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ABSTRACT

Recent years have witnessed remarkable progress in multi-view diffusion models
for 3D content creation. However, there remains a significant gap in image quality
and prompt-following ability compared to 2D diffusion models. A critical bottle-
neck is the scarcity of high-quality 3D data with detailed captions. To address this
challenge, we propose Bootstrap3D, a novel framework that automatically gen-
erates an arbitrary quantity of multi-view images to assist in training multi-view
diffusion models. Specifically, we introduce a data generation pipeline that em-
ploys (1) 2D and video diffusion models to generate multi-view images based on
constructed text prompts, and (2) our fine-tuned 3D-aware MV-LLaVA for filter-
ing high-quality data and rewriting inaccurate captions. Leveraging this pipeline,
we have generated 1 million high-quality synthetic multi-view images with dense
descriptive captions to address the shortage of high-quality 3D data. Furthermore,
we present a Training Timestep Reschedule (TTR) strategy that leverages the
denoising process to learn multi-view consistency while maintaining the original
2D diffusion prior. Extensive experiments demonstrate that Bootstrap3D can gen-
erate high-quality multi-view images with superior aesthetic quality, image-text
alignment, and maintained view consistency.

1 INTRODUCTION

3D content creation stands as a fundamental challenge within the generative domain, boasting
widespread applications in augmented reality (AR) and game modeling. Unlike 2D image gen-
eration, the dearth of high-quality 3D models persists as a significant hurdle to overcome. In the
realm of 2D image generation, the pivotal role of training on billion-scale image-text pairs (Schuh-
mann et al., 2022) has been firmly established (Betker et al., 2023; Rombach et al., 2022; Li et al.,
2024; Chen et al., 2023a; 2024a). However, in 3D content generation, the scarcity of high-quality
3D models often compels reliance on the priors of 2D diffusion models. The predominant method-
ologies in this domain can be categorized into two main streams: 1) Gaining optimized neural
representations from fixed 2D diffusion models via Score Distillation Sampling (SDS) loss (Poole
et al., 2022; Shi et al., 2023b; Liu et al., 2023b; Shi et al., 2023a; Liu et al., 2023a; Wang et al.,
2024a), which are time-intensive, lacking diversity and suffer from low robustness although capable
of producing high-quality 3D objects. 2) Fine-tuning 2D diffusion models to achieve multi-view
generation (Li et al., 2023a; Shi et al., 2023a;b) , directly synthesizing 3D objects through sparse
reconstruction models (Li et al., 2023a; Wang et al., 2023b; Xu et al., 2024a;b; Tang et al., 2024a;
Wei et al., 2024). With recent improvements in large-scale sparse view reconstruction models and
3D representations (Kerbl et al., 2023), the second stream is garnering increasing attention.

Fine-tuning 2D diffusion models for multi-view generation remains challenging owing to the in-
sufficiency in both data quality and quantity. Previous methods (Qiu et al., 2023; Li et al., 2023a;
Shi et al., 2023b; Deitke et al., 2024) primarily train on a filtered subset of high-quality data from
Objaverse (Deitke et al., 2023) and Objaverse-XL (Deitke et al., 2024). The scarcity of high-quality
data often introduces various shortcomings. In single-view based novel view synthesis (Liu et al.,
2023b; Shi et al., 2023a; Wang & Shi, 2023; Voleti et al., 2024), if the input images deviate from the
distribution of the training data, it can induce issues such as motion blurring, object distortion and
deformation (Shi et al., 2023a).
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A cluster of tents pitched near a forest, campfire smoke curling into the 
evening sky

A delicate porcelain teacup, painted with intricate flowers, rests on a saucer

Cartoon Style PhotoRealistic CAD Low Poly

A pocket-sized sorceress with a book of spells, casting enchantments

A chibi mermaid with a shimmering tail, sitting on a coral throne

A compact, cylindrical, vintage pepper mill, with a polished, ornate brass body, 
slightly worn from use, placed beside a porcelain plate on a checkered tablecloth.

An oversized, porous, sphere-shaped birdcage, made of woven golden wires, with 
a matte finish, housing a small, mechanical, singing bird that flutters in a lifelike 

manner.

A solid, symmetrical, smooth stone fountain, with water cascading over its edges into a clear, 
circular pond surrounded by blooming lilies, in the center of a sunlit courtyard

A floating teapot, pouring a stream of endless, 
steaming jasmine tea

A flaming candle 

A velvet-lined violin case, which opens to reveal a garden of miniature roses

Figure 1: Bootstrap3D can generate high quality multi-view images with precise long text control
and style customization while maintaining view consistency.

Moreover, in direct text-to-multi-view image generation, the pursuit of enhancing view consistency
compromises the aesthetic and photo-realistic quality. For instance, Intant3D (Li et al., 2023a) fine-
tunes SDXL (Podell et al., 2023) using only 10K high-quality Objaverse (Deitke et al., 2023) data
with a small learning rate for 10K steps, which does not fundamentally prevent the catastrophic
forgetting problem of losing 2D diffusion prior, leading to compromised image quality. Recent
endeavors have predominantly focused on alleviating data scarcity and improving view consistency
from a model-centric perspective (Kant et al., 2024; Shi et al., 2023a; Tang et al., 2024b), with
limited exploration into the improvement of training data and training method itself.

Recent Multimodal Large Language Models (MLLMs) (Liu et al., 2024a; Chen et al., 2023b; Li
et al., 2023b; Alayrac et al., 2022; Anil et al., 2023) like GPT-4V (OpenAI, 2023a) and Gem-
ini (Team et al., 2023), possess image understanding capabilities and rudimentary 3D world aware-
ness, has enabled automatic quality assessment of multi-view images and dense caption generation.
Furthermore, notable advancements in video diffusion (Brooks et al., 2024; Voleti et al., 2024) have
improved the generalizability of novel view synthesis (Voleti et al., 2024; Chen et al., 2024b; Kwak
et al., 2023). Employing these advancements, we propose Bootstrap3D to generate synthetic data
to counteract the data deficiencies inherent in training multi-view diffusion models. To be specific,
we introduce the Bootstrap3D data generation pipeline for producing high-quality multi-view im-
ages with dense descriptive captions. Subsequently, we fine-tune a multi-view-aware MLLM model,
dubbed as MV-LLaVA, to achieve fully automated high-quality data annotation with both efficiency
and accuracy. To mitigate catastrophic forgetting of 2D diffusion prior, we introduce a training
timestep reschedule (TTR) strategy when fine-tuning multi-view diffusion models. Specifically, we
use the phased nature of the denoising process (Ho et al., 2020) and limit different training time
steps for synthetic data to achieve enhanced image quality with maintained view consistency.
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Through extensive experiments, we demonstrate that our method significantly enhances the adher-
ence of the multi-view diffusion model to text prompts and image quality while ensuring view con-
sistency. Integrated with the reconstruction model, our approach facilitates the creation of 3D models
with superior quality. We show some of the qualitative results in Fig. 1, where our model can achieve
high quality multi-view images with precise text control and style customization. Our contributions
are summarized into the following points:

1) We present an automated Bootstrap3D data generation pipeline that uses the video diffusion
model and our fine-tuned 3D-aware MV-LLaVA to synthesize an arbitrary number of high-quality
multi-view image text pairs.

2) We propose a Training Time-step Reschedule (TTR) strategy for fine-tuning the multi-view diffu-
sion model that employs both synthetic data and real data to enhance image quality and image-text
alignment while maintaining view consistency.

3) We generate 1 million multi-view images with dense descriptive captions suitable for training
the multi-view diffusion model and provide dense descriptive captions on Objaverse Deitke et al.
(2023), which mitigates the gap with the 2D diffusion model from a data perspective.

2 RELATED WORK

Existing 3D datasets and data pre-processing. Existing object level 3D datasets, sourced either
from CAD (Chang et al., 2015; Wu et al., 2015; Deitke et al., 2023; 2024) or scan from real ob-
jects (Aanæs et al., 2016; Yao et al., 2020; Downs et al., 2022; Wu et al., 2023), are still small in size.
Most state-of-the-art open-sourced 3D content creation models are trained on Objaverse (Deitke
et al., 2023). However, there still exists a huge gap compared to data used for training 2D diffusion
models (Schuhmann et al., 2022). In addition to quantity, quality is also an important problem re-
mains to be solved as many methods (Shi et al., 2023b; Li et al., 2023a; Qiu et al., 2023; Tang et al.,
2024a) trained on Objaverse rely on filtering out low-quality data, making the precious 3D data even
less. Another critical gap that requires attention is the quality of the 3D object’s caption. Previous
work Cap3D (Luo et al., 2024) propose to apply BLIP-2 (Li et al., 2023b) and GPT-4 (OpenAI,
2023b) to generate caption based on multi-view images. However, this approach, without direct
input image into GPT, can lead to severe hallucination. Given recent breakthroughs in improving
text-image alignment through caption rewriting (Betker et al., 2023; Chen et al., 2023a; 2024a; Esser
et al., 2024), there is a pressing need to rewrite denser and more accurate captions for 3D objects
with the assistance of advanced Multimodal Large Language Models (MLLMs). In this work, we
propose a new data generation pipeline to synthesize multi-view images and rewrite captions for 3D
objects incorporating additional quality scoring mechanisms to address the aforementioned issues.

