, GSIR, GSAVE, autoencoder and PCA to obtain projections onto low-dimension
subspaces with the dimensions ¢ = 10, 49, 98, 196, 392, and then trained a DNN on the dimension
reduced data for the multi-label classification task. Note that for the StoNet, a multi-class logistic
regression should work in principle for the dimension reduced data, and the DNN is used here for
fairness of comparison; for some other methods such as autoencoder and PCA, the DNN seems
necessary for modeling the dimension-reduced data for such a nonlinear classification problem. The
StoNet consisted of one hidden layer with ¢ hidden units. All hyperparameters were determined
based on 5-fold cross-validation in terms of misclassification rates. Refer to Section [ of this material
for the parameter settings used in the experiments.

The experimental results are summarized in Figure [ST|and Table[2] (of the main text). For the dataset,
we also trained a DNN with one hidden layer and 50 hidden units as the comparison baseline, which
achieved a prediction error rate of 0.0459. The comparison shows that the StoNet outperforms GSIR,
GSAVE, autoencoder and PCA in terms of misclassification rates. Moreover, StoNet is much more
efficient than GSIR, GSAVE and autoencoder in computational time. It is interesting to note that
when the data was projected onto a subspace with dimension 392, StoNet even outperformed the
DNN in prediction accuracy. We have also tried LSMIE for this example, but lost interests finally as
the method took more than 24 CPU hours on our computer.
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Figure S1: Misclassification rates versus dimension ¢. The red dash line represent the baseline result

by training a DNN with one hidden layer and 50 hidden units on the original dataset (mistclassification
rate = 0.0459).

1.2 A Regression Example

Refer to Figure[S2|for the performance of different methods on the example.
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Figure S2: Pearson Correlation v.s. dimension ¢ for the regression example: The red dash line
represent the baseline result by training a DNN with one hidden layer and 100 hidden units on the
original dataset (Pearson correlation = 0.9987(0.0000)).

2 Proofs of Theorem 2.1 and Theorem 2.2

2.1 Proof of Theorem 2.1

PROOF: Since © is compact, it suffices to prove that the consistency holds for each value of 8. For
simplicity of notation, we rewrite o, ; by o; in the remaining part of the proof.

LetY s = (Y1,Y5,...,Y}), where Y';’s are latent variables as given in Equation (6) of the main

text. LetY = (Yq,...,Y},), where Y ,;’s are calculated by the neural network in Equation (5) of
the main text. By Taylor expansion, we have

log T(Y,Y 1is| X,0) =logn(Y,Y|X,0) + €' Vy, . logn(Y,Y|X,0)+O0(||e]?), (S

mis



where € = Y —Y i = (€1,€2,...,€,),logn(Y,Y|X,0) =logn(Y|X,8) is the log-likelihood
function of the neural network, and Vy_ . log7(Y,Y|X,8) is evaluated according to the joint
distribution given in Equation (10) of the main text.

Consider Vy, log7(Y,Y ;| X, 0). For its single latent variable, say Yi(k), the output of the hidden
unit k at layer i € {2,...,h}, we have

dit1

k 1 ¥ j K o (k
Vyo log (Y, YV X,0) = —— 3" (V7] - b)) — wil oY)l Pw (V)
1+1 j=1 (S2)
I o k k
= 5 b —wP ey
where wgi)l denotes the vector of the weights from hidden unit 5 at layer ¢ 4 1 to the hidden units at

layer 7, and wl(ilf) denotes the weight from hidden unit j at layer ¢ + 1 to the hidden unit & at hidden

layer 4. Further, by noting that z(-&-)l = bgi_)l + wgfli//(Yi) + egi)l and Yi(j) = bgj) + wz(-j)z/;(Yi_l),
we have

1 dit1

> (k > k
Yy logm(Y. Y |X,0) = —— 3 (e +wi (b(Yi) = b(¥V i) (Vi)
i+1 j=1 (83)
1 ~
— P (Yin) —9(Yin)]

For layer ¢ = 1, the calculation is similar, but the second term in @ is reduced to 0. Then by
Assumption 2.1-(1)&(iv), we have

‘Vyi(m log 7 (Y,Y’.(k) | X, 0)‘

i k 2 P
[ A s el (F) + (@) mia e} + e el ifi >

- i+1 k O 2 B
7 {EZ?LT z+1“%i1)¢'( )‘F(dT) "H+1H6iH}, ifi=1
(S4)
Next, let’s figure out the order of ||¢;||. The kth component of €; is given by
i e® 4 P RS -
}/z(k) _ Y'Z(k) — { (k) + w; (w(Yz—l) 7/)(Yz—1))a Z > 17 (SS)
e 1=1.
Therefore, ||€1]| = ||e1]|; and for i = 2,3, ..., h, the following inequalities hold:
leill < lesll + c'rdillei-sll, and [le:|* < 2[leq||* + 2(c'r)*d7 ||| (S6)

Since e; and e;_; are independent, by summarizing (S4) and (S6), we have

h+1 h
/ 'Vy.  logm(Y,Y|X,0)7(Y pis| X, 0,Y)dY s < O (Z s—dn (] ] d?)dk_1>

h+1 i=k
h 2 h—1
Op_ g
+0 <Z 2_21dh(H d%)dk1> +---4+0 <0’§d2d1> = 0(1),

k=2 R i=k
(S7)
which, by and Assumption 2.1-(v), implies the mean value
Ellogn(Y,Y 1is| X,0) —logn(Y|X,0)] -0, V€O (S8)
Further, it is easy to verify
/|eTvym_§ log (Y, Y| X, 0)]*7(Y mis| X, 0,Y)dY s < 00, (S9)

which, together with (ST)) and (S6), implies
Ellog (Y, Y pmis| X,0) —logn(Y]X,0)* < cc. (S10)
Therefore, the weak law of large numbers (WLLN) applies, and the proof can be concluded. [J



2.2 Proof of Theorem 2.2

To prove Theorem 2.2, we first prove Lemma[ST] from which Theorem 2.2 can be directly derived.

