Supplementary Material

In this supplementary material, we provide additional details and analyses that could not be included
in the main paper due to page constraints. Section A covers implementation details and benchmark
settings. Section B presents further analysis of utilizing simplex ETF. Section C presents experi-
mental results in the remote sensing domain to demonstrate generalizability of DEUS. Section D
presents qualitative results.

A DETAILS OF EXPERIMENT SETTINGS

Implementation Details We follow the implementation details of OrthogonalDet (Sun et al.,
2024). OrthogonalDet is based on a Fast R-CNN (Girshick, 2015) architecture and a ResNet-50 (He
et al., 2016) backbone pre-trained on ImageNet (Russakovsky et al., 2015). We used a linear classi-
fier for the classification and Batch Normalization (Ioffe & Szegedy, 2015) for the objectness branch,
following OrthogonalDet. Our DEUS framework is trained using the AdamW optimizer (Loshchilov
& Hutter, 2019). Rol pooling is applied to 500 random proposals, which are then fed into the de-
tection heads for localization, objectness, and classification training. During training, DEUS is
supervised using ground-truth annotations and pseudo-labels selected based on our pseudo-labeling
process in A. During inference, we omit prediction randomness by using 1,000 pre-defined object
proposals, which are pruned via non-maximum suppression at an IoU threshold of 0.6. The final
detections are selected using a score threshold of 0.10. For loss hyperparameters and balancing, we
set the focal loss parameters a = 0.25 and ~ = 2.0. The classification loss weight is 2.0, L1 regres-
sion loss weight is 5.0, and GIoU loss weight is 2.0. Our proposed EUS and EKD loss weights are
both set to 1.0, and ETF energy margin m is 0.5. We used three NVIDIA RTX 4090 GPUs with
a batch size of 12 per GPU, employing AMP with bfloat16 precision for efficient training and our
implementation is based on MM-Detection (Chen et al., 2019) framework.

Pseudo-labeling process. Following the baseline approach (Sun et al., 2024), we provide pseudo-
labels for unknown objects as supervision signals to the detector. While the baseline method simply
selects a fixed number 7 (e.g., 20) of queries with the highest objectness scores among those un-
matched with ground truth, we introduce a more sophisticated pseudo-labeling process. First, The
number of pseudo-labels kpseudo is determined proportionally to the known ground truth count, fol-
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the number of learned classes including the current task and we set 7 = 20. This provides more
unknown supervision in early stages when fewer classes have been learned, gradually reducing as
the model learns more classes. Second, we only consider objects whose bounding-box length is at
least 0.5 times the minimum image size as unknown labels, filtering out excessively small or noisy
detections. Lastly, we use final unknown logits (Eq.equation 13) as our criterion, selecting only ob-
jects with scores above zero as pseudo-labels to maximize avoidance of known objects. This creates
a beneficial self-improving cycle: our EUS method enables better unknown detection, which pro-
vides higher-quality pseudo-labels that further enhance unknown representation learning, leading to
progressively improved performance without additional unknown supervision.

lowing a dynamic scaling mechanism Kpgeudo = kgt - max (1 >, where Ny, own represents

M-OWODB The superclass-mixed benchmark (Joseph et al., 2021) groups all Pascal VOC classes
and data into the initial task, Task 1. The remaining 60 classes from MS-COCO are then divided
into three incremental tasks, introducing semantic drifts. Due to the overlap between Pascal VOC
and MS-COCO classes, super-categories are mixed across tasks. Consequently, while M-OWODB
ensures non-overlapping classes between sequential tasks, super-categories such as Vehicles and
Animals may still overlap across tasks. The left section of S.Table 1 shows the benchmark configu-
ration of M-OWODB, where Task 1 consists of the VOC classes that can share the super-categories
with subsequent tasks.

S-OWODB The superclass-separated benchmark (Gupta et al., 2022) provides a stricter MS-
COCO split compared to M-OWODB. While M-OWODB allows data leakage across tasks due
to the inclusion of different classes from the same super-categories (e.g., most classes from vehicle



S.Table 1: Benchmark Configuration for M-OWODB, S-OWODB, and RS-OWODB.