Text-to-3D content creation. The field of 3D content creation has been a vibrant area of research
over the past years. One prominent research direction explores the use of Score Distillation Sam-
pling (SDS) (Poole et al., 2022) and its variants (Chen et al., 2023c; Chung et al., 2023; Hertz et al.,
2023; Liang et al., 2023; Lin et al., 2023; Liu et al., 2023b; Shi et al., 2023b; Liu et al., 2023c; Long
et al., 2023; Wang et al., 2024a; Tang et al., 2023; Wang et al., 2023a; Yang et al., 2024; Qi et al.,
2024), using the priors of 2D diffusion models to optimize 3D representations. While these methods
have demonstrated success in producing high-quality 3D generations, they often require prolonged
optimization time to converge. In contrast, recent studies (Hong et al., 2023; Wang et al., 2023b;
Li et al., 2023a; Tang et al., 2024a; Tochilkin et al., 2024; Xu et al., 2024b; Wei et al., 2024) have
proposed the direct inference of 3D representations (Mildenhall et al., 2021; Chan et al., 2022; Kerbl
et al., 2023; Zhang et al., 2023a) conditioned by images. Among these approaches, Instant3D (Li
et al., 2023a) stands out by utilizing multi-view images of the same object to directly deduce the Tri-
plane (Chan et al., 2022) representation. This approach effectively addresses the issue of ambiguous
unseen areas inherent in the single image to 3D conversions, as encountered in LRM (Hong et al.,
2023) and TripoSR (Tochilkin et al., 2024). Instant3D, along with subsequent works (Xu et al.,
2024b; Zheng et al., 2024; Wang et al., 2024b; Xu et al., 2024a), efficiently decomposes 3D genera-
tion into two processes: the generation of multi-view images using multi-view diffusion model (Liu
et al., 2023b;c;a; Shi et al., 2023b; Liu et al., 2024b; Shi et al., 2023a; Long et al., 2023; Kant et al.,
2024; Voleti et al., 2024) and large reconstruction model to generate 3D representations conditioned
on these multi-view images. In this work, we introduce a method that significantly enhances the
scalability of training and data generation for multi-view image generation.
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A small, blue songbird.

Four apples in an old basket.
…

A rustic woven basket with 

five fresh apples in it
Four apples

 in an old basket

MV-LLaVA

Prompt 
Generation

Single View 
Generation

Novel View
Synthesis

Quality Check
Caption Rewrite

Main Prompt

Cartoon, CAD, Photo-
realistic, Low-poly, Abstract 

…

Style Prompt

× combination

Large language model 2D diffusion model Video diffusion model

Figure 2: Bootstrap3D data generation pipeline that consists of 1) using LLM to generate diverse
text prompts 2) employing the T2I model to generate single-view images 3) synthesizing arbitrary
number of multi-view images by applying the video diffusion model, 4) employing MV-LLaVA to
filter and select only high-quality data, and rewrite captions to be dense and descriptive.

Video diffusion for novel view synthesis. Recent advancements in video diffusion have marked
a significant breakthrough, with models such as Sora (Brooks et al., 2024) and SVD (Blattmann
et al., 2023) scaling up the direct generation process from images to videos. Following these devel-
opments, a series of works (Wang et al., 2023c; Kwak et al., 2023; Blattmann et al., 2023; Melas-
Kyriazi et al., 2024; Han et al., 2024; Chen et al., 2024b) represented by SV3D (Voleti et al., 2024),
have fine-tuned these video diffusion models for 3D content creation. Despite these groundbreaking
developments, the new perspective images generated based on video priors still suffer from issues
like motion blur. In this work, we propose to utilize SV3D (Voleti et al., 2024) as a data generator to
produce novel views of given images with additional quality checks to leave only high-quality data.

Multimodal Large Language Models. With the development of large language models (Brown
et al., 2020; OpenAI, 2023b; Chowdhery et al., 2022; Anil et al., 2023; Hoffmann et al., 2022;
Touvron et al., 2023), multimodal large language models (MLLMs) (Zhang et al., 2023b; Alayrac
et al., 2022; Li et al., 2023b; 2022; Huang et al., 2023; Driess et al., 2023; Awadalla et al., 2023;
Liu et al., 2024a; Dong et al., 2024; Sun et al., 2023), such as GPT-4V (OpenAI, 2023a), have
demonstrated groundbreaking 2D comprehension capabilities and open-world knowledge. As is
discovered in GPTEval3D (Wu et al., 2024), GPT-4V can achieve human-aligned evaluation for
multi-view images rendered from 3D objects. In this work, we fine-tune the LLaVA (Liu et al.,
2024a) for quality judgment and descriptive caption generation based on multi-view images.

3 METHODS

Due to the scarcity of high-quality 3D data, we develop the Bootstrap3D data generation pipeline
to efficiently construct an arbitrary number of training data (Sec. 3.1). Subsequently, the quality
of generated multi-view images is assessed using the powerful GPT-4V (OpenAI, 2023a) or our
proposed MV-LLaVA (Liu et al., 2024a) model to generate dense descriptive captions efficiency
and faithfully (Sec. 3.2). We also design a training timestep reschedule (Sec. 3.3) when fine-tuning
the multi-view diffusion model with our synthetic and real data.

3.1 BOOTSTRAP3D DATA GENERATION PIPELINE

As illustrated in Fig.2, our data generation pipeline initially employs GPT-4 (OpenAI, 2023a) to
generate a multitude of imaginative and varied text prompts (Wu et al., 2024). Subsequently, to
generate 2D images that closely align with the text prompts, we utilize the PixArt-Alpha (Chen
et al., 2023a) model use FlanT5 (Chung et al., 2024) text encoder with DiT (Peebles & Xie, 2023)
architecture for text-to-image (T2I) generation. Thereafter, we use SV3D (Voleti et al., 2024) for
novel view synthesis. Given the significant motion blur and distortion often present in SV3D (Voleti
et al., 2024) outputs, we further employ Multimodal Large Language Models(MLLM) to evaluate
the quality of multi-view images. To rectify mismatches between multi-view images and the original
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CLIP-L/14

mlp

The model depicts a cartoon-style robot with 
notable features such as a cylindrical body, a 
dome-shaped head...

4×256 image tokens

The model depicts a cartoon-style robot 
with notable features such as a cylindrical 
body, a dome-shaped head...

what’s the overall quality
score from 1-5 ?

generate long
descriptive caption

what’s the 
model style?

LLaMA LLaMA

score: 4 cartoon style

The model has a high level of detail and color 
consistency, maintaining the structure of the 
mushroom. Minor blurring…

what’s the overall view 
consistency score from 1-5 ?

Descriptive 
caption

LLaMA

score: 4

Video Diffusion3D Assets

How do you think about 
view consistency?

A luminescent blue mushroom 
with a vibrant cap and pale…

Multi-View Image Data

Stage1. Vision Encoder Adaptation

Stage2. Visual Instruct Tuning

Chain-of-thought quality reasoning

Figure 3: MV-LLaVA. We use GPT-4V (OpenAI, 2023a) to generate long descriptive captions,
quality scoring, and reasoning processes for multi-view images to construct the instruction tuning
dataset. Then we fine-tune our MV-LLaVA based on LLaVA (Liu et al., 2024a) to serve as the
human-aligned quality checker and captioner for multi-view images.

text prompts induced by novel view synthesis and provide more precise captions, we further propose
MV-LLaVA to generate dense descriptive captions for multi-view images.

3.2 MULTI-VIEW LLAVA (MV-LLAVA)

To efficiently generate captions and label quality scores for both generated multi-view images and
3D assets in Objaverse (Deitke et al., 2023), we propose the Multi-View LLaVA (MV-LLaVA) that
fine-tune LLaVA (Liu et al., 2024a) based on our instructive conversation pairs generated by the
powerful GPT-4V (OpenAI, 2023a).

Preparing the instruction tuning data. As shown in Fig.2, we use GPT-4 to generate 20k varied
text prompts based on prompts designed in (Wu et al., 2024) and use PixArt-alpha (Chen et al.,
2023a) to generate single view image and use SV3D (Voleti et al., 2024) or Zero123++ (Shi et al.,
2023a) to generate multi-view images. For these 20k generated multi-view images, we prompt GPT-
4V (OpenAI, 2023a) to generate comments on view consistency, image quality and generate dense
descriptive captions. For the additional 10K rendered multi-view images from Objaverse (Deitke
et al., 2023), we prompt GPT-4V (detailed prompts in Sup. A.5.1) to offer feedback on the qual-
ity and aesthetic appeal of 3D objects, along with style judgments. We utilize these 30K high-
quality multi-view image text pairs (prompts detailed in Sup. A.5.2) as the instruction tuning data
for LLaVA.