Lemma S1 Consider a function Q(0, X ). Suppose that the following conditions are satisfied:

(i) Q(0,X,,) is continuous in 0 and there exists a function Q*(0), which is continuous in 0
and uniquely maximized at 0.

(ii) For any € > 0, supgce\p(o) Q*(0) exists, where B(e) = {6 : |0 — 0™ < €}, Let
6 =Q"(67) — supgeen () @ (0).

(iii) supgece |Q(0,X,) — Q*(0)] 2 0asn — oo.
Let 6, = argmaxgeo Q(0, X ). Then ||0,, — 0*| 5 0.
PROOF: Consider two events:

(2) supgeeo\ (o) |Q(0, X)) — Q*(0)] < /2, and
(b) supgee [Q(8, X1) — Q*(6)] < /2.

From event (a), we can deduce that for any 6 € ©\B(e), Q(0, X,,) < Q*(0) + /2 < Q*(0*) —
d+9/2 < Q*(6*) — §/2. From event (b), we can deduce that for any 8 € B(e), Q(0, X,,) >
Q*(0) — 6/2 and thus Q(6", X ,,) > Q*(0™) — §/2.

If both events hold simultaneously, then we must have 8,, € B(e) as n — oo. By condition (7ii), the
probability that both events hold tends to 1. Therefore, P(0,, € B(e)) — 1.0

3 Proofs of Theorem 3.1 and Theorem 3.2

Since our goal is to obtain the SDR predictor Y}, for all observations in DD, we proved the convergence
of Algorithm|[I]for the case that the full training dataset is used at each iteration. If the algorithm is
used for other purposes, say estimation of 0 only, a mini-batch of data can be used at each iteration.
Extension of our proof for the mini-batch case will be discussed in Remark [S2] To complete the
proof, we make the following assumptions.

Assumption B1 The function Fp(-,-) takes nonnegative real values, and there exist constants
A,B > 0, such that |[Fp(0,0")] < A, |[VzFp(0,0%)| < B, |VeFp(0,0%)| < B, and
|1H(0,6%)| < B.

Assumption B2 (Smoothness) Fp(-,-) is M-smooth and H (-, -) is M-Lipschitz: there exists some
constant M > 0 such that for any Z,Z' € R* and any 0,0’ € ©,

IV2FD(Z.0) — V2Fp(Z',.6)| < M| Z - Z'|| + M6 - 6],
IVoFD(Z.8) — VoFp(Z',0)|| < M||Z — Z'| + M|j6 - 6],
|H(Z,6)— H(Z',0)| < M|Z - Z'|| + Mo — 0|

Assumption B3 (Dissipativity) For any 0 € ©, the function Fp(-,0%) is (m, b)-dissipative: there
exist some constants m > 5 and b > 0 such that (Z,N zFp(Z,0%)) > m|| Z|* — b.

The smoothness and dissipativity conditions are regular for studying the convergence of stochastic
gradient MCMC algorithms, and they have been used in many papers such as |Raginsky et al.|(2017)
and|Gao et al.|(2021). As implied by the definition of Fip(Z, 0), the values of M, m and b increase
linearly with the sample size n. Therefore, we can impose a nonzero lower bound on m to facilitate
the proof of Lemma ST]

Assumption B4 (Gradient noise) There exists a constant ¢ € [0,1) such that for any Z and 0,
E|VzFp(Z,0) - VzFp(Z,0)|? < 2¢(M?| Z|” + M?||0 — 67||* + B?).



Introduction of the extra constant ¢ facilitates our study. For the full data case, we have ¢ = 0, i.e.,
the gradient V z Fp(Z, 0) can be evaluated accurately.

Assumption BS The step size {vi }ren is a positive decreasing sequence such that v, — 0 and
Y re Yk = oo. In addition, let h(0) = E(H(Z,0)), then there exists 6 > 0 such that for any

00, (-0 1)) >5]0— 072 and liminf,_,e 262 4 Leti=Tk 5

TYr+1 Yi4+1

As shown by Benveniste et al.| (1990) (p.244), Assumption [B5] can be satisfied by setting v, =

a/ (b + k*) for some constants @ > 0, b > 0, and o € (0,1 A 26a). By (17), & increases linearly
with the sample size n. Therefore, if we set @ = 2(1/n) then 2§a > 1 can be satisfied, where §2(+)
denotes the order of the lower bound of a function. In this paper, we simply choose o € (0, 1) by
assuming that @ has been set appropriately with 26a > 1 held.

Assumption B6 (Solution of Poisson equation) For any 8 € O, z € 3, and a functionV(z) = 1 +
|z|l, there exists a function 19 on 3 that solves the Poisson equation pg(z) — Tope(z) = H(0,z) —
h(8), where Ty denotes a probability transition kernel with Toue(z) = f3 ue(2)Te(z, 2" )dz’, such
that ’

H(Ok, zk41) = h(Ok) + po, (zkt1) — To, o, (2k4+1), k=1,2,.... (S11)
Moreover; for all 0,0" € © and z € 3, we have |pe(2) — po(2)|| < 1/|0 — 0|V (2) and
leo (2)|| < 2V (2) for some constants ¢, > 0 and ¢ > 0.

This assumption is also regular for studying the convergence of stochastic gradient MCMC algorithms,
see e.g.,'Whye et al.|(2016) and [Deng et al.|(2019). Alternatively, one can assume that the MCMC
algorithms satisfy the drift condition, and then Assumption[B6|can be verified, see e.g.,/Andrieu et al.
(2005).

3.1 Proof of Theorem[3.1]

Theorem concerns the convergence of 6™, which is a complete version of Theorem 3.1

Theorem S1 (A complete version of Theorem Suppose Assumptions hold. If we set
€ = Ce/(ce + k%) and v, = C, /(cq + k*) for some constants o € (0,1), Cc >0,Cy > 0,¢c. >0
and cg > 0, then there exists an iteration ko and a constant Ao > 0 such that for any k > ko,

E((|0® — 6%)|?) < Aoy, (S12)

where \g = A\ + 6\/609% ((3M2 + (2)Cz + 3M2Co + 3B2 4 (2)2 for some constants N}, Co and
Cz.

