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In the main text, many algorithmic details were omitted and only discussed briefly. In this supplemen-
tary document, we expand the discussions in the main text and provide more details about the various
datasets used, implementation details of the various methods, and some engineering tricks used. The
source code for running our experiments can be found at this url3. We conclude this document with
brief discussion of its broader impact.

A Experimental Details

A.1 Dataset Details

We expand upon the seven datasets used for our experiments in this section.

Rotated 2 Moons dataset: This is a variant of the 2-entangled moons dataset, with a lower moon
and an upper moon labeled 0 and 1 respectively. Each moon consists of 100 instances, and 10
domains are obtained by sampling 200 data points from the 2-Moons distribution, and rotating them
counter-clockwise in units of 18◦. As a result a domain i is rotated by 18i◦ degrees. Domains 0 to 8
(both inclusive) are our training domains, and domain 9 is for testing.

Rotated MNIST dataset: This is an adaptation of the popular MNIST digit dataset, where the task
is to classify a digit from 0 to 9 given an image of the digit. We generate 5 domains by rotating the
images in steps of 15 degrees. To generate the ith domain, we sample 1,000 images from the MNIST
dataset and rotate them counter-clockwise by 15× i degrees. We take the first four domains as train
domains and the fifth domain as test.

Shuttle 4 This dataset provides 9 features for about 58, 000 datapoints for space shuttles in flight.
The task is multi-class classification with a heavy class imbalance. The dataset was divided into 8
domains based on the time-stamps associated with points, with times between 30-70 being the train
domains and 70− 80 being the test domain.

Electrical Demand (Elec2)5 This contains information about the demand of electricity in a particular
province. It has 8 features including price, day of the week and units transferred. The task is, again
binary classification, to predict if the demand of electricity in each period (of 30 mins) was higher
or lower than the average demand over the last day. We discard instances with missing values. We
consider two weeks to be one time domain, and train on 29 domains while testing on domain 30.
There are hence 27, 549 train points and 673 test points.

∗Equal Contribution
†anshulnasery@gmail.com
3https://github.com/anshuln/Training-for-the-Future
4https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)
5http://web.archive.org/web/20191121102533/http://www.inescporto.pt/~jgama/ales/

ales_5.html

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/anshuln/Training-for-the-Future
https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)
http://web.archive.org/web/20191121102533/http://www.inescporto.pt/~jgama/ales/ales_5.html
http://web.archive.org/web/20191121102533/http://www.inescporto.pt/~jgama/ales/ales_5.html


Reutersdataset6: This dataset contains text articles over a period from February 1987 to October
1987. The task involves predicting one of the 10 categories to which an article belongs. A total of
4297 articles from 26 Feb to 7 April are considered as training data, and they are split into 3 domains,
each spanning roughly 14 days. 685 articles from 7 April to 23 April constitute the test data.

House prices dataset7: This dataset has housing price data from 2013-2019. It has 3 features:
number of bedrooms, house type, postal code. This is a regression task to predict the price of a house
given the features. We treat each year as a separate domain, but also give information about the exact
date of purchase to the models. We take data from the year 2019 to be test data and prior data as
training. There are 1, 385 test points and 20, 937 train points.

M5: Household8: The task is to predict item sales at stores in the state of California (US) given a
history of sales of each product under the household category at each store. We use the monthly
sales history from 2013 to 2015 for each item at each store. Our target domain is to predict sales of
January 2016. We filter out those stores in the state of California, which have an average daily sales
of less than 1 item. Each source domain has 124, 100 instances, and the target domain has 5, 100. We
extract 78 features for each sales record, including rolling statistics over the past 15 days, information
about holidays, day of the week, etc.

M5: Hobbies This is the same dataset as above but products are under the Hobbies category. The split
between source and target domains, and the prediction task are also the same as the M5: Household
dataset. Each source domain has 323, 390 instances and the target domain has 27, 466.

A.2 Methods Compared

In this section, we provide further details of the baselines compared against in the main paper, as well
as other methods we attempted.

A.2.1 Details of Baselines

CIDA [5] : The authors take time as an input and aim to learn time-invariant feature representations
using an encoder network. They make use of 3 deep neural networks - (1) Encoder: learns time-
invariant features, (2) Predictor: predicts the class label given a time-invariant representation, (3)
Discriminator: predicts the time-stamp given a time-invariant representation. We use the open-source
code9 provided by the authors, modifying it to suit regression tasks as needed.