Instruction tuning. As presented in the left part of Fig. 3, due to the LLaVA’s maximum training
context length constraints of 2048, we input four images separately into CLIP-L/14 (Radford et al.,
2021) and generate 4×256 image tokens. Inspired by ShareGPT-4V (Chen et al., 2023b), we freeze
only a portion of layers of CLIP (Radford et al., 2021) in the first stage of pre-training to enhance
multi-view awareness and texture perception of vision encoder (detailed in Sup. A.4.1). As shown
in the right part of Fig. 3, we first ask the model to generate descriptions, then let the model score
the quality based on multi-view images and captions. Our approach encourages LLM to deduct
more reasonable quality scores through chain-of-thought (Wei et al., 2022). A mixture of original
training data of LLaVA is adopted to mitigate over-fitting. As a result, we obtain MV-LLaVA,
which efficiently filters and re-captions both synthetic data and 3D assets. As detailed in Sup.A.4,
MV-LLaVA can not only generate more accurate, less hallucinated dense captions that faithfully
describe 3D objects compared to Cap3D (Luo et al., 2024) but also assign the human-aligned quality
score on both synthetic data and Objaverse assets. The filtered high-quality multi-view images with
rewritten dense captions served as training data for the diffusion model.
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Synthetic data 3D assets 2D photo

A lively, Renaissance-style 
banquet around a castle with 
jesters and knights.

An animated character 
dressed in a combination 
of purple and blue…

A section of an ancient temple 
in India constructed from red 
sandstone.

[multi view] [photo-realistic] [multi view] [CAD] [single view] [photo-realistic]

DiT-XL/2

Flan-T5-XXL

low f high f

Time 
Embedding

ℒ t

Figure 4: Training Timestep Reschedule (TTR). For different types of training data, we restrict
the training time step t accordingly to achieve the balance between varied high aesthetic images that
are better aligned with text prompt, photo-realistic texture, and view consistency for 3D generation.

3.3 TRAINING TIMESTEP RESCHEDULE (TTR)

Despite retaining only relatively high-quality synthetic data with minimal motion blur from
SV3D (Voleti et al., 2024) through MV-LLaVA, small areas of blurring persist, stemming from
both motion and out-of-distribution scenarios for SV3D and SVD (Blattmann et al., 2023). These
blurred data can potentially compromise the final performance of the multi-view diffusion model.
To restrict the training time step for synthetic data, we proposed a simple yet effective Training
Timestep Reschedule (TTR) method.

Background. Before delving into TTR, we briefly review some basic concepts needed to understand
diffusion models (DDPMs) (Ho et al., 2020; Sohl-Dickstein et al., 2015; Salimans & Ho, 2022;
Rombach et al., 2022; Chen et al., 2023a). Gaussian diffusion models assume a forward noising
process which gradually applies noise to real data x0

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (1)

here constants ᾱt are hyperparameters. By applying the reparameterization trick, we can sample

xt =
√
ᾱtx0 +

√
1− ᾱtϵt (2)

During training, t is randomly sampled in [0, N ] (N = 1000 in (Chen et al., 2023a; Rombach
et al., 2022)) for the model to predict the added noise ϵt, where x0 denotes for the clear nature im-
age and xN denotes for pure Gaussian noise. As depicted in Fig.4, when t is large, the denoising
process primarily focuses on determining the global low frequency(f ) content such as overall struc-
ture and shape. Conversely, when t is small, the denoising process is predominantly responsible for
generating high f components such as texture.

When adapting Stable Diffision (Rombach et al., 2022) for multi-view generation, the previous ap-
proach (Shi et al., 2023a) changes the default scaled linear schedule into the linear schedule to
emphasize more on early denoising stage for structural variation and view consistency. Inspired by
this, we propose restricting the denoising time step of synthetic data during training. As small yet
observable blur still exists in synthetic data with novel view generated by SV3D (Voleti et al., 2024),
we limit them to training diffusion model only with large t. This restricts the backpropagation of
these synthetic data to focus on the low-frequency component of the image like the overall struc-
ture and shape that faithfully follow text prompts and consistency between different views. Small t
values are only sampled on clear and physically consistent multi-view images rendered from Obja-
verse (Deitke et al., 2023) and supplemented high-quality 2D images from SA-1B (Kirillov et al.,
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Instant3DZero123++ Ours

A quaint, little house nestled at the end of a winding path

A lamp casting shadows on an old, forgotten map
Zero123++ Instant3D Ours (CAD) Ours (Cartoon) Ours (Photorealistic)

A hissing snake 

Figure 5: Bootstrap3D generates 3D objects compared to other edge-cutting methods given text
prompt. More results with higher resolution are available in Sup.A.8.1.

2023), help model outcome high-quality images with more photo-realistic and varied texture details.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Training data. For each set of 4-view images obtained from both Objaverse (Deitke et al., 2023)
and generated by SV3D (Voleti et al., 2024) or Zero123++(Shi et al., 2023a), we use MV-LLaVA
to generate long descriptive captions with predicted quality score. Detailed quality check of MV-
LLaVA is supplied in Sup. A.4 and data analysis in Sup. A.3. In the end, we generate 200K 4-view
image-text pairs on Objaverse (Deitke et al., 2023), 1000K 4-view image-text pairs from synthetic
data from SV3D (Voleti et al., 2024) and Zero123++(Shi et al., 2023a). We also sample 35K HQ
SA (Kirillov et al., 2023) data with captions from ShareGPT4V (Chen et al., 2023b).

Training details. We test our framework directly on the text-to-multi-view diffusion model. We
fine-tune PixArt-α (Chen et al., 2023a) with backbone DiT-XL/2 (Peebles & Xie, 2023) model
on the data as mentioned earlier. Similar to Instant3D (Li et al., 2023a), we train the diffusion
model directly on 4-view images naturally arranged in a 2×2 grid. For 4 same view images from
SA (Kirillov et al., 2023), we limit training time step t ∈ [0, 50]. We limit synthetic multi-view
images t ∈ [200, 1000]. Regarding 3D object-rendered images, we do not limit t but sample more
frequently in the range [50, 200] as a complement. We set the total batch size to 1024 with the
learning rate set to 8e-5 for 20K steps. Training is conducted on 32 NVIDIA A100-80G GPUs for
20 hours with Flan-T5-XXL (Chung et al., 2024) text features and VAE (Kingma & Welling, 2013)
features pre-extracted.

Evaluation metrics. We primarily benchmark the quantitative results of our approach and other
methods from two main dimensions: 1). Image-text alignment measured by CLIP score and CLIP-
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Table 1: Benchmark of CLIP and FID score of text-to-multi-view (T2MV) models on generated
4 view images, CLIP score tests on 110 text prompts from GPTeval3D (Wu et al., 2024) while FID
is measured with the distribution of 30K object-centric images generated by SOTA T2I models. For
text-to-image-to-multi-view(T2I2MV), we input I2MV models with single view images generated
by Pixart-α, which superior single view image quality is marked in green .

Domain Method CLIP-R Score ↑ CLIP Score ↑ FID ↓
CLIP-L/14 CLIP-bigG CLIP-L/14 CLIP-bigG PG2.5 PixArt-α

T2I PixArt-α 96.1 94.7 25.9 41.5 20.7 5.4

T2I2MV
SV3D 78.8 81.3 24.7 37.3 55.7 54.2
CRM 77.5 85.1 24.9 38.9 59.0 52.2
Zero123++ 78.0 84.5 24.2 36.9 53.2 49.3

T2MV
Instant3D (unofficial) 83.6 91.1 25.6 39.2 83.2 77.9
MVDream 84.8 89.3 25.5 38.4 60.2 59.2
Bootstrap3D 88.8 92.5 25.8 40.1 42.4 31.0

Bootstrap3D CRM Zero123++ SV3D Bootstrap3D CRM Zero123++ SV3D

Figure 6: Bootstrap3D can generate high quality multi-view images in out of domain cases
compare to other edge-cutting multi-view diffusion models trained on Objaverse only.

R score indicating the prompt follow ability of text-to-multi-view (T2MV) diffusion model. 2).
Quality of generated images measured by FID (Heusel et al., 2017). Given the trend of decoupling
multi-view image generation and sparse view reconstruction, we conduct tests separately on multi-
view images by T2MV and rerendered images from generated 3D objects. To test the robustness
and diversity of Bootstrap3D beyond prompts generated by GPT, we also collect real user prompts
from public website, the details and test results are available in Sup. A.1.