PROOF: Our proof of Theorem@] follows that of Theorem 1 inDeng et al.|(2019). However, since

Algorithm 1 employs SGHMC for updating Z (k) which is mathematically very different from the
SGLD rule employed in|Deng et al.|(2019), Lemma 1 of Deng et al.| (2019) (uniform L5 bounds of
6" and Z®) cannot be applied any more. In Lemma below, we prove that E[|0*)||2 < Cp,
Ello®|2 < C, and E||Z®||2 < C'z under appropriate conditions of {; } and {7}, where Cy, C,
and C'z are appropriate constants.

Further, based on the proof of Deng et al.|(2019), we can derive an explicit formula for Ay:

1
Ao = Ay + 6V6Cq (3M? + (2)Cz + 3M?Co + 382 + (3)*,

where \{, together with kq can be derived from Lemma 3 of [Deng et al.|(2019) and they depend on

0 and {7x} only. The second term of \g is obtained by applying the Cauchy-Schwarz inequality

to bound the expectation E(0") — 0 To,  pe, ,(Z™)), where E|0*) — %] can be bounded

according to Lemmaand E|| Ty pgr—1) (Z™)]||2 can be bounded according to equation (18)
of Assumption[B6|and the upper bound of H(z, 8) given in (S13). O

Lemma S1 (Ly-bound) Suppose Assumptions 3.1-3.5 hold. If we set ¢, = C./(c. + k) and
v = Cy/(cq + k) for some constants a € (0,1], Ce >0, Cy > 0, cc > 0 and ¢y > 0, then there



, 12
exist constants Cy, Cz and Co such that sup;>, E Hv(l) H2 < Gy, sup;5 E HZ(Z) H < Cgz, and
2

PROOF: Similar to the proof of Lemma 1 of |Deng et al.| (2019), we first show
IV2Fp(Z.0)|? < 3M2| Z|2 + 3M2||6 — 67| + 3B2,
IVeFn(Z,0)|” < 3M?||Z||* + 3M?|6 — 67||* + 3B, (S13)
|H(Zz*+D g®0)))12 < 30m2|| Zz*+Y |2 4+ 3Mm2)|6%) — 672 + 3B2.

By Assumption 3.1, we have ||V zFp(0,0%)| < B,||H(0,0")|| < B,and |VeFp(0,07)| < B.
By Assumption 3.2,

IVzFp(Z,0)|
<IV2Fp(0,0%)]| + |V 2Fn(Z,0%) — V£ Fp(0,6%)| + |[V2Fp(Z,0) — V42 Fp(Z, 67|
<B+M|Z| + M]||6 - 67|,

IVeFD(Z,0)]
<[[VoFp(0,0%)| + [VeFD(Z,0") — VeFp(0,0")| + [[VoFD(Z,0) — VzFe(Z,6")|
<B+ M| Z|| + M]||6 — 07,
|H(Z*+D,6™))]
<|[H(0,6%)|| + |[H(Z*,6%) — H(0,6%)| + | H(Z**V,0%) — H(Z*HV, 67|
<B+ M||Z*V | + M|o®) — 67
Therefore, holds.
By Assumptions 3.2, 3.3 and 2.1-(i), we have
(Z,NzFp(Z,0)) =(Z,NzFp(Z,0")) —(Z,NzFp(Z,0") —VzFp(Z,0))

1 1 *
>m|Z|F = b 52| - 5|V 2Fp(Z,6") ~ V2 Fp(Z,0)|
1 1
>(m — 5)1ZI* —b— 3026 - 6"
2 2
1 .
>mo|| ZI* —b— S M*[6 - 6",

where the constants mg = m — % > 0, Then, similar to the proof of Lemma 2 in Raginsky et al.
(2017), we have

1
Fp(Z.0) = Fp(0,0%) + / (Z,N2Fp(tZ,0" + (0 — 0%))) + (8 — 0, VoFp(tZ,0" + (0 — 6%)))dt
0

1 1
<A+ [ 1ZII92Fp 2,67+ 10~ 0)]de + [ 6 6°[VoFD(Z,6"+ (6~ 67)]de
0 0
1 1
§A+||Z||/ tM||Z||+tM||070*||+Bdt+H0—0*|\/ £M||Z]| + tM]|6 — 6°|| + Bt
0 0

B B
<A+ M|Z|?+M||6 -6+ 5IIZII2 + 5||0 - 6"+ B
< M| Z||* + Ag + My — 6%,

where the constants My = M + g, and Ag = A + B. Then, similar to |Gao et al.| (2021), for
0 < A <min{?, 3h7e1%773 1 Assumption 3.3 gives us

1 2 1
(Z,92Fp(Z,6)) 2mo|| ZI — b — SM2[6 - 6> = A2My + L)1 ZI|* b — M6 — 6"
Ay

2
>2\(Fp(2.6) + [ |1Z)%) - 7

1 *
= (GM? +22M) [0 - 07|,
(S14)



where the constant A, = 5(2AA4y + b) > 0.

For Z™) and v*) | we have

E|Z* D)2 =B 20| + &, Elo® | + 26, E(Z*), o), (315)

Elo™* V) = E|(1 - exs1mv™ — ex1 V2 Fp (2™, 00)|1% + 26 11m87 'El[e* V|2
+ V8 11nBE((1 — ek )™ — 11 V2 Fp(Z2",0%), ex 1)
=E[|(1 = exs1m)v™ — 211V EFp(Z™,0")| + 26411087 d-
=E|(1 - ean)v(k) — ekHVzFD(Z(k), B(k))H2 + 2epp1nB M.
+ & L EB|VZzFp(Z® 0% -V Ep(Zz™,0™)|
<E[lv™|* + (2417 = 2ek01n)El[o™|* = 2e541(1 — expam)E(@™, V2 Fp (2™, 67))
+ e BIVZFp(Z™,0W)|1% + 26 11 (MPE|| 27| + MPE|[0™) — 0°|1* + B) + 2611187 ' d..
(S16)

Therefore, we have

E[lZz* + 070 )2 = E12W + 97w — 6107 V2 ED (2 ,00) + 26,118 Te™|?
=E[Z® + 070" — e V2 Fp (2™, 0|7 + 2604018710 de

+ i ElVZFp(Z2™,00) - V2 Fp (2™, 07|
<E|Z® +n o™ |? = 26,010 'EB(ZP) V2 Fp(Z2®),0%))

—2ex11n (0", VzFp(Z2™,0W) + &n | VzFp(27,00))?