CDOT [3]: In this method, the authors use regularized Optimal Transport (OT) maps to transform data
from the source domain to the target domain. The authors propose adding a temporal regularization
and a class regularization to the regularized OT training objective. The temporal regularization
enforces a smoothness on the learnt Optimal Transport maps (couplings) along time. If we learn an
OT coupling between 2 domains Di and Dj , the learnt coupling Ii→j(x) transforms x ∈ Di into its
transported image in Dj

The authors used this algorithm in a setting where only 1 labelled source domain is present. Since
we have T labelled source domains, we transform data from the last k source domains to the target
domain. For all datasets except Elec2, we set k = T . For the Elec2 dataset, setting k = 15 gives
the best results. Also, instead of using the class regularization, we force the OT coupling between
2 data points from different classes to be 0. We can do this because the true labels are known to us
for all source data. We use the Python Optimal Transport library 10 to implement CDOT for our
experiments.

Adagraph [9]: The authors use domain indices as inputs, using these to decide which batch-norm
parameters to use for a particular input batch. We use an RBF kernel to compute similarity between
different domains. We use their public source code11 for our experiments.

6http://disi.unitn.it/moschitti/corpora.htm
7https://www.kaggle.com/htagholdings/property-sales
8https://www.kaggle.com/c/m5-forecasting-accuracy
9https://github.com/hehaodele/CIDA/

10https://pythonot.github.io/
11https://github.com/mancinimassimiliano/adagraph
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A.2.2 Other methods proposed

DPerturb: Inspired by methods such as [15], we have a baseline which attempts to augment the
training data with perturbed examples. We train 2 separate models, a classifier F (x, t) which predicts
the class label of the data point x; and an Ordinal classifier G(x1,x2) which predicts the temporal
similarity between 2 data points x1,x2.

The classifier F is first pre-trained on the entire source data. Parallely, the ordinal classifier G is
trained on pairs of source domains Di,Dj , i < j. Using the gradients of this ordinal classifier with
respect to the inputs, we perturb train examples to resemble examples from the test time domain. We
finally fine-tune the pretrained classifier model using these simulated test examples.

Deep ODE: We train a deep neural ODE [? ] to model the evolution of an example data point
along time. Neural ODEs parameterize the continuous dynamics of hidden units using an ordinary
differential equation (ODE), which is specified by a deep neural network. We use this to transform
examples from the train time into examples from the test time and augment the dataset with such
examples. We use the public source code12 by the authors for our experiments with this method.

It is important to note that Neural ODEs work best in a setting where we have images of the same
data point across multiple domains. Hence, it works well only in toy settings like the 2-Moons
dataset, where the same sample is rotated along time. On real datasets however, we have different
samples from each domain, and such a method cannot be applied directly. As a result we are able to
compare Deep ODE to other models only for the 2-Moons dataset.

Generative Model: We train a GAN-like generative model to transform an example datapoint from
time ti into a datapoint from time tj . To provide supervision to this model we use optimal transport
maps to find the image of the data point at tj . We use this to transform examples from the train time
into examples from the test time and augment the dataset with such examples. The model consists
of a "transformer" G(x, ti, tj), a discriminator D(x, tj) and a classifier C(x, tj). The transformer
predicts the future image of a data point x ∈ Di at t2. The discriminator D(x, tj) outputs 1 if x is a
true data point from the jth time stamp, and 0 otherwise. We use a combination of various losses to
train the transformer and the discriminator.

• Adversarial Loss - This is the standard GAN training objective which distinguishes between
the actual points from time t2 and the generated points.

• OT reconstruction Loss - We compute the optimal transport maps Ik→(k+1)(·) to transport
examples from time-stamp k − 1 to time-stamp k. These are pre-computed using training
data from adjacent time-stamps. While training G, we add a loss term ‖It→(t+1)(x) −
G(x, t, t+ 1)‖22 to guide the generation process.

• Classifier Loss - This loss tries to ensure that the label assigned to the generated sample by
C is the same as the original sample. Formally, the loss is `(y, C(x))

The above models can be easily extended to a regression setting.

We minimize a combination of these losses for the generator and the discriminator. The discriminator
is trained on the following loss:

LD = −Ex∈Di [logD(x, i)]− Ex∈G(z,i−1,i)[log(1−D(x, i))]

The transformer is trained on:
LG = −Ex∈G(z,i−1,i)[logD(x, i)]+λ1‖I(i−1)→i(x)−G(x, i−1, i)‖22+λ2`(y, C(G(x, i−1, i), i))

We first pre-train the classifier C on all of the source data. Following that, we train the transformer
and the discriminator in an adversarial manner. We fine-tune the classifier on the simulated target
domain data points generated by the transformer.

Table 1 shows a comparison between these methods and GI.