Evaluation details. For CLIP-R Score and CLIP Score, we test on 110 text prompts from GPTe-
val3D (Wu et al., 2024) using different CLIP models (i.e., CLIP-L/14 (Radford et al., 2021) and
CLIP-bigG (Ilharco et al., 2021)) following the same setting of Instant3D (Li et al., 2023a). Re-
garding the FID (Heusel et al., 2017) test, as there is no golden standard for HQ 3D objects, we
follow the similar evaluation idea of PlayGround2.5 (Li et al., 2024) (PG2.5) to use powerful T2I
model generated images to form ground truth (GT) distribution. We use curated prompts to guide
powerful PixArt and PG2.5 to generate high-quality CAD-style images with a single object in the
pure background. Rembg (etc, 2020) is adopted to create white background object-centric images.
We use the method proposed in GPTeval3D (Wu et al., 2024) to generate 3K prompts. For both
PG-2.5 and PixArt, we generate 10 images for each prompt with different seeds, resulting in 30K
images to form the GT distribution of high-quality CAD-style objects.

Comparing methods. In addition to Instant3D (Li et al., 2023a) and MVDream (Shi et al., 2023b)
as direct text-to-multi-view (T2MV) methods, we also adopt edge-cutting single image to multi-view
(I2MV) methods CRM (Wang et al., 2024b), SV3D (Voleti et al., 2024) and Zero123++(Shi et al.,
2023a). For these methods, we condition the diffusion model on the single view image generated
by PixArt (prompted to generate CAD-style single object-centric image). The result of the CLIP
score is 3 times averaged with different seeds. For FID, we use 3 different seeds for each of the 3K
prompts to generate 9K images to test the distance with GT high-quality images.

4.2 EVALUATION OF MULTI-VIEW IMAGES

As illustrated in Tab.1, compared to other methods, the T2MV diffusion model trained by our frame-
work yields the best results both according to image-text alignment and image quality. For qualita-
tive experiments, we visualize some of the comparisons with other edge-cutting multi-view diffusion
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model in Fig.6. For these image-to-multi-view models, we condition them on the top-left image gen-
erated by Bootstrap3D. Compared to these models trained solely on Objaverse Deitke et al. (2023),
our model demonstrates superior generalizability when the image domain is beyond the domain of
Objaverse. Since it is difficult to directly measure view consistency as there is no ground truth
3D object for text-to-3D generation. we evaluate the view consistency by synthesizing 3D objects
through large reconstruction model in the following experiments. Qualitative results of real user
cases are in Sup. A.1.

4.3 EVALUATION OF GENERATED 3D OBJECTS

Table 2: Benchmark of CLIP and FID score of generated 3D objects based on rendered 9 view
images. *MVDream is tested on 200 generated objects for FID test using SDS (Shi et al., 2023b),
other methods are tested on 1000 objects using GRM (Xu et al., 2024b) and InstantMesh (Xu et al.,
2024a) as sparse view reconstruction model.

Reconstruction Method
CLIP-R Score ↑ CLIP Score ↑ FID ↓

CLIP-L/14 CLIP-bigG CLIP-L/14 CLIP-bigG PG2.5 PixArt

SDS MVDream* 85.2 90.8 26.1 39.4 57.8 56.7

GRM

Instant3D (unofficial) 81.7 89.4 24.8 37.1 85.4 80.3
SV3D 74.1 82.8 23.4 34.1 68.4 69.1

Zero123++ 71.2 80.3 22.3 34.5 69.3 72.4
Bootstrap3D 86.3 91.6 25.9 39.7 51.2 50.7

InstantMesh
Zero123++ 73.2 84.1 23.0 37.2 82.3 88.8

Bootstrap3D 87.1 92.0 26.0 39.2 61.2 55.3

View consistency is another crucial factor in reconstructing reasonable 3D objects. Miss alignment
between different views can lead to blurred areas in reconstructed objects by large reconstruction
model (Hong et al., 2023; Wei et al., 2024). This misalignment causes a significant deterioration in
quality, resulting in a notable increase in metrics like FID. To assess the view consistency directly
on 3D object, we employ GRM (Xu et al., 2024b) and InstantMesh (Xu et al., 2024a) to reconstruct
the object given sparse view images generated in Sec. 4.2. We render 9 view images evenly in orbit
for each object and evaluate the image-text alignment and image quality. As reported in Tab. 2.
Bootstrap3D, after conditioning GRM or InstantMesh on 4 view images, can generate the best 3D
objects both according to image-text alignment and image quality. GPT-4V based human-aligned
evaluation based on GPTeval3D (Wu et al., 2024) is supplied in Sup. A.6.

We also present visualizations of some results in Fig.5. Bootstrap3D can generate objects with
higher quality and prompt following ability. For other methods, as shown in the first column of
Fig.5, although the first image may be well aligned with the given text prompt, the final 3D object
may be compromised due to the limitations of its poor generalizability as they are also fine-tuned on
Objaverse (Deitke et al., 2023) only. More visualizations and discussions of this are in Sup. A.2

4.4 ABLATION STUDY

Training Timestep Reschedule (TTR) is proposed in 3.3 to better integrate different types of data.
The training time step of synthetic data is restricted in [T, 1000], where T is a hyper-parameter to be
set in training. We demonstrate the effect of the time-step limit in Fig.7, where the bar in the middle
is the value of T . When T is large, namely synthetic data won’t affect more time-step at the end of
the denoising process, Synthetic data has less influence on the denoising process towards the end,
which leads to better view consistency but lower prompt-following ability. Conversely, if T is small,
the denoised result better follows the given text prompt but blurring becomes much more severe. In
summary, there is a trade-off in injecting synthetic data into the training process: better image-text
alignment comes at the cost of worse view consistency and increased blurring. Ultimately, we set
T = 200 based on empirical study.

Synthetic data and dense captioning are proposed in our work to achieve high-quality images and
better image-text alignment. We ablate their effects and the importance of data quantity in Tab. 3.
Direct use of synthetic data without Training Timestep Reschedule (TTR) can cause severe blurs and
deformation in final outcome. With the help of TTR, the mixture of data can not only improve image-
text alignment but also maintain view consistency. Replacing Cap3D (Luo et al., 2024)’s caption
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Table 3: Ablation study of proposed components and quantity of synthetic data. with CLIP-R
Score represents image-text alignment and FID represents image quality.

Methods Multi-view Image Generated Object
CLIP-R Score FID PG-2.5 CLIP-R Score FID PG-2.5

Instant3D (unofficial) 83.6 83.2 81.7 85.4

Cap3D only 77.9 101.3 74.6 120.4
Cap3D + Synthetic Image (100k) w/o TTR 81.5 92.0 71.2 134.6
Cap3D + Synthetic Image (100k) w/ TTR 83.3 60.8 80.2 70.6
Dense recaption + Synthetic Image (100k) 87.4 50.2 85.1 50.9
Dense recaption + Synthetic Image (500k) 88.8 42.4 86.3 51.2

A cat with two different colored eyes

 A collection of fresh vegetables arranged in a wicker basket

400 300 200 100

Figure 7: Ablation study of training time reschedule (TTR) demonstrates a trade-off between
image-text alignment and image quality with different t.

with MV-LLaVA’s dense descriptive caption further improves the model’s capability of following
prompts faithfully. Improvement through increasing volume of data also proves the scalability of
our framework.

5 CONCLUSION AND DISCUSSION

In this work, we introduce a novel framework that employs MLLMs and diffusion models to syn-
thesize high-quality data for bootstrapping multi-view diffusion models. With a powerful fine-tuned
3D-aware MLLM serving as the dense captioner and quality filter, the generated synthetic data ad-
dresses the issue of insufficient high-quality 3D data. The proposed strategy of injecting different
data at different training time steps uses the property of the denoising process to further achieve
higher image quality while maintaining view consistency. We believe this work will contribute to
the goal of achieving 3D content creation with each rendered view comparable with the single view
diffusion model, with more advanced MLLMs and diffusion models on the horizon.

Limitations and future work. Despite its promise, our work still faces several unresolved chal-
lenges. Firstly, the multi-view diffusion model is only the first step of the 3D content creation
pipeline. Sparse view reconstruction models also need improvement as most edge-cutting sparse
view reconstruction models are also trained on Objaverse Deitke et al. (2023) only. Secondly, Al-
though MLLMs can estimate general quality and view consistency, subtle view inconsistency is
hard to detect until ambiguity leads to blurred areas in reconstructed 3D object. While the proposed
Training Timestep Reschedule can mitigate this problem, it cannot solve the problem fundamentally.
Using synthetic data to train sparse view reconstruction models and quality estimation directly based
on the reconstructed object are thus interesting future directions for improving 3D content creation.
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6 ETHICS STATEMENT

Our training code is modified based on public available repository https://github.com/
PixArt-alpha/PixArt-alpha. Part of training data are synthesized by our proposed data
generation pipeline. For other part of original Objaverse Deitke et al. (2023) data, we only use
Cap3D Luo et al. (2024) filtered assets (Objects with CC BY-NC-SA and CC BY-NC licenses are
removed, while we retain those with CC-BY 4.0, CC BY-SA, and CC0 licenses) and with face rec-
ognizable objects filtered through MSFW classifier and face detector. The ethical filtering in Cap3D
make our work using only data without ethics problem. For our synthetic new data, We will launch
both the generated captions for Objaverse Deitke et al. (2023) and high-quality synthetic data, model
checkpoints and codes with CC-BY 4.0 license for the research community.