+2ek01B87 ' ds + 25600 (MPE 207 + MPE[O™ — 07| + B?).
(S17)

(k+1)

Similarly, for 0 , we have

E[l6" ) — 67|
=E[0®) — 0"|* — 27 B0 — 6", H(Z*H,0W) + o7, B H(ZHHD,00)).

Recall that h(0) = E(H(Z,0)) , we have

E(OW — 0%, H(Z*,0W)) =E(0*) — 0%, H(Z2*,0%)) — h(0))) + E@OX) — 6%, h(8)))
=E(6" — 6%,1(9))) > 6E|6") — 07*.

Then we have

E[0%F) — 677 <(1 - 2910)E[0") — 0| + 27, E[H(ZHHV, 0)| 2. (S18)

For Fp(Z™,6™), we have

Fp(z®*+D gt+Dy _ pp(z® gtk
:FD(Z(’C+1)79(’€+1)) _ FD(Z(k'H),O(k)) + FD(Z(k+1),0(k)) _ FD(Z(k),H(k))

1
:/ (VoFp(Z*T1) 0"ty H(ZHT 0W)), 3  H(ZHTD 0W))at
0

1
+/ (VzFp(Z™ +te 0™, 00 e 10t
0



Then, by Assumption 3.2,
[Fp(Z4+,0440) — Fp (2™, 01))
<|(VeFp(Z*t),0W)), 7y H(ZHD W)y + (V7 Fp(Z®),0W), ¢ 10|

1
+ [ IVeFp (2", 0% + iy H(ZHHY,00))) = Vo Fp(Z2H),00) |||y H(ZHHD, 00)) | dt
0

1
- / IV2Fp (2™ + tep 0™, 0%) =V 2Fp (20, 00)|[lepr1v™ | dt
0
<|(VoFp(Z* . 0W), 3  H(ZWD 0W)) + (V2 Fp (2™, 00)), ¢ 10|

1 1
+ MY H(ZD, 002 4 DM o),

which implies
]EFD (Z(k+1) , 0(k+1))
1

1 1
<EFp(Z",6) + (5M3 1 + 5904 EH(ZHD, 0002 4 Sy Vo Fp (200,00

+ %Me,%H]EHv(k)HQ + ek B(VZFp(Z2™,00),0™).
(S19)
Now, let’s consider
3M? + An+G
26

where G is a constant and it will be defined later. Note that for our model, Fp(Z,0) > 0. Then it is
easy to see that

1
L(k)=E |Fp(z",0") + 165 — 6% + 0?(12™ + 0~ o™ 2 4 [ln~ 0@ P = N 2P|

3M? + \n+G
26

We only need to provide uniform bound for L (k). To complete this goal, we first study the relationship
between L(k + 1) and L(k):

1 1
L(k) > max{ B0 — 0" |2, S (1-20PE| 2912, £ (1 =20l ™|}, (520)

1 1 1 .
L(k+1) — L(k) < (§M713+1 + §7k+1)E||H(Z(k+1)79(k)||2 + §7k+1EHv9FD(Z(k+1)70(k)H2

1
+ §M€i+1E||U(k)H2 + e E(VzFp(Z2®,00),0™)
(BM? + M+G)viyq
26
1 1 1
— serrnE(ZY, V2 Fp(ZM,0%) - SenE@®, V2 Fp(27,6M) + 1B V2Fp (27,6
1
2
1 1
+ Z(Ei+1’72 — 2e51m)E[v™|* — Ferr1(l— erpn)E@™ V2 Fp(Z2®, 0M))

— (3M® + Xp+G) i1 EJ[0™) — 071% + E|H(Z*D,0M|

1 - *
+ gern BT nd 4+ ser e (MPE| 201 + ME|6Y — 67 + 5%

1 1 _ 1 *
3R EIVZED (20,00 + gensnf ™ de + ok PRI ZDI + MEOD - 07| + BY)

1 1
- Z>\7726i+1E||’U(k>H2 - §>\ﬁ2€k+1E<Z(k>»U(k)>

(3M? + )\77+G)'y,§+1
26

1 1 1 1 1
+ (= gnener + (GM + 70" = 20D )E[ ™ * + Snen B, VzFp (2™, 60))

1 *
<M+ et + )(3M2 (B[ 2|2 + 262 1 Ello™ %) + 3ME[0P — 07> + 3B)

1 1 . 1
(=M + M+ G)yiss + (M *n* + SeM*)eiy1)EF) —07|* — SernE(Z2™, V2 Fp (2™, 0%))
1 . 1 1
t+ e BMZE|Z®|” + 3MZE[0") — 07" +35%) + (5sM*n* + S sM?)ei. 1 El| 2|

2
1 _ 1 1
- 5)\7)25k+1E<Z(M7 v ™) + ex11 87 nd- + (§§BQ772 + QCBQ)Eiﬂ



(3M? + M+G)vie 1

1 1 1 3
<(O6M? (5 Misr +yesr + )+ (GeM*0* + SoM” + 7M2)ei+1)IE||Z('“)||2

26
1 1 1 1 3M? + M\+G
= Dman + G+ - D o0 Gt e + BN 5 02
3M2 M§ + 3M? + M\n+G)v? 3 1 1
+ (=(AM+G)vt1 + ( 25 UnSoulSE! + (5 + 5072 + §<)M26i+1

1 . 1 *
1M + Mo e )EN0Y) — 0% 2 + Tnel 1 (B0 | + 3M°E) 27| + 3M7E)j0 — 07 + 3B?)

