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A APPENDIX

In the following sections B and C, we derive the regions of interest R, Rs in the form of balls and
rotated ellipsoidal inequalities. Beforehand, we assume W is full rank. If W is not full rank, it means
that our linear model fails to distinguish two or more distinct classes for every possible input. During
and at the end of training, we will assume such event does not occur. The initial values of W are
selected randomly, and random matrices have full rank almost surely. Consequently, we will assume
W is a full rank matrix henceforth.

B CONVERTING PERTURBATIONS IN PARAMETER SPACE TO INPUT SPACE

Given weights W' € R™*" b € R™, input z € R™, and parameter perturbation region |A|| < v, we
want to find the region R so that V ||Al| < ~v,30 € Rs s.t. o(W(x+9)+b) =o(W+A)x+b)
andVé € Rs, A ||A|| <7 st. o(W(z+95)+b) =c(W+ A)z+b). In other words, we want to
find the region Rj so that for every element e; in region {A € R™*™ | ||A|| < v} there exists an
element e, in region ;s satisfying the equation and vice versa.

Since o(-) : R™ — (0,1)™ is a bijective function, o(W (z + &) + b)
< W(z+0)+b= (W + A)x + b. This equality can be reduced to W ¢

o((W + A)x + b)
Aux.

We will first examine the range of Az in the output space, given ||A|| < «. Az can be written in
several ways:

T c11 €12 ... Cin 1]

| | T Co1  Ca2  ct Cop o

Arx=|c1 ca - ca| | . |=1]. ) ) .
Tn Cml1 Cm2 .-+ Cmn Tn
c11 c12 Cin ]

C21 €22 C2
=171 + CaTa + -+ CuTy = Ty + T+ | @,

Cm1 Cm?2 Cmn |

, where ¢; is the ith column vector and ¢;; is an element in 4th row, jth column of A.
Next, we will rewrite ||A|| < v as the following constraints:

[A[l <~

m T

= > > qu,j <72
i=1j=1

— 21 lle;l1? < 47 subject to 4F + 43 + -+ + 42 =2
=

When we reexamine the above formulas in R™, finding the range of Az can be regarded as finding
the range of linear combination of column vectors in R™* such that each column vector ¢; is restricted
o [leil] < i

Given two vectors v1 and v s.t. ||v1|| < 1 and ||va|| < 72, [[u1 + v2|| < 41 + 2 . Trivially, for any
a € R, |la-v1]| < |aly:. That s, the range of linear combination Az = c1x1 + caxe + -+ + cpy
is also a ball, i.e. [|Az|| < 37, |z;|v; subjectto Y i 7 =~

Finding the range of || Az|| is now equivalent to finding the maximum radius of Y., |z;|v; with
the constraint ) ;" ;72 = ~+?. Using Lagrange multipliers method, let 7 := [y1,72,* , V),

Fr) =300 |wilyis g(r) == X201 77 — 7% and L(r, A) == f(r) — A(g(r)).

oL |4
a% —|l’2|—2)\’}/¢—0 = Vi = 2\

Substituting the above equality to g(r) = 0,
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Therefore, | Az|| < ||z

We now consider the LHS of equation W§ = Ax. Let W = UXV T be the SVD Decomposition
of W € R™*", Multiplying U " to both sides of the equation, XV "d = U " Az. The inequality
induced by Lo norm, i.e. ball, does not change when we multiply any orthogonal matrix. Thus,
IUT Az]| < [l

Letd == VT5=1[d, 8T

5
o1 0 - 0] | 016
VTS = no = Om | _
: AR A 3
om 0 - 0 . omOy,
L 6'71 .

Since [|[U T Az|| < ||z||y and 28" = UT Az, |26 || < |||y, ie.

TR+ + 000+ 0 (ona Gy + oo+ 0707 < 2%y
However since 0 - (02, 16/2,1 + --- + 028/2) = 0 holds for any 4, i.e. the general solution to
Wa = Wb where a # b, we need not contain it in our perturbation region Rs which is induced
by ||A|| < . Then, the above inequality represents a m-dim region bounded by a m-dim ellipsoid
whose principal semi-axes have lengths (o1||z[|y) ™!, -+, (on]jz||y) " with respect to &' € R™.
Subsequently, the region of interest s € R™ is an rotated m-dim ellipsoid whose principal semi-axes
have lengths (o [|z[]y) 71, -, (on||lz|y) ~! with respect to § € R™.