7 REPRODUCIBILITY STATEMENT

Main experimental setting/details (training data, hyperparameters, optimizer, evaluation settings,
etc) are clearly presents in Sec. 4.1. For main results, we detail the full test settings in Sec. 4.1. For
GPT-4V OpenAI (2023a) based preference study, we provide detailed test prompts and test settings
in Sup. A.6. Readers can easily follow the same settings and reproduce all of our experiment results.
We provide code for generating synthetic data. Both codes for training the model and testing are also
available in supplementary material. The full data and model checkpoints are too large to provide
public link without violation of double-blinding. We will release full data and model checkpoints
after review.
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A APPENDIX

A.1 EVALUATION ON WILD PROMPTS FROM REAL USERS

The results of the main part of the paper are only tested on GPT generated prompts. To test our
work’s capability in wild cases, we also collect real user prompts and compare our method with
Instant3D (Li et al., 2023a). specifically, we randomly collect 100 prompts from https://www.
meshy.ai/ and test the CLIP-R precision as well as GPT based evaluation (detailed in Sup. A.6).
Results and some qualitative cases are shown in Tab. 4 and Fig. 8. We highlight that our Bootstrap3D
excels Instant3D (Li et al., 2023a) when tested on real user prompts through training on synthetic
data.

an old 1930s tv

a girl, fantasy, large horns Hugh detail real a small owl, jade and gold

A bird singing in a golden cage

a character resembling a victorian gentle man, T-Pose, 
film character, ultra realistic, 8k, pirates of the Caribbean

Winged helmet made out of bronze ancient greek style. Golden bird 
wings are on the sides of the helmet. Highly detailed bird wings with 
feather tip facing diagonal upwards.

old gavestone,ancient Japanese temple style, old, ancient, cartoon Eagle Sculpture, best quality, more details

Instant3D Bootstrap3D(Ours) Bootstrap3D(Ours)Instant3D

Figure 8: Real user prompt cases visualization compared to Instant3D (Li et al., 2023a)

A.2 MORE VISUALIZATION COMPARED TO OTHER METHODS.

We show more visualization of the quantitative experiments shown in the main paper in Fig.9
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Table 4: Test results of in the wild cases. Bootstrap3D also excels Instant3D (Li et al., 2023a) in
generating high quality images according to real user prompts.

Method CLIP based metric GPTEval3D
CLIP-R score image-text alignment texture detail

Instant3D (unofficial) 77.0 22.0% 24.5%
Bootstrap3D 83.5 78.0% 75.5%

A stone bridge arching over a babbling brook, encrusted with moss and echoing with stories, cartoon style

A compact, cylindrical, vintage pepper mill, with a polished, ornate brass body, slightly worn from use, placed beside a porcelain plate on a checkered tablecloth

SV3DCRM MVDream Ours

A velvet-lined violin case, which opens to reveal a garden of miniature roses

Figure 9: Generated multivew images compare to other methods. Our method can generate
multi-view images with long text control without encountering blurring effect from data generated
by SV3D thanks to TTR and quality filtering.

For Image-to-3D methods, they can sometimes produces significant motion blurring and fails when
the input image is out-of-distribution (like the 3rd cartoon style case). We resample the high-quality
segment of the distribution of generated images using quality filtering based on MLLM methods.
Furthermore, by employing TTR, we limit the impact of these data when training multi-view dif-
fusion models, allowing our model to produce much clear results. In addition, we use a caption
rewriting method, enabling finer prompt control for the generated multi-view images.

A.3 DATA STATISTICS

A.3.1 CAPTION ANALYSIS

Fig. 10 and 11 provide a visualization of the root noun-verb pairs for the captions generated by GPT-
4V (OpenAI, 2023a) and MV-LLaVA. It’s clear to see that the diversity and linguistic expression
of the captions produced by MV-LLaVA are highly matched with those of GPT-4V. We believe
the highly detailed description focusing on object’s texture, shape and color have potential usage
beyond training multi-view diffusion model in the field like object texturing (Fang et al., 2024) and
stylization (Sharma et al., 2023) in Computer Graphics. MV-LLaVA can also serve as free and
efficient 3D object assistant comparable with GPT-4V for future research of 3D content creation.

Fig. 12 visualizes the histogram of caption length compared with Cap3D (Luo et al., 2024). We
fine-tune MV-LLaVA to generate two different lengths suitable for different diffusion architecture,
namely CLIP-based text encoding (Blattmann et al., 2023; Podell et al., 2023) with 77 token length
and T5 based text encoding (Chen et al., 2023a; 2024a) with 120 token length. Both excel the length
of Cap3D with less hallucinations.
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Figure 10: Visualized analysis of dense reasoning descriptions generated by GPT4-Vision (Ope-
nAI, 2023a) of the root noun-verb pairs (occurring over 1%) of the descriptions
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Figure 11: Visualized analysis of dense reasoning descriptions generated by our MV-LLaVA of
the root noun-verb pairs (occurring over 1%) of the descriptions

A.3.2 ESTIMATED QUALITY ANALYSIS

For direct grasp of the quality of objaverse data and synthetic data used to train diffusion model,
we randomly picked some of multi-view images from different score rank. Results are shown in
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Figure 12: Histogram Visualization of the Caption Length compared with Cap3D (Luo et al.,
2024)

Table 5: Comparison of lexical composition of the captions generated by GPT4-Vision and Share-
Captioner.

Lexical n. adj. adv. v. num. prep.

GPT-4V (OpenAI, 2023a) 29.1% 16.0% 1.5% 11.1% 0.5% 9.0%

BS-Description 28.5% 16.0% 1.4% 10.8% 0.3% 8.6%
BS-Caption 30.2% 23.0% 0.3% 5.6% 0.1% 8.9%

Fig. 16, Fig. 17 and Fig. 18. We use high quality data with score 4 and 5 for the training of multi-
view diffusion model.
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Figure 13: Quality score statistics of different data source.

We count the number of multi-view images from different data sources, namely 660K from Obja-
verse, 500K from SV3D (Voleti et al., 2024) and 500K from Zero123++ (Shi et al., 2023a) generated
by our Bootstrap3D pipeline. Result are shown in Fig.13. For Objaverse and SV3D, the assigned
score is normal and we use score 4 and score 5 multi-view images as high quality data for training.
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However, for Zero123++, most objects are assigned with score greater than 3. We attribute this
phenomenon to the fact that Zero123++ tend to generate objects with less motion blurring but more
stretching and deformation compared to SV3D. Joint training of MV-LLaVA on three different data
source lead to higher and more focused distribution for Zero123++’s multi-view images. For this
part of synthetic data, we leave only score 5 multi-view images as high quality data.

A.4 QUALITY OF MV-LLAVA

A.4.1 CHOICE OF NUMBER OF UNFROZEN LAYERS OF VISION ENCODER.

A detailed classic wingback chair 
model, with realistic darkcharcoal 
fabr ic  and  wea the red  b rown 
wooden legs and frameconveying 
an authentic and elegant aesthetic.
Tag: [single object] [Photo realistic]

The model showcases a wingback 
chair with detailed worn leather in 
dark brown, contrasting matte 
wooden legs, and ashiny, curved 
wooden frame, suitable for realistic 
interiorvisualizations. 
Tag: [single object][Photo realistic]

Stylized humanoid figure with a 
playful design, featuring ayellow 
head and hands, red torso, blue 
legs, and a smilingface, with a 
glossy finish for animation or 
gaming.
Tag: [single object][Cartoon]

A stylized humanoid figure with a 
glossy yellow head, redtorso, and 
blue legs, featuring a minimalistic 
face and smooth surfaces, ideal 
for animation or game usage.
Tag: [single object][Cartoon]

A cartoonish turtle model with a 
smooth, creamy yellow bodylarge 
eyes,  and a friendly expression, 
featuring softshading and a glossy 
finish for a playful appearance.
Tag: [single object] [Cartoon]

The model displays a minimalist, 
cartoonish humanoid with auniform 
cream color and simple black eyes, 
suggesting abasic prototype or abstract 
character design.
Tag: [single object][Cartoon]

The model  displays a basic 
med i eva l  he l me t  i n  m a t t e 
olivegreen with a visor pattern 
a n d  n a s a l  g u a r d ,  s u i t a b l e 
forsimple visualizations or game 
assets with a fantasy style.
Tag: [single object] [Cartoon]

Stylized humanoid head with a 
green, matte finish, featuringa 
white symbol and purple lines, 
with darker green hair,suitable 
for fantasy or historical themes. 
Tag: [single object][Cartoon]

input 
image

unfreeze 
0 layers

unfreeze 
8 layers

Figure 14: Qualitative results of unfreeze final layers of CLIP (Radford et al., 2021) vision
encoder compared to original fixed vision encoder setting in LLaVA (Liu et al., 2024a).