1 _
— Mern1E|Fp (2™, 0M)]| — *M36k+1EHZ(k) +n o™

3M? + An+G)v2 1
+ (d- — 7A1)6 nekt1 +( B + qB Jeri1 +3B% (5 M7,§+1 + Ye+1 + ( 2’(75 Vit §e§+1)
M§ + 3M? + An+G 3 - -
<(6M Y41 (2 + 5 T2 in) + (M2 (1 + 1) + §M2(2 +m))ers)EIZY + 0 oW )P + B2 lo®)?)
1 1 1 1 M6 + 3M? + \n+G
+ (—Znék-t,-l + (iM + 17’]2 — ZA’I]Q + n + 6M2’}/k+1(1 + 25 N )’Yk+1)6i+1)E||’U(k>H2
3M?*(M6S +3M? + M+G)viyy 3

1 5 1 3 . o
2 HG g et MM e

1 " 1 _
+ 37100 + AAM)ers)ENOY) — 6% = Mper i Bl Fp (2, 0%) | = {00 era BIZH) + 7 o)

1 _ 1 1 3 3 1 3M? 4+ An+G)v?
+ (d. — §A1)ﬂ "nert1 + (§<172 oot gt Zn)B%iH + 332(—M7§+1 +Yir1 + ( 27; Viss ),

where the first inequality is from inequalities (ST9), (]Z.S_Trgb (ST16) and (ST3); the second
ZW|2 +-2¢2 E||v<k

inequality uses bounds in and || Z*+Y |2 < 2E|| ||?; the third inequality
uses 2E(v® |V Fp (2", 00)) < E||v(k)|\2+]E||VZF (z k),G(k))Hz,thebound in (S13) and
the dissipative condition in (S14); and the last inequality uses E||Z® ||2 < 2E||Z®) + 5~ Lo®)|12 4
2En 2 v 2.

For notational simplicity, we can define

+ (=(M+G)yrr1 +

Go = dAn
07 3M2 + M+G’
1
Gl = 1777

M6§ +3M? + I+l
26 )7

- 3 1 1 1
Go=n 2(sMP (" +1) + SM* (24 m) + 5 M + 2n° = X 0+ 6M°(1+

o o M§ + 3M? + \np+1 S\
Gs=6M>n"2(2+ 5 ) EIYEESE
1
Gy = 5)‘777
3M?(M§ + 3M? + An+1)
Gs = ,
26
_3M2 1 oo 1 5 3.5
Ge = 5 +§§M7] +§§M +1M7],
Gr = in(M2+4>\Mo)
GSZ)\’I],
Gy = La?
9 — Z U
_ 0
Gio = SV + A
3
G :§M2(772+1)+§M2(2+77),
M§ + 3M? + M+1 a3
Gia = 6M*n72(2
2 U 5 T VR wE
3 1 3M? + Mnp+1
Gi3 = (d. — *Al)ﬁ 'n+ (2<77 + 2§+ 5 + 3n) B2 +3BQ(§M+ 1+ %)_



for some constants @ € (0, 1),

. . . c,
Consider decaying step size sequences € = ciﬁ’% = o

ce > 0and ¢4 > 0, where

2
CE:min{ G1 G } c, :min{l,Glce G1Cecy GsCe GsCecy G19Ce Gr10Cccy ((;4) }

2G2 2G11 2G3 ’ 2G305 ’ Gg ’ GgCe 72G12 ’ 2G126€ ’ 2G5

Let G = max{%,%ce}, and let kg be an integer such that c. + (ko + 1)* >
v v

2 2
25466% , ngg;ig} and ¢g + (ko +1)® > GCZ2. Then for k > ko, we have

max{

Lk +1) = L(k) < =Goypy1 L(k) + (=Grexs1 + Gaeipy + Gaypy ) E[o™|?
+ (~(Gat Gt + G5y + Gock g1 +Cres)EN0P — 072 + (~Gsersr + Gomr E|Fp(2®,00)]
+ (=Gro€pt1 + Gri€ny + G2+ 1)EN Z® + w2 4 Grzepia,
and
— Grépgr + Gaep iy + Gaypgr <0,
= (G4+G)y+1 + G5’71§+1 + Goery1 + Grepsr <0,
— Gsept1 + Gover1 <0,
— G1o€r+1 + Gri€nyq + Gr2vi1 < 0.

Let C7, = max{ %IOSCCZ{ , %10357605 ,L(0),L(1),..., L(ko)}, we can prove by induction that L(k) < C,
for all k.

By the definition of Cp,, L(k) < Cy, for all k < kg. Assume that L(¢) < C, for all ¢ < k for some
k > kg. Then we have

G13
L(k+1) < L(k) — Govis1L(k) + Giseri1 < CrL — Go—=—7i41 + Gizery1 < CL.

GoC,
By induction, we have L(k) < Cy, for all k.

Then, by inequality (S20), we can give uniform Lg bounds for EHG ®))12 E[|o*)||2 and ]E||Z(k) [|%:
Cyp = /\ such that sup; >0]EH'”(Z)H

there exist constants Cg = SMEiW’ Cyz

2
Cyp, Sup; > E HZ(” H < (Cgz,and SUp; > E HO )H < Cpg hold. The proof is completed. []

= - 2>\ a—\n®’

Remark S1 As pointed out in the proof of Theorem the values of X and ko depend only on § and
the sequence {7y }. The second term of Ao characterizes the effects of the constants (M, B, m, b, §, (=)
defined in the assumptions, the friction coefficient ), the learning rate sequence {¢y}, and the step

size sequence {y,} on the convergence of 8%, In particular, n, {e,}, and {1} affects on the
convergence of 0™ via the upper bounds Cg and Cz.