C CONVERTING PERTURBATIONS IN INPUT SPACE TO PARAMETER SPACE

Given weights W € R™*”, input z € R", and parameter perturbation region ||0]| < -, we want
to find the region Ra so that V [[d]| < 7,3 A € Ra s.t. W§ = Az and VA € Ra,3 ||0]] <
v st. Wo = A,

Using SVD decomposition, W = U VT, where Y is a diagonal matrix with entries o1, --- , op,.

W =UZVTS§ =UXd, where §' := VT 6. Since rotating or reflecting does not change the region
of aball, ||6]] < v gives ||']| < v, ie. 62 +--- 62 < A%

Let 8" := [6),--, 8] = B8 = [018},- -+ ,0,0],]. Vi € [m],0; 16! = §/. Then,

™m 3

5;./2 51/2 2 12 12
?+"'+U—7g§7—(5m+1+'--5n) 2)
1 m

The maximum value of RHS ineq. 1isv?, when (6/2, | + - - 8,2) = 0. This indicates that 6" resides
within an ellipsoid with with principle semi-axes of lengths \; := 0,4 € [m]. Thus, U" = W{ is
a region bounded by an rotated ellipsoid.
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Now, we will examine the region Ra such that Az (A € Ra) forms a rotated ellipsoid with principle
semi-axes of lengths \;. Unlike the case of converting parameter space’s perturbation region to input
space’s in Appendix B, Ra need not be in a form of ellipsoid. Instead, we provide a superset 2.,
and a subset Rgyp, of Ra in the form of a ball such that R, € RA € Rgyp.

Let W be deomposed into UV T using SVD decomposition. For now, we will consider the special
case of W where U = I, i.e. the region of W is bounded by an ellipsoid alligned with standard
basis. Afterwards, we will consider the general case of W, i.e. the region of W is bounded by a
rotated ellipsoid.

Let d;; denote the ith row, jth column element of A € R™*™ and z; the ith element of x € R".
Since the range of Az is an ellipsoid, Ax must satisfy the ellipsoid inequality

(z1d11 + xadis + -+ + Tndin)’ (21dm1 + Todma + -+ + Tndin)

m

<1

Let r; denote the ith row vector of A, and let X denote z2 . The above inequality can be rewritten
as:

i Xr1 g Xro X1
; I kLA S 3)
AT A3 Ao
Since we are interested in finding the region of A in R™*™ space, we may think of it as a vector
d=[r],rq, -+, ]in RU"X") rather than as a matrix. Then, inequation 2 can be rewritten as:
X/\
2
d" X d < 1, where X := X/2z € R(mxn)*

2

X/
One property of X, is that it is a rank m matrix with singular values ||z||2/)\2,--- | ||z|[*/A\2,,

regarding that X/\? is a rank 1 matrix with singular value ||z|?/A\%. Another property is that X is a
positive-semidefinite matrix (-.- Vi € [m], ||z(|*/A? > 0.)

When we think of a single input z, the area of d satisfying d" X d < 1 is not bounded. However,
when we consider the constraint over multiple values of input datapoints {x1, za, -+ ,zn }(N > n)
that spans R™, the area becomes bounded. One justification of the multiple constraints is that when
we consider = a uniform random variable over the input datapoints, the region of d that satisfies all the
possible constraint is UzNzldTX /(\'L)d <1, where X /(\Z) denotes X for z = z;. Another justification is
that when we reach a local plateau in training parameter W, there is little or no change in the value of
w.

The following lemma and theorems provide a subset R, and superset R, of Ra in the form of
balls in the parameter space.