We observe from Table 1 that GI performs well consistently. DPerturb works well for datasets where
the data distribution changes noticeably. When the data distribution remains same, but the label

12https://github.com/rtqichen/torchdiffeq
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Dataset 2-Moons Rot-MNIST M5-Hob
GI 3.5± 1.4 7.7± 1.3 0.09± 0.03
DPerturb 5.6± 2.6 13.4± 3.0 0.28± 0.09
Generative Model 4.6± 1.6 13.5± 3.2 0.42± 0.18
Deep ODE 2.2± 0.8 - -

Table 1: Comparison of GI against some other methods on some datasets in terms of misclasssication
error (in %)for first 2 datasets and mean absolute error (MAE) for last dataset. The standard deviation
over five runs follows the ± mark.

distribution changes across domains, the Ordinal Classifier fails to predict the difference in time-
stamps between the data points. Deep ODE is quite powerful at capturing the continuous dynamics
of the 2-Moons dataset, however it cannot be applied to other datasets as discussed above. Generative
Model can work somewhat well on synthetic data, however it fails to capture the transformations on
real world data, making it inferior to GI .

A.3 Network parameters and hyper-parameters

In this section we specify the architecture as well as other details for each dataset’s experiments. We
use Adam optimizer for all our experiments. In general we tune the learning rate individually for
each dataset and method, picking from values between 1e-4 and 1e-2. We also tune λ separately for
GI, GradReg, TimePerturb picking from 0.01,0.1,0.5,1. We tune the hyper-parameters associated
with selecting δ including ∆ (between 0.1 and 0.5) and the number of steps (between 5-20) for
GI, and use these same hyperparameters for all our ablations. These hyperparameters also ensure
that the δ selection process converges for mini-batches. For AdaGraph we additionally tune the
hyperparameters associated with the RBF kernel for domains.

2-Moons: For pre-training, we use a learning rate lr = 5× 10−3, a fine-tuning lr = 5× 10−4. We
pretrain for 30 epochs and finetune for 25 epochs, early stopping during fine-tuning according the
loss on the next domain. We finetune on the last two domains. For optimizing δ in the GI loss, we
use vanilla gradient ascent with lr = 5× 10−2 and ∆ = 0.5 The network architecture consists of 2
hidden layers, with a dimension of 50 each. We use a TReLU layer after each hidden layer, and use a
Time2Vec representation with m = 8 and mp = 2.
Rot-MNIST - For training the network, we use a pre-training learning rate lr = 10−3, a fine-tuning
lr = 5 × 10−4. We pre-train for 60 epochs and fine-tune for 20 epochs with early stopping. We
fine-tune on the last two domains. For optimizing δ we use gradient ascent with lr = 0.1, ∆ = 0.15
and do 15 steps of this ascent. We use a ResNet like architecture with 4 CNN blocks having 16, 32,
64, 128 channels respectively, a kernel size of 3, followed by 2 fully connected layers of 256 and 10
units. We have a TReLU after each layer, and use Time2Vec with m = 16, mp = 4.
House - For training the network, we use a pre-training learning rate lr = 1× 10−3, a fine-tuning
lr = 5 × 10−4. We pre-train for 40 epochs and fine-tune for 20 epochs with early stopping. We
fine-tune on the last two domains. For optimizing δ we use gradient ascent with lr = 0.3, ∆ = 0.2
and do 5 steps of this ascent. We use a three layer neural network with a hidden size of 400. We have
a TReLU after each layer, and use Time2Vec with m = 16, mp = 4.
Shuttle - For training the network, we use a pre-training lr = 5× 10−3, a fine-tuning lr = 5× 10−4.
We pre-train for 25 epochs and fine-tune for 15 epochs. We fine-tune on the last two domains. For
optimizing δ we use gradient ascent with lr=5× 10−3, ∆ = 0.2 and do 10 steps of this ascent. We
use a two layer neural network with a hidden size of 128. We have a TReLU after each layer, and use
Time2Vec with m = 16, mp = 4.
Reuters - For training the network, we use a pre-training lr = 2.0, a fine-tuning lr = 1.0. We
pre-train for 50 epochs and fine-tune for 20 epochs. We fine-tune on the last two domains. For
optimizing δ we use gradient ascent with lr=0.1, ∆ = 0.2 and do 5 steps of this ascent. We use an
Embedding bag layer, followed by a two layer neural network with a hidden size of 128. We have a
TReLU after each layer, and use Time2Vec with m = 8, mp = 2.
Elec2 - For training the network, we use a pre-training lr = 5× 10−3, a fine-tuning lr = 5× 10−4.
We pre-train for 30 epochs and fine-tune for 20 epochs. We fine-tune on the last two domains. For
optimizing δ we use gradient ascent with lr=5× 10−3, ∆ = 0.2 and do 10 steps of this ascent. We
use a two layer neural network with a hidden size of 128. We have a TReLU after each layer, and use
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Time2Vec with m = 16, mp = 4.
ONP - For training the network, we use a pre-training lr = 10−3, a fine-tuning lr = 5× 10−5. We
pre-train for 50 epochs and fine-tune for 30 epochs with early stopping. We fine-tune on the last
2 domains. For optimizing δ we use gradient ascent with lr=0.5, ∆ = 0.1 and do 10 steps of this
ascent. We use a two layer neural network with a hidden size of 200. We have a TReLU after each
layer, and use Time2Vec with m = 8, mp = 2.
M5-Hob - For training the network, we use a pre-training lr=10−2, a fine-tuning lr=5× 10−4. We
pre-train for 25 epochs and fine-tune for 15 epochs with early stopping. We fine-tune on the last 2
domains. For optimizing δ we use gradient ascent with lr=0.5, ∆ = 0.5 and do 5 steps of this ascent.
We use a three layer neural network with a hidden size of 50. We have a TReLU after each layer, and
use Time2Vec with m = 8, mp = 2.
M5-House - For training the network, we use a pre-training lr = 10−2, a fine-tuning lr = 5× 10−4.
We pre-train for 35 epochs and fine-tune for 20 epochs with early stopping. We fine-tune on the last 2
domains. For optimizing δ we use gradient ascent with lr=0.5, ∆ = 0.5 and do 5 steps of this ascent.
We use a three layer neural network with a hidden size of 50. We have a TReLU after each layer, and
use Time2Vec with m = 8, mp = 2.