3.2 Proof of Theorem 3.2
The convergence of Z (%) js studied in terms of the 2-Wasserstein distance defined by
Wa(p,v) == mf{(E|Z — Z'|*)/? : p = L(Z).v = £(Z')},

where ;. and v are Borel probability measures on R% with finite second moments, and the infimum
is taken over all random couples (Z, Z') taking values from R x R% with marginals Z ~ y and
Z' ~ v. To complete the proof, we make the following assumption for the initial distribution of

AR

Assumption B7 The probability law pg of the initial value Z ©) has a bounded and strictly positive
density po with respect to the Lebesgue measure, and ko = log [ e“Z||2p0(Z)dZ < oo0.
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Recall that for the purpose of sufficient dimension reduction, we need to consider the convergence of
Algorithm[TJunder the case that the full dataset is used at each iteration. In this case, the discrete-time
Markov process (I6) can be viewed as a discretization of the continuous-time underdamped Langevin
diffusion at a fixed value of 0, i.e.,

dv(t) = —nou(t)dt — VzFp(Z(t),0)dt + \/2n/BdB(t (S21)
dZ (1) = v(t)dt,

where { B(t)}+>0 is the standard Brownian motion in R%.

Let pp 1 denote the probability law of (Z (k), v(k)) given the dataset D, let vp ; denote the proba-
bility law of (Z(t), v(t)) following the process above, and let mp denote the stationary distribution

of the process. Following|Gao et al.|(2021), we will first show that the SGHMC sample (Z (k), v(k))
tracks the continuous time underdamped Langevin diffusion in 2-Wasserstein distance. With the
convergence of the diffusion to mp, we will then be able to estimate the 2-Wasserstein distance

W(pD,k, D).

Let T}, = Zf o €i+1. Following the proof of Lemma 18 in|Gao et al.|(2021)), we have Theorem.
which provides an upper bound for Wh(up k' VD Tk)

Theorem S2 Suppose Assumptions[BIfB7 hold. Then for any k € N,

~ 1/4 k—1
~ C(k
Wa(vp,1s kD7) </ C5log(Th) | /C(k) + <(2)> + 4| CeTk Y €41,
j=1
. k—1 k—1 k-1
where C(k) = C\T} Z €§+1 + O, Z €j417j + CssTy + Cy Z E?H, (S22)
j=1 j=1 j=1

and C1, Cy, Cs, Cy4, Cs, Cg are some constants.
PROOF: Our proof follows the proof of Lemma 18 in|Gao et al.|(2021)). Recall that T}, = Zle €.

Let T(s) =T, forT, <s<Tpy1,k=1,...,00. We first consider an auxiliary diffusion process

(Z(1), V(t)):

t . T(s)
— [ VzFp Z(0)+/ o(T(u))du, B(s )ds+s/2nﬁ /dB (S23)
0

0
5 t
Z(t) =2(0) + / B(s)ds, ($24)
0
where 6(s) = 0}, for Ty, < s < T},+1. By the definition of ¥ (¢ ( ) + fT’“ o(T(s))ds, v(Tk))

has the same law as pip ;. Let IP be the probability measure associated with the underdamped

Langevin diffusion (Z(t), v(t)) and P be the probability measure associated with the (Z(t), d(t))
process. Let F, denote the natural filtration up to time ¢. Then by the Girsanov theorem, the

Radon-Nikodym derivative of P w.r.t. Pis given by

Zj _ oV E (1) = (T () +V 2 Fp (2(5).0)=V 2 Fp (Z(0) 4+ 9(T(w) du.8(s)) ) -dB (s)
Py,

o B S| () =T () +V 2 Fp(2().6") =V 2 Fp (Z(0)+ 7 5(T(w)du.8(s)) | “ds

11



Let P; and If”t denote the probability measures P and PP conditional on the filtration JFi. Then

d]P’t

t

DE P = - [ ab

2

57 E no(s) —nd(T(s)) + VzFp(Z(s),0") — VzFp (Z(O)+/OT(s>fJ(T(u))du,é(s)> ds

<2 ['&|vars (z<o>+ / T(S)ﬁ(u)du,,0*> Vo (zm) +f ﬂs)ﬁ(ﬂu))du,e(s)) i
57 E|[ns(s) — no(T(s))||* ds

< % E|V2Fo (z(o) - T(S)ﬁ(u)du,0*> V.Fp (2(0) +/ NS)%(T(u))duﬂ*) s
?2’5 E|(VzFp <Z(0)+ /O " o(T(u))du, , 8" ) —VzFp (Z(0)+ /0 T(S)f:(T(u))du,B(s)> st

+ 32 ['&|vars <Z(0) +f T<S)13(T(u))du,9(s)> ViFp (zm) +f T(s)ﬁ(f(u»du,e(s)) s
fn E |[n(s) — no(T(s))|” ds,

which implies

D(Pr, [Pr,)

< ‘zgjzéejHED ’ VzFp <Z(0) +/0Tj ﬁ(u)du,0*> ~VzFp (Z(O) +/0Tj o(T(u))du, 0" ) ’

. ‘;’fijHE varn (20)+ | Y BT w))du, 0 )-varo (z0)+ [ ” (T (w)du, 0 ) 2

+?2)’BZO+IE Vaip (20)+ [ o(Tw)an6") - vzro (20)+ [ o)) 2
QEZ / R nas) - na(T ()| ds
=)+ 0( I1) + (I11) + (IV). (S25)

We first bound the term (I) in (S23):

k— . 2 k—1 .
275 Jz:;) ej+1E /OTJ (f,(u) _ {;(T(u))) duf| < % jz:[:) M2€j+1Tj /OT-7 - ’|1}(U) 3 iz(T(u))HZ du
k—1 =1 7 )
_ ?;fjj_o MQEJ-HTJ-;/% T E |60 - (P @) du.