Lemma 1. Let R be the region of x € R™ satisfying the inequality x 7 Az < 1, where A is a non-zero
positive semi-definite matrix having opmq. as the maximum nonzero singular value. Let R' be the
region of v € R™ satisfying the ineqaulity 'z < o} . RC R'.

max-*

Proof. We handle two cases where rank(A) = m and rank(4) < m.
Case rank(A) = ms:

g1
Using SVD Decomposition, A = UXU T, where ¥ =

2T Ae=2'UXU "z =2/ T%a’ < 1, where 2/ :=U "z

Let 2’ be represented as o’ = [z, -+, z]].
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The constraint induced by R can be rewritten as:
'Y = o Fopa? <1, where X = U AU

Letz € R™ be some vector satisfyig 7 " 2 < 0z Since U is an orthogonal matrix and # "= < o7;,)% .

is an equidistant ball that is invariant under rotations and reflections, the constraint induced by R’ can

be rewritten as 2’ "2’ < o, where 2’ = U Tx.

-1
max

To prove = € R’ implies zz € R, we will show 2/ T2/ < oL implies 2/ T X2’ < 1.

1T —1
r T Samaw

<~ O'mu,wx/—rx/ <1

Let €¢; := Opmax — 0. Then, Vi € [n],¢; > 0.

n n
Omas® ' @' — Ze(mi)Q <1-— Zei(ﬂcgf (o Omazt’ 2" < 1)
i=1 i=1
<1 (Vi € n], ei(2})? > 0)

Case rank(A) < ms:

Let rank(A) = k < m. A can be represented as USU | using SVD decomposition, where ¥ is a
diagonal matrix whose first k elements are non-zero singular values o1, - - - , 0.

2 Az =2"USU "x = 2'%2' <1, where X =U " AU and ' :=U "z

Let 2’ be represented as [z}, - - - , z},]. The constrained induced by R can be rewritten as:

2T =+ opr <1

-1

—1 . Since ball is equidistant, 2"z < 0;;} <=

Let * € R™ be any vector satisfying 7'z < o .

2T <ol wherea' =U'z.

max’

-1

To prove x € R’ implies x € R, we will show 2/ "2’ < 0,1

implies 'YX’ < 1.

n
T -1 T 2
T X < 00n = Omaz® ¢ < 1= g Omaz () <1

i >~
i=1

Let €; := Oyaz — 0. Then, Vi € [n],e; > 0.

k k n
Z(Gmaa: - €z‘)$;2 < U'rnazw—r:lj - 261(962)2 ( Z O'mag;a?? > 0)
i=1 =1 i=k+1
k
<1-) ei())? (. Omazt’ T2 < 1)
i=1
=1 (Vi € [K], ei(z))? > 0)
k
Since - (Omar — €)7? = 2’ 7YX/, 2/T¥2’ < 1. O
=1

Theorem 3. Given W € R™*"™, D = {x1,--- ,zn}(x; € R"/{0} for i € [N]), and input pertur-
bation region {6 € R™ | ||0]| < v}, let Tpyap := argmax, |lz;]| and A := min{Ay,---, Ay}
{A e R™ A< (I#maall®/Amin) "'} € Ra

min
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Proof. We will rewrite theorem 3 as the following statement:

Given a set of datapoints D = {x1,x9,--- ,xn}(z; € R"/{0},i € [N]), let R be the region
of d € R™*™ satisfying the znequalzty d’ X,\d < 1forall x € D. Let R be the region of

d € Rmxn satzsfylng de < (||J:maf|| JA2 )7L where Tiar = argmax, ||2;|| and Apin =
min{\y, -+, An}. R
, T, /\2 ,
Remark that X /(\’) = @i @i/ X . X /(\7’) is a rank m matrix with
) i /Ay,
singular values [|2;]|2 /A%, -+, [|ai]|2/\2,.