A.4 Other Implementation Details for GI

Finetuning details. In the second step of our training Algorithm, i.e. finetuning with the GI loss, we
finetune the model only with the last k domains, where k depends on the dataset. We do this to bias
our network more towards extrapolating to future data rather than just interpolating between training
domains.
Further, selecting δ adversarially is the step which takes up the most amount of time. Hence we use
the following tricks to decrease this time-

• We use a single δ per minibatch, instead of having a separate δ for each example. We notice
that this increases the performance, while providing a significant reduction in training time.

• We exit the δ training loop once the gradient falls below a threshold. We also initialize the
value of δ for the next mini-batch using the value obtained from the previous mini-batch, to
warm start the process.

Apart from this, we do early stopping during the fine-tuning step based on the actual loss ` incurred
on the next domain. This is achieved by computing the value of ` on domain j + 1 while fine-tuning
with JGI on domain j.
Details about neural architecture. In order for our architecture to be more memory efficient, we
introduce a variant of TReLU for CNNs, where the threshold and slope for all the units of a channel
are tied together, reducing the number of outputs of the TReLU to be equal to the number of output
channels.

A.5 Hardware Setup

All experiments were run on dual Intel® Xeon® Silver 4216 Processors. All experiments on Rot-
MNISTdataset were executed on a single Nvidia Titan RTX GPU.

B Computation Time

While our training steps are computationally more expensive than the baseline ERM training, we find
that the end to end training time for our approach is less than that of adversarial methods like CIDA,
due to faster convergence. We report the total training times in seconds in table 2

C Comparison with online learning

In order to compare our method with online learning approaches, we experiment with modified
versions of FTPL and FTRL algorithms from [23] in our setting, by training the learner on time upto
tT and testing it on time tT+1. We modify the algorithm to output the weights of a neural network at
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Algorith ERM CIDA GI
2-Moons 6.2 40.4 7.1
Rot-MNIST 45.5 257.3 207.1
House 91.4 352.4 195.6
M5-Hob 745.5 2892.6 1334.2

Table 2: Training time in seconds of various algorithms on some datasets.

time t+ 1, and consider fi to be the cross entropy/MSE loss incurred by the model on time stamp i.
We take gt to be ft−1 and σt,j to be the loss incurred on perturbed (gaussian noise added to input)
points from domain t− 1. We set m = 1 as in the paper. We observe that GI performs better than
both these baselines as reported in table 3

Dataset FTPL FTRL GI
Rot-MNIST 11.5± 3.1 16.7± 2.0 7.7± 1.3
Elec2 18.5± 1.7 20.7± 0.8 16.9± 0.7
Shuttle 0.75± 0.12 0.83± 0.20 0.21± 0.05
House 10.2± 0.1 10.3± 0.3 9.6± 0.02

Table 3: Comparison against online learning methods

D Potential Negative Societal Impact

Our algorithm can make models more robust to temporal shifts in data distribution. However, our
method cannot handle large drifts. If used in human-facing applications such as credit rating we have
to be aware of this limitation and exercise caution. Perhaps, the use of our method should be guarded
with another module that detects the magnitude of drift. We note that this limitation is not unique
to our approach. Any predictive model has the potential of making misleading predictions unless
guarded with reliable out of distribution detection (OOD) and calibration modules.
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