Metri M-OWODB S-OWODB RS-OWODB
etrics
Task 1 Task 2 Task3  Task 4 Task 1 Task 2 Task3  Task 4 Task 1 Task 2 Task 3 Task 4
Baseballfield, Basketballcourt, Aeroplane, Airport,
Outdoor, Electronic, . Outdoor, R A )
Animals, Electronic, Dam, Expressway Area, Bridge, Chimney,
. o Accessories, Sports, Indoor, Accessories, Sports, .
Classes VOC Classes . X Person, . Indoor, | Groundtrackfield, Harbor, Expressway Station, ~ Golffield,
Appliances, Food  Kitchen, . Appliances,  Food . : .
. Vehicles Kitchen Stadium, Storagetank, Overpass, Ship,
Truck Furniture Furniture
Vehicle Windmill Tenniscourt Trainstation
# of Classes 20 20 20 20 19 21 20 20 5 5 5 5
# of training images 16,551 45,520 39,402 40,260 89,490 55.870 39,402 38903 5.394 3,445 4,111 3.247
# of training objects | 47,223 113,741 114,452 138996 | 421,243 163512 114,452 160,794 18,378 9,928 10,093 29,674
# of test images 10,246 8,877 11,738
# of test objects 14,976 4,966 4,826 6,039 17,786 7,159 4,826 7,010 8,212 32,695 20,614 37,967

and animal super-categories are introduced in Task 1, while related classes such as truck, elephant,
bear, zebra, and giraffe appear in Task 2), S-OWODB groups all categories within a super-category
into a single task rather than spreading them across tasks. As shown in middle of S.Table 1, Task 1
contains all related classes from Animals, Person, and Vehicles, while Task 2 includes Appliances,
Accessories, Outdoor, and Furniture. This strict separation by super-categories makes S-OWODB a
more challenging OWOD benchmark.

RS-OWODB To further evaluate the generalizability of DEUS, we introduce a new benchmark
setting called RS-OWODB (Remote Sensing OWODB) as shown in the right side of S.Table 1.
Unlike M-OWODB and S-OWODB, which focus on natural images, RS-OWOQODB utilizes remote
sensing images. This benchmark is constructed using the DIOR (Li et al., 2019) datasets with
each task consisting of 5 classes. The benchmark maintains balanced data distribution across tasks,
with the number of images and object instances evenly distributed. This benchmark provides an
additional evaluation environment for the OWOD scenario in the remote sensing domain.

B ANALYSIS ON SIMPLEX ETF

Neural collapse (Papyan et al., 2020) is a phenomenon in which the activations of the last layer
and the classifier vectors form a simplex equiangular tight frame (ETF). The simplex ETF consists
of K vectors in R?, where all vectors have equal /5 norm, and any pair has an inner product of
—ﬁ. The fixed simplex ETF is an ideal classifier structure due to its equiangular and consistent
magnitude. Motivated by these properties, we adopt the fixed simplex ETF to construct both known
and unknown spaces. The equiangular and equal magnitude properties of the K vectors in the
sim;l)lex ETF allow subsets of these vectors to form non-overlapping spaces, each with a margin of
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unknown spaces.

To validate the effectiveness of the known and unknown spaces constructed using the simplex ETF,
we conducted an ablation study to evaluate the impact of the number of K vectors used in the sim-
plex ETF. Increasing the number of K helps create known and unknown spaces with sufficient vec-
tors to represent each space and improve the model’s ability to capture unknown patterns, resulting
in generally increased U-Rec performance. However, this enhanced unknown detection capabil-
ity leads to a slight decrease in Known mAP due to the increased number of unknown detections,
though the difference is not significant. As shown in S.Table 2, we empirically identified the optimal
value for K. We observed that larger K values consistently improve unknown recall performance,
with K = 128 achieving the highest U-Rec of 69.0. Although there is a minor trade-off in Known
mAP, the overall H-Score, which represents the harmonic mean between Known mAP and U-Rec,
reaches its peak at K = 128. Therefore, we select K = 128 as our final configuration to achieve the
best balance between known and unknown object detection performance.



S.Table 2: Analysis of the number of K for simplex ETF on M-OWODB. We conducted an ablation study to
determine the optimal number of K for the simplex ETF. The best performance is highlighted in bold, and the
second best is underlined.