Let R; denote the region of d € R™ satisfying d' X ii)d < 1, and let R denote the region d'd <

2\ 1 2 )
(|/|\a;” ) |/|\2’” being the largest singular value of X;Z), R, C R; by Lemma 1. Since this

mn mn

N N N N
holds foralli € [N], U R; C U R;. U R; = R, and |J R, = R’ is a ball with smallest radius,
i=1 i=1 i=1

=1

. ||mmax||2
1.€. de S (AQ—)_l . O

min

Theorem 4. Given W € R™*", D = {x1,--- ,ayHa; € R"*/{0}fori € [N]), and input
perturbation region {§ € R™ | ||§|| < 7}, let R; := {d € R™*™ | dTXy)d <1} andT :={R; |
i € [N]}. Ra C {argmian,m,Rner MaXpeu;cin Rs ||P||2}-

Proof. Let R}, - , R}, denote the elements of T" satisfying arg ming, .z cr max,cur, ||pl/*
N n 5
= U Ri € U R} € maxpcur, [ol°- O
=1 i=1

We have so far addressed the case where U = I for W = UXV " in the equation W§ = Az. Now,
let us consider the general case of full rank matrix W.

A € R™*™ can be represented as either column vectors [ci,ca,- - ,c,] Or row vectors
[r1,72,- - Tm] . The equation W = Az can be rewritten as:

SVIs=U"Az=U"[c1,¢2, - ,cplz = [UTer,UTeq, -+ U epa

Let A" :=UTA=[c],ch, - ,c] =[r|,rh,- ,rjn]T, and let d’ be the flattened vector represen-
tation [} ", 75", vl of A’ Then, finding RA is equivalent to finding the region of A’ satisfying

d'TX\d' <1and multlplylng Uto A

The relationship between A’ and A can be expressed as:

ch 1 U
/
€2 C2 v (mxmn)?
Udiag | . | = | . |, where Ugiag := . eR
ch Cn U

Udiag 1s an orthogonal matrix since U is an orthogonal matrix. Furthermore, any permutation 7 that
permutes the row vectors of Ug;qg also results in another orthogonal matrix UJ;, o Then for some 7,

Uliagri s - 1T =[rf e - e )T, i, Uf,,d' = d. Since the region of a ball is not

affected by rotatlons or reflections, the superset and the subset obtained in Theorem 1 and 2 are not
affected. In other words,

Ra = {d € R™" |Vic [n],d" X"d <1}
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2\ —1
Rop={d €R™" |d"d < (”g;z—”> }

min

Roup = {d € R™*" | argmin max ||p|*}
R, €l PEUR:

1,7 dln

satisfies Roup © RA C Rgyp.

D PROOF OF THEOREM 1

Theorem 1. For any z, let n’ € R™ be the number such that for all M > n', E[yso | Xs = ] > 0.5
holds, and let n € R be the number such that for all M > n, Elygz | Xg = x] > 0.5 holds. Then,
n>n'

Proof. Case 1. Let z1 := ||x1 — x| — €, 22 := ||x2 — z|| — e. For the sake of simplicity, we will
use & to denote the event { X5 = 2,0 < 21 < 29 < T}, and p(z) to denote the truncated normal pdf
Nipue(z;€,0,6 + 1,6 — 7).

Elys1/€]
E £ =05 =1
lvoz | €] Elys2l?]
Elys1|€] _ p(21) _q o p(21)
Elys2|€]  n/p(22) p(z2)
]E[yE1|5]
E =05 —-—=-=1
o2 [ €] Elyg2|€]
1—e ?#
—>\Z1 . -
e IR = ) 1
E 8 - 1 _ oAz -
[yE2| ] n- e—AZ’.’p(Zz) + %p(zl)
1 — e A2 1 — e 21
e ip(z1) + - %P(Zé) =n-e2p(z) + %P(zﬁ

_ 1—e " Axy _ 1 —e Az
Azy — . Azg _ - =
(e c-1 )p(zl) " (e c-1 )p(@)

1—e
(e—)\21 _ ﬁ) p(Zl) B

|
3

"= 1—e A#
—Azo __ z
(8 O0_-1_ )P( 2)
B_A:e—)\zl _e—/\ZQ + 1 (e—/\zl _1_6_)\Z2 +1) — (e—/\zl _e—)\22) 1+ 1
-1 -1
1
€_>‘zl>€_>‘z2('.'0<21<22<7'), 1+m>0('.'0>1)
SB—A>0
e"\z—l_e_/\z— ! (Ce™™* —1)>0 (c>lande ™ > for0 <z <)
c-1 (-1 : C—-1
B>A>0

B
n=—n>n

A
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Case 2. Let 21 := ||x1 — z||,22 := |Jva — 2| — e. For the sake of simplicity, we will use £ to
denote the event {Xs = 7,0 < z1 < ¢,0 < 23 < 7}, and p(z) to denote the truncated normal pdf
Nipue(z€6,0,¢ + 1,6 — 7).