For T; < u < T4y, we have

9(u)=8(T(w) = —(u=T,) 0" ~(u=T)VzFp (29,07 )+ /215 (Bw)~B(T,)), (526)

12



in distribution. Therefore,

E|[&(u) — &(T(u)||”

. . X 2
= (u—T:PE||po + V2Fp (29,00) H + 20 (u—Ty)
=(u—"1T, ]Ean +VzFD(Z( )
+ 2087 u—T;)

112 .
<22 E an@)H +2¢2, HVZFD (2,67)

T))°E HVZFD (Z@),e“)) _V.Fp (Z“),o*)

‘ 2

2 , 2
+ei (MPE Hem —0"|| )+ 28 e

< 277261+1E H

2. (e 20

2
+ BQ) + )\0M26?+1%‘ + 27’}5_16i+1. (827)
This implies
< 277Z:M2e]+1T Z/ IEHU — (u))HQdu

M? NP
< 3 776 ZGJHT Z <277 €1 supEH ()H + 6544 (M2supIEHZ(Z)

i>0

+ B2> + A0M2e§+1’yi + 2?’]5716?+1) .
We can bound the term (II) in (S23):

36§

(11) < 20

k-1
L2 3AoM23
0| <=5 G
2n g

gM”

‘+1M2E Hg(j) _

We can bound the term (III) in (S23):

k-1 . 2
3 J _ . . 2
(II1) < ?5 €126 | M2 HZ(O) +/ 5(T(u))du, 89| + M2E HGW —or|| + B2
Ul 0
7=0
k—1 , 9
_ N o <M EHZ +M2EH0<J> — o +B2>
2n por
B k—1 ) 9
< — €j+126 (M2 supEHH(J)—H* —|—Bz> .
277 = i>0 >0

Finally, let us bound the term (IV) in (S23)) as follows:

(Iv) < Z (27] e]_H SUDE H @ +6€]+1 (M2 ngE”Z(i) ) —|—)\0M2€§+1%‘ + 2775_16?_,_1) )

where the estimate in (S27) is used.

2

_ 2 )
In the proof of Theorem 3.1, we have shown that E H’U(])H2, E HZ(J)H and E HB(J) —0*|| are

bounded by some constants C,,, C'z and Cy. Then for decaying step size sequence {41} and
{Yg+1} with eg < 1 and 79 < 1, there exists some constant C', Cs, C3 such that

k—1 k—1
(PTk ||PTk < C1T, Z €541 + Cy Z €5+175 + ngTk + Cy Z 6?4_1 = O(k),
j=1 j=1

13



where

M2
O = %(21720,, 4 6M2Cy + 6B + 281,
M2
Cp = S0M5
, 2 (S28)
C3 = f(MZCz—‘rMQCg—I—BQ)

Cy= %(2772@ +6M?Cz + 6B + \oM? +2n571).

For any two Borel probability measures j, v on R?? with finite second moments, we can apply the
result of Bolley and Villani|(2005)) to connect Wa(u, v) and D(p||v):

W) < €, [ D) + (D“;'))/] ,
C, =2 inf (i (3 +log /R e)‘lwnzy(dw)))l/z.

Using the results in Lemma 17 and Lemma 18 of |Gao et al.|(2021)), we have C’ED’Tk < Cslog(Ty)
for some constant

2 L otzin, /2
o, = 2V2 (2 +log (/ AVE D (dZ, dv) + e FH an(ds + Ay )>> :
R2dz

where

V&0
where o = w, ap = + and the Lyapunov function
(1—2X\)Bn2 T B(1-2X)
. ﬂ - _
V(Z,v) = BED(Z,0%) + Sn?(1Z + 0 o|” + I ol — M| ZIP).  (S29)

Then we have
)"
Wa(Pr,, vp.1,.) <+/Cs log(Tk) C(k) + <2>

Finally, let us provide a bound for Wy (up , I@Tk ). Note that by the definition of V, we have that
( )+ fo *o(T(s))ds, v(Tk)) has the same law as (i, ;, and we can compute that

2

E Z(Tk)—Z(O)—/O k’T)(T(s))ds =

/ |8(s) — &(T(s))||” ds

/ " () — B(T())ds

2 2
Z (277 €. supE Hv(z) + 662,y < + BQ) + Ao M2el, v+ 2087 12+1>
i>0 i>0
=CoTi Z €j+1
7j=1

where constant Cg = 212C,, + 6M2Cz + 6 B2 + \gM? + 2nS~1. Therefore
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Then we have

Wa(vp.1,, o) < Wao(Pry, vp.1,) + Wa(Pry, ip 13,

< /Cslog(Ty,) | \/C(k) + (

O

Remark S2 The constant < in comes from Assumption which controls the difference
between NV zFp(Z,0) and ¥V z Fp(Z, 0). When the full data is used at each iteration of Algorithm
VzFp(Z,0) = VzFp(Z,0) and thus the term CscT}, disappears. In this case, for any fixed
time Ty, = t and for any decaying sequences {e.} and {}, we have Zf;& e? 11 < Trey and
Zj;é €i+17 < Typv1. Therefore, we can make WQ(VD7Tk7[LD7Tk) arbitrarily small by setting
smaller values of €1 and ;.

The convergence of vp 7, to its stationary distribution can be quantified by Theorem 19 of |Gao et al.
(2021):

Lemma S2 (Gao et al| (2021)) Suppose Assumptions[BINB7 hold. Then there exist constants C' and

w* such that Wo(vp 1, mp) < C\/H (1o, 7p)e P Tk where H, is a semi-metric for probability
distributions, and H ,(juo, ™ p) measures the initialization error.

Please refer to Theorem 19 in|Gao et al.|(2021) for more details about the constant C' and H p( 1o, TD).
Together, we have

Wa(up,1,, D) < Wa (D13, vD,13,) + W2 (VD 1}, D)

. S\ kot S30
< C\/Hp(uo,ﬂ'p)eiu*n" + v/Cs log(T%) (\/ C(k) + <@) ) + .| CeTy ZE?-H’ (530)
j=1

which can be made arbitrarily small by choosing a large enough value of T} and small enough values
of €; and 71, provided that {e;} and {7} are set as in Theorem|[S1] This completes the proof of
Theorem[3.21

4 Parameter Settings Used in Numerical Experiments
For all these datasets, we use n to denote the sample size of the training set.