Task IDs Task 1 Task 2 Task 3
. Current Previous Current Known Previous Current Known
#of K mAP U-Rec H-Score mAP AP mAP U-Rec H-Score mAP AP mAP U-Rec H-Score

w/o EUS | 66.0 36.8 47.2 59.2 459 52.6 40.0 454 53.6 43.6 50.3 38.9 43.9
K=32 66.4 62.9 64.6 61.0 46.3 53.6 63.8 58.3 53.8 43.6 50.4 65.5 57.0

S.Table 3: Experimental results on RS-OWODB. Results are reported in terms of mean average precision
(mAP) for known classes, unknown class recall (U-Rec), and harmonic score (H-Score). The best performance
is highlighted in bold.

Task IDs Task 1 Task 2 Task 3 Task 4
Current Previous Current Known Previous Current Known Previous Current Known
Method U-Rec H-Score U-Rec H-Score U-Rec H-Score
mAP mAP  mAP mAP mAP  mAP mAP mAP  mAP mAP
OrthogonalDet (Sun et al., 2024)| 654  23.7 348 552 694 623 89 15.6 63.9 595 624 93 16.2 62.4 69.5 642
DEUS (Ours) 677 581 62.5 58.1 731 656 281 394 66.9 643 660 29.7 409 66.4 740 683

C EXPERIMENTAL RESULTS ON RS-OWODB

To evaluate the generalizability of DEUS beyond natural images, we conducted experiments on
RS-OWODB using remote sensing images from the DIOR dataset. This different domain provided
a more challenging evaluation environment with different visual characteristics, object scales, and
spatial distributions. As shown in S.Table 3, DEUS demonstrated superior performance compared
to our base model (OrthogonalDet), across all tasks in RS-OWODB. In Task 1, DEUS achieved 67.7
current mAP and 58.1 U-Rec, resulting in an H-Score of 62.5, significantly outperforming Orthog-
onalDet’s H-Score of 34.8. This substantial improvement validated that EUS effectively detected
unknown objects and distinguished them well from known objects even in the remote sensing do-
main. Throughout incremental tasks, the known mAP remained consistently high across tasks. By
Task 4, DEUS achieved 68.3 compared to OrthogonalDet’s 64.2 while consistently maintaining high
unknown recall performance. This indicates that EKD successfully mitigated catastrophic forgetting
in the remote sensing domain. These results demonstrated that DEUS provided a generalizable so-
lution for OWOD that extended beyond natural image domains, making it applicable to specialized
applications such as remote sensing, medical imaging, and autonomous navigation systems.

D QUALITATIVE RESULTS
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S.Figure 1: Qualitative results after training on Task 3. Blue and yellow boxes indicate the predictions for
known and unknown objects. Red boxes indicate missed objects, which may belong to either known or un-
known categories.

We conducted qualitative experiments on images containing various objects and compared the re-
sults with OrthogonalDet. The visualizations were generated using the model continually trained
on Task 3 in M-OWODRB, utilizing the MS-COCO dataset. Blue and yellow boxes represent known
and unknown objects, respectively, while red-dotted boxes indicate missed objects that belong to
either known or unknown categories. As shown in S.Figure 1, OrthogonalDet failed to detect cer-
tain known objects e.g., banana and apple in the left image as well as unknown objects, whereas the
proposed DEUS effectively detected both known and unknown objects.
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S.Figure 2: Qualitative Results of Continuous Training on Tasks in M-OWODB. Blue and yellow boxes repre-
sent predictions for known and unknown objects, respectively. Red boxes indicate missed objects, which may
belong to either known or unknown categories. Task 2 includes appliance classes such as refrigerator, sink, and
oven, while Task 3 includes fruit classes like orange.

Additionally, we conducted qualitative experiments to evaluate the ability to continually detect ob-
jects in the same input image. We visualized the results after training on Task 2 and Task 3. Task
2 includes appliance classes such as refrigerator, sink, and oven, while Task 3 includes fruit classes
such as orange. As shown in S.Figure 2, OrthogonalDet failed to detect the orange as an unknown
object, whereas DEUS correctly labeled it as unknown. After training on Task 3, both Orthogo-
nalDet and DEUS were able to detect the newly learned orange as a known class. However, while
OrthogonalDet failed to detect unknown objects and mistakenly labeled backgrounds as unknown,
DEUS effectively detected unlabeled unknown objects. These qualitative results validate that the
proposed DEUS enables the detector to correctly identify unknown objects even in images contain-
ing a variety of objects.
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