1

Blynle) __wri?®) ()
Elys2|€] n p(22 +€)
w2t
L o)+ (e +0) (L
——p(z —p(zg+6) | ————
Elyple] nt+1 VT p1P? c-1) _,
Elyr2(€] #p(zz +€)e A2
1—e 2 N
plz) +n-plar+€)—m—5— =n-plaz +eje”=
1—e
—m . —Azo _ - =
p(z1) =n-p(za +e€) (e o1 >
\ 1— e—)\zl
R
n= 1 i p('Zl) >6 c—-1 ZE'TZ/>TZ/
\ 1— e P22 p(ZQ + 6) \ 1 — e 222 A
e N2 — — —AR2
Cc-1 c—-1
Case 3. Let 21 := ||z1 — x|, 22 := ||x2 — z||. Suppose an event 0 < 21, 22 < € has occurred.
Since s(z) =1for0 < 21,22 < e,n=n'. O
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E EXPERIMENT DETAILS

We have used grid search to find the optimal hyperparameter configuration per each augmentation
method. The optimal hyperparameter configuration for AugMix (Hendrycks et al., 2021b) (o = 1) is
included in the search space. For Tiny-ImageNet-C experiment, we have carried out experiments
applying the default parameter setting of AugMix (Hendrycks et al., 2021b) and DeepAugment
(Hendrycks et al., 2021a) with 200 epochs.

Table 2: The search space of baseline methods and the ensemble of the baseline methods. The best
hyperparameter configurations are marked in bold.

Dataset Augmentation Hyperparameter Max Epoch
No augmentation N/A [100, 200, 400]
g AugMix a=[0.25,0.5,0.75, 1, 1.5,2]  [100, 200, 400]
MNIST-C DeepAugment N/A [100, 200, 400]
AugMix + DeepAugment «=[0.25,0.5,0.75, 1, 1.5,2] [100, 200, 400]
No augmentation N/A [100, 200, 400]
0. AugMix «=[0.25,0.5,0.75,1, 1.5,2] [100, 200, 400]
CIFAR-10-C DeepAugment N/A [100, 200, 400]
AugMix + DeepAugment «a=[0.25,0.5,0.75, 1, 1.5,2] [100, 200, 400]
No augmentation N/A [100, 200, 400]
100 AugMix a=[0.25,0.5,0.75,1, 1.5,2] [100, 200, 400]
CIFAR-100-C DeepAugment N/A [100, 200, 400]
AugMix + DeepAugment «a=[0.25,0.5,0.75,1, 1.5,2] [100, 200, 400]

Table 3: The search space of baseline methods and the ensemble of the baseline methods combined
with random noise with fixed Lo distance. The best hyperparameter configurations are marked in
bold.

Dataset Aug. Radius Max Epoch

- [0.1,0.5, 1.0, 2.0,3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0] ~ [100, 200, 400]

MNIST.C A [0.1,05,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0] [100, 200, 400]

D [0.1,0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 10.0] [100, 200, 400]

A+D  [0.1,0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]  [100, 200, 400]

- [0.1,05, 1.0,2.0,3.0,4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]  [100, 200, 400]

CIFAR.I0.C A [0.1,0.5, 0.6, 0.7, 0.8, 0.9, 1.0 5.0, 10.0] [100, 200, 400]

D [0.1,0.5,0.6,0.8, 1.0, 1.2, 1.4, 1.6, 2.0, 5.0] [100, 200, 400]

A+D  [0.02,0.04,0.06, 0.08, 0.10, 0.20, 0.50, 1.0, 5.0] [100, 200, 400]