Inspired by ShareGPT-4V (Chen et al., 2023b), we unfreeze selected final layers of the CLIP (Liu
et al., 2024a) vision encoder during the initial phase of vision language alignment. The CLIP-L/14
model used for LLaVA (Liu et al., 2024a) contains 24 transformer layers. We selectively unfreeze
some of final layers to enable the CLIP model to focus more on details such as texture of multi-
view images. After qualitative manual screening, we select to unfreeze eight layers to yield better
results. Fig. 14 illustrates the differences between unfreezing eight layers and not unfreezing any
(the original training setting of LLaVA (Liu et al., 2024a)). The red sections highlight the erroneous
hallucinations occurring when the vision encoder remains fully unchanged, while the green sections
indicate accurate descriptions of the image content. This demonstrates that partially unfreezing the
vision encoder can produce more precise captions and reduce some hallucinations.

A.4.2 QUANTITATIVE QUALITY STUDY

To test the quality of our MV-LLaVA. We propose two quantitative study over the quality of captions
and the alignment of quality estimation with human experts. In first study, we randomly picked 200
object from Objaverse (Deitke et al., 2023) and exclude training data of MV-LLaVA. We use GPT4-
V (OpenAI, 2023a) and MV-LLaVA to generate descriptive captions for each object. We invite
human volunteers to choose their preference over shuffled captions. Results are shown in Tab. 6,
where MV-LLaVA shows comparable captioning ability with powerful GPT4-V (OpenAI, 2023a),
which is essential to generate millions of high quality image-text pairs for the training of text to
multi-view image diffusion model.

Second experiment studies MV-LLaVA’s ability in quality estimation of both 3D assets and gener-
ated multi-view images. We invite human volunteers to estimate the quality of multi-view images
rendered from Objaverse (Deitke et al., 2023) or generated by SV3D (Voleti et al., 2024). As there
is no golden standard for multi quality classification, We ask them to separate the randomly select
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multi-view images into approximately two half and serve as GT quality. We use MV-LLaVA to esti-
mate the quality of these images and generate confusion matrix. Results are shown in Tab.7. Given
the great amount of source data of 3D assets and infinite synthetic data, we care more about the false
positive rate, as these data will be mixed into training data. In this observation, we highlight the false
positive rate of over 20% for SV3D (Voleti et al., 2024) generated multi-view images. This result
align with the observation of inevitable motion blurring of SV3D (Voleti et al., 2024). To leverage
this part of data source for data diversity without hurting the final quality. We propose Training
Noise Reschedule to avoid samplings from these synthetic data when time step is small.

Table 6: Human evaluation on the quality of generated captions from MV-LLaVA vs. GPT4-
Vision (OpenAI, 2023a) over 200 validation samples from Objaverse (Deitke et al., 2023).

Preference GPT4-Vision (OpenAI, 2023a) MV-LLaVA Comparable

Percentage 39.5% 34.5% 26.0%

Table 7: Confusion matrix of mutli-view images quality estimation.
Objaverse quality check Synthetic quality check

HQ-gt LQ-gt HQ-gt LQ-gt

HQ by model 31.0% 4.5% HQ by model 34.5% 11.5%
LQ by model 11.0% 53.5% LQ by model 17.0% 37.0%

A.4.3 QUALITATIVE CAPTION QUALITY STUDY

We selective compare some of the captions generated by Cap3D (Luo et al., 2024) and MV-LLaVA
in Fig. 15. Our MV-LLaVA can generate more detailed descriptive captions with less hallucinations.
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Cap3D: 3D rendering of a 
square, tiled floor and ceiling.

Ours: The model shows a plain 
with nearly identical flat surfaces 
with a  uniform beige color, 
lacking any distinctive features 
o r  t e x t u r e s .  T h e r e  a r e  n o 
discernible details indicating 
what the surfaces represent or 
their potential use, and thus the 
model serves as an extremely 
basic representation of a flat 
object.

Ours: The model is a highly 
abstract representation, possibly 
of a figure or object with an 
unclear purpose. It features thin, 
rod-like lines and sparse clusters 
of pink and blue colors, lacking 
any discernible texture, material 
quality, or detailed features.

Cap3D: A collection of drawings featuring a jellyfish, a 
girl with various accessories, a fish, and a unicorn.

Ours: The model is composed 
of faint, scattered dots and lacks 
discernible shape or texture, 
making it difficult to determine 
its intended representation. It 
appears as a collection of sparse, 
flat details without any clear 
function or recognizability.

Cap3D: A 3D object featuring elements of maps, a fish, a heart, 
a person, and a ghost, all adorned with pink and blue dots.

Cap3D: A 3D rendering of a white exhibition space featuring 
a round table, pictures, a water feature, and a chair.

Ours:  T h e  m o d e l  r e p r e s e n t s  a 
minimalistic art gallery scene with 
discernible but simplified elements. 
Semi-transparent white walls and floors 
suggest a clean, empty space. Slight 
color variations hint at lighting nuances. 
Sparse objects including picture frames 
are rendered in simplistic grayscale, 
l a c k i n g  t e x t u r e  b u t  o f f e r i n g  a 
rudimentary representation of an art 
display. 

Ours: The model is a low-polygon 
representation of a character's head 
with a simplified form, featuring a 
broad,  f lat  surface with minimal 
texture. The main body of the model is 
white, while the facial features are 
depicted in a flat grey tone, lacking 
depth and detail. It suggests a basic, 
monochromatic material, possibly 
indicative of clay or a digital sculpting 
tool...

Cap3D: A low poly 3D model of a white ghost, small bird, 
and teddy bear.

Ours: 'The model represents a rock-
like object with a textured surface, 
depicting moss or lichen patches in 
s h a d e s  o f  g r e e n  a n d  g r a y .  T h e 
underlying stone surface exhibits rust 
tones suggesting iron-rich sedimentary 
rock. However, the model lacks finer 
details such as specific rock strata or 
add i t iona l  va r i a t ions  tha t  cou ld 
enhance its realism.

Cap3D: 3D models of a fruit, paper airplane, rock, and green 
leaf with various surfaces and interactions.

Cap3D: A 3D rendering of a white cabinet, staircase, small box, 
chair, desk, ceiling-mounted light fixture, and ceiling panel.

Ours: The 3D model represents a 
minimalist architectural form, possibly 
a building or pavilion with an external 
staircase. It's composed of white and 
grey tones, where white suggests a 
smooth concrete or plaster and grey 
represents metallic or stone features. 
The model lacks intricate textures but 
has discernible geometric shapes and 
shadows, offering a basic sense of 
depth and spatial relationships.

Ours:  The  mode l  r ep re sen t s  a 
w h i m s i c a l ,  s i m p l i f i e d  v e h i c l e 
consisting of a brown wagon with 
yellow wheels and a red, toy-like 
trailer being pulled. The wagon's body 
has a flat, wood-like texture, while the 
trailer's body shows a smooth, glossy 
finish. The handle and wheels of the 
trailer are colored in bright yellow, 
enhancing its toy-like appearance...

Cap3D: A 3D wooden toy car model featuring a stove, 
chair, pipe, spout, bottle, and steering wheel.

Ours: The model is a whimsical, 
cartoon-style character with a spherical 
blue body and exaggerated, bulbous 
limbs. The facial features include a 
w i de ,  chee r fu l  sm i l e  and  l a rg e , 
expressive eyes with a simple white 
sclera and black pupils. The limbs' ends 
h a v e  b e e n  s t y l i z e d  i n t o  p o i n t s , 
enhancing the playful nature of the 
model...

Cap3D: A 3D blue sphere with pink eyes and hands, resembling 
a cartoon character.

Cap3D: 3D model of a Japanese garden village with trees, a 
bridge, and a hill, featuring a plane flying overhead.

Ours:  This model portrays a small , 
stylized scene of a Japanese garden with a 
pond and cherry blossom trees. The pond is 
depicted in  a  t ranqui l  shade of  blue, 
surrounded by vibrant green grass. Pink 
cherry blossom trees, a symbol of spring in 
Japan, are scattered around the pond with 
varying shades of pink. A small bridge with 
a red railing crosses the pond, adding a pop 
of color to the scene. The textures are 
simple yet distinct, with the grass and trees 
having a flat appearance...

Ours: This model is a robotic chair 
with a minimalist design, rendered in a 
clean, modern style. The seat and 
backrest are white, implying a smooth, 
possibly plastic or  painted metal 
surface. The mechanical arm and base 
are a metal l ic  gray,  suggest ing a 
metallic texture with a matte finish. 
Gold-colored accents, likely meant to 
represent controls or adjustments, add 
a touch of color to the model...