4.1 Binary Classification Examples

thyroid The StoNet consisted of one hidden layers with ¢ hidden units, where ReLU was used
as the activation function, o7 ; was set as 107, and o7, , was set as 10~?. For HMC imputation,
tamc = 25,n = 100. In the O-training stage, we set the mini-batch size as 64 and trained the model
for 500 epochs, .1 = (3¢ — 5)/n and ¢, = 0.001 for all k. In the SDR stage, we trained the model
with the whole dataset for 30 epochs. Besides, the learning rate ¢; was set as m and the step

iz t __Un
size Y1 Was set as 1z

breastcancer The StoNet consisted of one hidden layers with ¢ hidden units, where Re LU was
used as the activation function, o7, ; was setas 107°, and o2 , was set as 10~°. For HMC imputation,
tgye = 25,1 = 100. In the O-training stage, we set the mini-batch size as 32 and trained the model
for 100 epochs, v, 1 = (le — 4)/n and €, = 0.001 for all k. In the SDR stage, we trained the model
with the whole dataset for 30 epochs. Besides, the learning rate ¢; was set as m and the step
size 7y, 1 was set as 100010/%.

flaresolar The StoNet consisted of one hidden layers with ¢ hidden units, where Re LU was used
as the activation function, o7, ; was set as 107°, and o7, , was set as 10~%. For HMC imputation,
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tgye = 25, n = 100. In the O-training stage, we set the mini-batch size as 32 and trained the model
for 100 epochs, v, 1 = (7e — 5)/n and €, = 0.001 for all k. In the SDR stage, we trained the model

with the whole dataset for 30 epochs. Besides, the learning rate ¢; was set as m and the step

. 1/n

S1z€ 7,1 was set as T/ (7e—5) k05"

heart, german The StoNet consisted of one hidden layers with ¢ hidden units, where T'anh was
used as the activation function, J?L’l was set as 1077, and 072172 was set as 10~8. For HMC imputation,
tgymce = 25, = 100. In the O-training stage, we set the mini-batch size as 64 and trained the model
for 100 epochs, v, 1 = (5e — 5)/n and €, = 0.001 for all k. In the SDR stage, we trained the model
with the whole dataset for 30 epochs. Besides, the learning rate ¢; was set as m and the step
size 7,1 was set as 200010/%.

waveform The StoNet consisted of one hidden layers with ¢ hidden units, where Re LU was used
as the activation function, o ; was set as 1072, and o7, , was set as 10~%. For HMC imputation,
tgme = 25,7 = 10. In the O-training stage, we set the mini-batch size as 64 and trained the model
for 30 epochs, y,,1 = (7e — 4)/n and ¢, = 0.01 for all k. In the SDR stage, we trained the model

with the whole dataset for 30 epochs. Besides, the learning rate €5 was set as m and the step

: tas ——/mn
size yg,1 Was set as 70—y -

We used the module LogisticRegression of sklearn in Python to fit the logistic model.

4.2 Multi-label Classification Example

Hyperparameter settings for the StoNet The StoNet consisted of one hidden layers with ¢ hidden
units, where Tanh was used as the activation function, o7, ; was set as 1073, and o7 , was set as

10~5. For HMC imputation, ¢ 737c = 25, 7 = 10. In the O-training stage, we set the mini-batch size
as 128 and trained the model for 20 epochs, ;1 = (7e — 4)/n and €, = 0.01 for all k. In the SDR

stage, we trained the model with the whole dataset for 30 epochs. Besides, the learning rate ¢, was

1 . 1/n
set as {5 goe and the step size 7,1 was set as T/ (Fe—a) TR0 0 -

Hyperparameter settings for the autoencoder We trained autoencoders with 3 hidden layers
and with 400, ¢, 400 hidden units, respectively. We set the mini-batch size as 128 and trained the
autoencoder for 20 epochs. Tanh was used as the activation function and the learning rate was set to
0.001.

Hyperparameter settings for the neural network We trained a feed-forward neural network on
the dimension reduction data for the multi-label classification task and another neural network on
the original dataset as a comparison baseline. The two neural networks have the same structure, one
hidden layer with 50 hidden units, and have the same hyperparameter settings. We set the mini-batch
size as 128 and trained the neural network for 300 epochs. Tanh was used as the activation function
and the learning rate was set to 0.01.

4.3 Regression Example

Hyperparameter settings for the StoNet The StoNet consisted of 2 hidden layers with 200 and ¢
hidden units, respectively. Tanh was used as the activation function, o2 | was set as 107°, 02 , was
setas 1077, and 02 5 was set as 10~°. For HMC imputation, ¢ ps¢ = 25, 7 = 10. In the 6-training
stage, we set the mini-batch size as 800 and trained the model for 500 epochs, set 5,1 = (7e — 5)/n,
k.2 = (7e — 6)/n and €, = 0.01 for all k. In the SDR stage, we trained the model with the whole
dataset for 30 epochs. Besides, the learning rate €, was set as the step size 7,1 was set as

1/n
1/(7e—5)+k0-6°

1
100+4-k0-6>
1/n

and vy » was set as T/ (7e—6)FH05"

Hyperparameter settings for the autoencoder We trained autoencoders with 3 hidden layers and
with 200, ¢, 200 hidden units, respectively. We set the mini-batch size as 800 and trained the neural
network for 20 epochs. Tanh was used as the activation function and the learning rate was set to 0.01.
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Hyperparameter settings for the neural network We trained a feed-forward neural network on
the dimension reduction data for making predictions and another neural network on the original
dataset as a comparison baseline. The two neural networks have the same structure, one hidden layer
with 100 hidden units, and have the same hyperparameter settings. We set the mini-batch size as
32 and trained the neural network for 300 epochs. Tanh was used as the activation function and the
learning rate was set to 0.03.
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