- [0.1,0.3,0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0] [100, 200, 400]

A [0.1,0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 3.0, 5.0] [100, 200, 400]

CIFAR-100-C [0.1,0.3,0.5,0.7, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0] [100, 200, 400]

A+D [0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.5, 1.0] [100, 200, 400]
- [0.1,0.5, 1.0, 5.0, 10.0] [200]
. A [0.1,0.5, 1.0, 5.0, 10.0] [200]
Tiny-IN-C [0.1,0.5. 1.0, 5.0, 10.0] [200]
A+D [0.1, 0.5, 1.0, 5.0, 10.0] [200]

Besides, the authors of AugMix have proposed an additional Jenson-Shannon divergence(JSD) loss
term defined between the original image  and two augmented images Taugmix1 ; Taugmix2- Given the
original loss term L(p(y | z),y), AugMix suggests to minimize the additional JSD loss term to
further increase model robustness:

Laug =Ly | =), y) + ANISDB(y | z);p(y | xaugmixl)?ﬁ(y | zaUgmix2))
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The value of A has been decided empirically for CIFAR-10/100-C experiments in the original paper
(A = 12.) Unlike CIFAR-10/100-C experiments, we have found that the additional JSD loss term in
fact damaged the model robustness in the MNIST-C benchmark. Furthermore, the additional JSD
loss term makes training longer. Hence, we have minimized the additional JSD term only in the
CIFAR-10/100-C experiments.

Inspired by the additional robustness gain induced by the JSD term, we have minimized the following
objective loss function when we combined ESP with AugMix:

Lensemble = Laugmix + B(L(p(y | zEse1), y) + L(B(y | zesp2), y)) + vJSD(xesp1; Tesp2)

We have chosen the values of 5 and ~ to be 1/8 and 1, of which the values have been determined
experimentally analogy to AugMix.

Table 4: The search space of ESP and the ensemble of the baseline methods combined with ESP. The
best hyperparameter configurations are marked in bold.

Dataset Aug. (e,7) ¢ Epoch (10%)

- [(4.0, 3.8), (5.0, 4.8), (6.0, 5.8), (7.0, 6.8), (8.0, 7.8)] x10° [0.42, 0.59] [1,2, 4]

MNIST-C A [(1.0, 0.8), (2.0, 1.8), (3.0, 2.8), (4.0, 3.8), (5.0, 4.8)] x10" [0.42, 0.59] [1,2, 4]

D [(0.6, 0.5), (0.7, 0.6), (0.8, 0.7), (0.9, 0.8), (1.0, 0.9)] x10° [0.42, 0.59] [1,2,4]

A+D  [(0.5,0.4), (0.6, 0.5), (0.7, 0.6), (0.8, 0.7), (0.9, 0.8), (1.0, 0.9)] x10° [0.42, 0.59] [1, 2, 4]

- [(1.0, 0.8), (2.0, 1.8), (3.0, 2.8), (4.0, 3.8), (5.0, 4.8)] x10" [0.42, 0.59] [1,2, 4]

CIFAR-10-C A [(3.0, 2.8), (4.0, 3.8), (5.0, 4.8), (6.0, 5.8), (7.0, 6.8)] x10° [0.42, 0.59] [1,2, 4]

D [(0.6, 0.5), (0.8, 0.7), (1.0, 0.8), (1.2, 1.0), (1.4, 1.2)] x10° [0.42, 0.59] [1, 2, 4]

A+D [(0.2,0.1), (0.4, 0.3), (0.6, 0.5), (0.8, 0.7), (1.0, 0.9)] x10~! [0.42, 0.59] [1,2,4]

- [(1.0, 0.8), (2.0, 1.8), (3.0, 2.8), (4.0, 3.8), (5.0, 4.8)] x10° [0.16, 0.33, 0.49] 1,2, 4]

CIFAR-100-C A [(0.5,0.4), (0.6, 0.5), (0.7, 0.6), (0.8, 0.7), (1.0, 0.8)] x10° [0.16, 0.33, 0.49] [1,2, 4]