Cap3D: A 3D model of a white, yellow, and gold 
machine-like spaceship.

Ours:  The model  i s  a  packaged 
product, most likely an air purifier, 
with a recognizable brand and model 
identifiable from the images. The 
packaging is a vibrant yellow with 
white accents, which gives a sense of a 
plastic or laminated paper material. 
The product image on the box shows a 
white device with a blue air filter, 
c o n v e y i n g  a  c l e a n  a n d  m o d e r n 
aesthetic...

Cap3D: Yvy toilet paper box, Yui air purifier, Yoyo toner 
cartridges, Yii vitamins, and Yui sanitary napkins in yellow and 
white packaging with respective logos.

Cap3D: A 3D horn-shaped jug with a wooden handle and 
writing on it.

Ours: This 3D model represents a 
wooden tankard with a detailed 
wood grain texture in natural tan 
shades, featuring realistic knots and 
variations in the wood. The handle 
and rim of the tankard are well-
defined, and the model exhibits a 
rustic, handcrafted appearance. The 
carved lines and wood texture give 
it an authentic look...

Ours: The model is a red SUV with a 
high level of detail, including realistic 
shapes for the body, windows, and 
wheels. The body has a glossy finish, 
simulating automotive paint, while the 
black trim and silver rims have a matte 
texture. The wheels are detailed with 
intricate silver spokes that resemble 
alloy wheels, and the tires are a vibrant 
green with tread patterns adding to the 
model's realism...

Cap3D: Red Peugeot 208 SUV 3D model.

O u r s :  T h i s  3 D  m o d e l  i s  a 
charming, medieval-style vendor 
cart with a high degree of texture 
detail, suggesting materials like 
weathered wood for  the  main 
structure, rusty metal for the fittings 
and wheel rims, and tattered fabric 
for the awning. The cart is laden 
with goods such as sacks, barrels, 
and hanging items...

Cap3D: 3D model of a wagon with a roof and wheels, featuring 
a horse.

Score: 1

Score: 2

Score: 3

Score: 4

Score: 5

Figure 15: Caption comparison with Cap3D (Luo et al., 2024). Our MV-LLaVA can generate
long captions that faithfully describing 3D assets from different perspectives like color, geometry
and texture.
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Score1

Score2

Score3

Score4&5

Figure 16: Randomly picked multi-view images with different scores from 500k synthetic data
generated by SV3D (Voleti et al., 2024).
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Score: 1

Score: 2

Score: 3

Score: 4&5

Figure 17: Randomly picked multi-view images with different scores from 500k synthetic data
generated by Zero123++ (Shi et al., 2023a).
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Score: 1

Score: 2

Score: 3

Score: 4&5

Figure 18: Randomly picked multi-view images with different scores from 660k Obja-
verse (Deitke et al., 2023) 3D assets.
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A.5 DETAILS OF PROMPT DESIGN

A.5.1 PROMPTS FOR GPT-4V FOR QUALITY CHECK

This is a quad image generated from rendering a SINGLE 3D model FROM FOUR DIFFERENT views. I would like you to score the quality of this models to evaluate its 
current state. The score ranges from 1 to 5, representing the quality of the model from low to high. The detailed evaluation criteria are as follows:
1 point: The overall quality of the model is quite poor, making it difficult to discern what it is supposed to be, lacking in recognizability. The model is almost one solid 
block, or extremely scattered, or in fragments. It has no usable value.
2 points: The overall quality of the model is relatively poor, but it is possible to guess what it is, possessing low recognizability. It preliminarily has some geometric shape 
and can be considered a prototype model element, lacking identifiable material information, and almost has no usable value.
3 points: The overall quality of the model is average, it is possible to determine what it is, having certain recognizability. Different areas use different materials (colors), it 
preliminarily has usable value, and initially has aesthetic value.
4 points: The overall quality of the model is relatively high, it can be clearly determined what it is, with high recognizability. It preliminarily has certain texture details, and 
different parts of a model can be clearly distinguished, having high usable value and certain aesthetic value.
5 points: The overall quality of the model is extremely high, allowing for the classification of the model's type at a very fine granularity. It has high texture details, is a 
fully formed 3D model that can be used for games, simulations, or even animations, and has high aesthetic value.
After scoring, please also generate a description of the current model. If the model quality is low, only a brief description is needed; when the model quality is high, a 
complete description of the different details of the model is required. The description process should focus on color, material, texture details as much as possible. You can 
also recommended to suggest overall style. With NO MORE THAN 120 words. Especially discribe color and meterial of different parts concretely and faithfully, let the 
reader easilly imagine the same model.
Finally, I hope you can annotate two kinds of tags for the model. Tag1 is about the style of overall model. You can choose from [photo-realistic], [carton] and [CAD]. Tag 
model as [CAD] when seems like a preliminary work build by CAD software and not real. Tag model [carton] when it is good enough with carton style. Tage model 
[photo-realistic] when model seems like real object in the world; Tag2 is about the scale that the model represents, you can choose from [single object], [multi-object], 
[small scene] and [large scene]. Assign model [large scene] when it represents scene like urban street, park, etc. Assign it as [small scene] when it represents scene like 
inner structure or design of a house, small area, etc. Assign it as [multi-object] when it represents combination of multi objects. Assign it as [single object] when it 
represents single object.
Here are three examples. You should follow this format:
e.g. 1
Score: 1
Description: The model depicts a very basic and abstract urban planning concept with indistinct structures and simplistic landscaping, lacking detail and texture, 
appropriate for early-stage design or conceptual visualization.
Tag: [Photorealistic] [large scene]
e.g. 2
Score: 2
Description: The object is a simple sphere with a homogeneous speckled texture, suggesting a stone-like material. The colors vary slightly between shades of dark gray, 
brown, and rust, with a matte finish. It lacks specific features or details that would indicate a higher level of complexity or function.
Tag: [Photorealistic] [single object]
e.g. 3
Score: 3
Description: The model appears to represent an architectural structure with two levels. Different colors suggest varied materials: translucent white for the structural 
framework, solid blue representing walls or glass panels, and yellow for interior elements, possibly stairs or floors. The style seems utilitarian, potentially for preliminary 
construction visualization.
Tag: [CAD] [small scene]
e.g. 4
Score: 4
The model depicts a metallic livestock handling equipment known as a cattle chute. It is rendered in shades of dark gray, conveying a metallic texture consistent with steel 
or iron. The structure is detailed with bolts, bars, and sliding gates, implying a sturdy construction. Text labels like \"METALCORP\" and \"CATTLE MASTER\" in blue 
enhance realism, suggesting a commercial quality model suitable for simulations or instructional material. The style is industrial and pragmatic.
Tag: [Photorealistic] [single object]
e.g. 5
Score: 5
The model is a stylized, anime-inspired character with a cheerful expression. Hair is rendered in a turquoise shade, contrasting with ribbons in alternate hues of pink and 
blue. Skin tone is in a soft peach, while the outfit combines white, grey, and gold tones, with a large yellow flower accessory. Surfaces show subtle shading, indicating 
variations in material. The playful, colorful appearance suggests a light-hearted, fantasy aesthetic.
Tag: [Cartoon] [single object]

Assume you are a quality checker of a diffusion model. This diffusion model is trained to achieve novel view synthesis. I give this model the image in the upper-left side 
and it generate novel views in the rest three images(upper-right, lower-left, lower-right).  You should tell me the quality of the generated novel view images. The score 
ranges from 1 to 5, representing the quality of the model from low to high. The detailed evaluation criteria are as follows:
1. The novel views are difficult to discern what the image supposed to be, lacking in recognizability. It has no usable value.
2. The novel views are distinguishable, clearly determine what the object/scene is similar to the given ground truth image. However, there is obvious inconsistency 
between the novel view synthesized images and groud-truth image. There are many obvious areas of image is blurred or indicating rotation.
3. The novel views are relatively good, the inconsistency between novel view synthesized images with groud-truth image is not obvious. The blurring area indicating 
rotation or uncerntainty is accecptable for usage.
4. The novel views are pretty good, although the might be blurring areas or less resolution. the view consistancy is well maintained.
5. The novel views are excellent. It is hard to tell which image from four is ground-truth and which is synthesised.
You shoud give me the overall score with one score number, with reason in next line. besides the quality check, I need you to generate a long discriptive caption for the 
scene/object from 4 different view. focusing on the part/object relative position, color, number of objects and so on with no more than 50 words and no less than 30 words. 
DO NOT MENSHION MULTI-VIEW IMAGES FROM DIFFERENT PERSPECTIVE since it is a single scene/object.  you should rearrange your result in a JSON format.
if all the images(include the groud-truth image) are of low quality, just output a lowest score.
Here is an example for you:
{"score": 4, "reason": "The novel views generated from the model are quite convincing with a high degree of consistency in terms of texture, lighting, and color when 
compared to the ground-truth image. There is some minor distortion in shape and perspective, but the overall quality is high, and it maintains the realism of the scene.", 
"caption": "A cluster of shiny five apples, ranging from deep red to sunny yellow, sits comfortably within a rustic woven basket. Their smooth, round forms are grouped 
closely, reflecting light and casting soft shadows that accentuate their voluminous curves and vibrant colors."
}

Figure 19: Prompt for GPT-4V to generate caption and estimate quality of multi-view images
from SV3D (Voleti et al., 2024), zero123++ (Shi et al., 2023a) and Objaverse (Deitke et al.,
2023).