D [(0.8, 0.6), (1.0, 0.8), (1.2, 1.0), (1.4, 1.2), (1.6, 1.4)] x10° [0.16, 0.33, 0.49] [1,2,4]

A+D [(0.6, 0.3), (0.8, 0.4), (1.0, 0.5), (1.2, 0.6), (1.4, 0.7)] x10~2 [0.16, 0.33, 0.49] [1, 2, 4]
- [(0.1, 0.08), (0.5, 0.4), (1.0, 0.8), (5.0, 4.0), (10.0, 8.0)] x10° [0.50] 2]
Tvane A [(0.1,0.08), (0.5, 0.4), (1.0, 0.8), (5.0, 4.0), (10.0, 8.0)] x10° [0.50] 2]
Y D [(0.1, 0.08), (0.5, 0.4), (1.0, 0.8), (5.0, 4.0), (10.0, 8.0)] x10° [0.50] 2]
A+D [(0.1, 0.08), (0.5, 0.4), (1.0, 0.8), (5.0, 4.0), (10.0, 8.0)] x10° [0.50] 2]

Lastly, we have measured the running time of each augmentation method per epoch in seconds.
DeepAugment augments the original image using pretrained image-to-image models by either
randomly perturbing the models’ weights or changing the actication functions of the models. As the
perturbation operation itself is time-consuming due to its dependency on image-to-image models, the
authors have trained a target model with stored perturbation results along with the original dataset. In
our experiment, perturbing a single MNIST dataset has required more than an hour. Consequently,
we follow the training scheme proposed in the original paper. Despite the fact that we have stored
and loaded the perturbed images, the training time of ESP was shorter than the DeepAugment.

Training Time on MNIST-C (secs/epoch) Training Time on CIFAR-10-C (secs/epoch)

Naive 4.901 Naive

ESP 14.39 ESP

AugMix(no jsd) 30.798 AugMix(jsd)

DeepAugment 16.46 DeepAugment

Figure 5: Training time comparison of augmentation methods on MNIST-C and CIFAR-10-C
benchmarks. ESP exhibits the fastest running time compared to the other baseline methods. The
training time is averaged over 5 epochs.
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Table 5: Clean error over MNIST-C, CIFAR-10/100-C, and Tiny-ImageNet-C benchmarks. The
reported values are the average clean test error with three individual runs for each method. Best
results are marked in bold.

Augmentation MNIST-C ~ CIFAR-10-C CIFAR-100-C  Tiny-IN-C
Naive 143+£048 4.624+007 2279+£0.14  40.69 + 0.05

Naive + Ly 0.65+0.18 7324012  30.54+027 40.52 + 045
Naive + ESP 0484002 8024020 30.56+047 43.36 +0.54
AugMix 0.77+£0.03 4454005 2292+020 39.62 4 0.27
AugMix + Lo 0774007 453+0.10 2378+0.06 39.97 +0.23
AugMix + ESP 087 +£0.01 4342010 23.03+£021 41254030
DeepAugment 0984006 5.10+021 2407 +0.15 39.96 4 0.03
DeepAugment + Lo 105+0.04 586+0.11 27.68+£0.15 39.93+0.29
DeepAugment + ESP 1.07 +£0.03 6.144£0.05  2630+0.09 37.35+ 0.07
AugMix + DeepAug 112007 4774+0.12 24112022 3921 £0.62
AugMix + DeepAug + Ly~ 1.144+0.05 4.86+0.16 24.06+0.14 39.30 +0.16
AugMix + DeepAug + ESP  1.12£0.10 4.79+£0.04  24.884+0.22 37.91 +0.05

F ADDITIONAL EXPERIMENT

In addition to MNIST-C, CIFAR-10/100-C, and Tiny-ImageNet-C benchmark, we provide partial
experiment on ImageNet-C benchmark to show that ESP is effective way to enhance model robustness
in ImageNet-C benchmark as well. ResNet18 has been employed with the same cosine annealing
scheduling as in 4.2.

Table 6: ImageNet-C experiment results.

Naive ESP
70.24  60.28

Augmentation

Avg. Corruption Error
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