Detailed prompts are shown in Fig.19.
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A.5.2 PROMPTS FOR MV-LLAVA INSTRUCT TUNING

Table 8: Instruct tuning prompt for SV3D (Voleti et al., 2024) and Zero123++ (Shi et al., 2023a)
multi-view images

prompt type prompt

generate caption
<image><image><image><image>\nWhat is this multi-view
photo about? generate a short caption for me.
<image><image><image><image>\nGenerate a short caption of
the following multi-view image.
<image><image><image><image>\nCan you describe the main
features of this multi-view image for me by a short caption?

reasoning
How about the view consistency of this synthesized multi-view image?
Do some comments about the view consistency of this synthesized
multi-view image.
What do you think about the view consistency of this synthesized multi-
view image?

quality estimation What do you think about the overall quality of view consistency of three
synthesized novel views? Choosing from ”poor”, ”relatively poor”,
”boardline”, ”relatively good”, ”good”, ”perfect”.

Table 9: Instruct tuning prompt for Objaverse (Deitke et al., 2023) rendered multi-view images
prompt type prompt

long description
<image><image><image><image>\nWhat is this multi-view
photo about? generate a long descriptive caption for me.
<image><image><image><image>\nGenerate a long descriptive
caption of the following multi-view image.
<image><image><image><image>\nCan you describe the main
features of this multi-view image for me by a long descriptive caption
caption?

caption
<image><image><image><image>\nWhat is this multi-view
photo about? generate a short caption for me.
<image><image><image><image>\nGenerate a short caption of
the following multi-view image.
<image><image><image><image>\nCan you describe the main
features of this multi-view image for me by a short caption?

quality estimation What do you think about the overall quality of this 3D model? Choosing
from ”poor”, ”relatively poor”, ”boardline”, ”relatively good”, ”good”,
”perfect”.

scale tag What do you think about the scale of the 3D model represents? Choos-
ing from ”single object”, ”multi-object”, ”small scene”, ”large scene”.

style tag What do you think about the overall style of the 3D model? Choosing
from ”CAD”, ”Cartoon”, ”Photo realistic”.

A.6 GPT-4V BASED 3D OBJECT GENERATION EVALUATION.

We adopt method proposed in GPTeval3D (Wu et al., 2024) for more thorough and human-aligned
evaluation of the quality of generated object by different methods. A full test case is shown in
Fig. 20. Left 9-view image is rendered from object generated by Bootstrap3D and the right one
generated by Instant3D (Li et al., 2023a). We ask GPT-4V to mainly evaluate through comparison
based on three dimensions: text-image alignment, low-level texture quality and 3D plausibility.
The answer of GPT-4V shows its in depth perception ability of given reasonable comparison well
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Analysis: 
1. Text prompt & 3D Shape Alignment: The left model seems to align more closely with the text description, with a more 
defined nibbling action on the clover leaf and a more distinct brown color. The right model also shows nibbling on a leaf, 
but the action is not as pronounced, and the color of the rabbit appears less brown and more uniform. The left one is 
better.
2. Low-Level Texture Quality: The left model features sharper and more detailed textures with visible fur strands and 
leaves details. The right model has smoother and less detailed textures, especially noticeable on the rabbit's fur which 
appears less realistic. The left one is better.
3. 3D Plausibility: Both models seem plausible and solid from a 3D perspective. However, the left one has more natural 
poses and anatomically correct rabbit shapes, with no awkward angles or duplicated parts. The right one has a less 
natural resting pose and slightly unusual proportions on the head and limbs. The left one is better.
Final answer:
1 1 1

Our task here is the compare two 3D objects, both generated from the same text description. I will provide you with 9 
specific view of two models, where the left part of it are image rendering and normal rendering of 3D object 1, and the 
right part denotes those of 3D object 2.
We want to decide which one is better according to the provided 3 criteria:
1. Text prompt and 3D shape Alignment. This evaluates how well the 3D model corresponds to the text description. 
Please first describe each of the two models, and then evaluate how well it covers ALL the attributes in the original text 
prompt.
2. Low-Level Texture Quality. Focus on LOCAL parts of the RGB images: whose texture is sharper, more realistic, with high 
resolution, and with more details? Remember that the local texture quality could be high even if the text-3d alignment is 
weak, this is independently evaluated.
3. 3D Plausibility. Look at both the RGB and normal images and imagin a 3D model from the multi-view images. Which 
model is more normal, solid, and plausible? Decide if there are strange body problems, duplicated parts, any noisy or 
meaningless 3D structures.
Take a really close look at each of the images for each of the two 3D objects before providing your answer. When 
evaluating these aspects, focus on one of them at a time and do not let them affect each other. Make independent 
decisions between these criteria.
Provide a short analysis for each of the abovementioned evaluation criteria before giving your answer. The analysis should 
be very concise and accurate.
For each of the criteria, you need to make a decision using these three options:
1. Left (object 1) is better;
2. Right (object 2) is better;
3. Cannot decide.
IMPORTANT: PLEASE USE THE THIRD OPTION SPARSELY.
In the last row, summarize your final decision by "<option 1> <option 2> <option 3>".
Current text prompt is: Brown rabbit nibbling on a clover leaf

Figure 20: A test conversation with GPT-4V (OpenAI, 2023a) of evaluating generated objects.

aligned with human preference. We thus choose to use GPT-4V rather than human volunteers to
give reasonable evaluation.

We adopt the 110 test prompts proposed in GPTeval3D (Wu et al., 2024) to test Bootstrap3D gen-
erated object comparing with Instant3D (Li et al., 2023a), Zero123++ (Shi et al., 2023a) and MV-
Dream (Shi et al., 2023b). For each methods, we conditioned model based on 110 test prompts with
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4 different seeds, with each methods generates 440 objects, we make 1-to-1 comparison following
aforementioned test setting. Results are reported in Tab. 10. Except MVDream (Shi et al., 2023b)
(SDS) (which generates single object consuming 30 mins while Bootstrap3D only need 5 seconds.).
Bootstrap3D excels in all three evaluation dimensions, which proves the ability of Bootstrap3D in
creating high quality 3D objects.

Table 10: GPT-4V based evaluation result. the result is in format of ”number of objects preferred
geneated by Bootstrap3D/ that of other methods”. Cases when GPT cannot answer the question or
generates ”cannot decide” answer are excluded.

Image-text alignment Texture quality 3D plausibility

Compared to Instant3D (Li et al., 2023a) (unofficial) 247 / 116 202 / 162 259 / 110
Compared to Zero123++ (Shi et al., 2023a) 192 / 143 210 / 161 231 / 139
Compared to MVDream (Shi et al., 2023b) (GRM) 290 / 71 245 / 131 284 / 102
Compared to MVDream (Shi et al., 2023b) (SDS) 188 / 155 173 / 190 192 / 150

A.7 IMPROVING DIRECT 3D GENERATIVE MODELS

A squirrel hoarding glowing acorns An old, opened storybook A copper phonograph whispering old tunes

Shape-E

Cap3D

BootStrap3D

Figure 21: Fine tuned Shape-E generation results that shows better object-text alignment than
original Shape-E (Jun & Nichol, 2023) and finetuned version in Cap3D (Luo et al., 2024).

Table 11: Test results on Shape-E. More accurate and descriptive 3D caption help model to achieve
better object-text alignment.

Method FID ↓ CLIP score ↑ CLIP-R-precision ↑
Shape-E 37.2 80.4 20.3
Cap3D 35.5 79.1 20.0
Ours 35.3 81.2 22.1

In addition to fine-tuning the multiview diffusion model, we also evaluate our framework on direct
3D generative models, circumventing the use of multi-view images as intermediaries. For this pur-
pose, we selected the Shape-E (Jun & Nichol, 2023) model for experiment and assess the outcomes
following the testing method the same to Cap3D (Luo et al., 2024). Specifically, we fine-tune Shape-
E using 250K BS-Objaverse data, ensuring that all entries scored greater than 3, accompanied by
more precise and descriptive captions. The metrics for training and testing are consistent with those
employed in Cap3D (Luo et al., 2024). Some qualitative results are presented in Fig.21, where our
finetuned verson can generate object that follow text prompt more precisely. Quantitative results
are detailed in Tab.11, where more accurate and desciptive captions than Cap3D can significantly
improve metrics like CLIP score. Our findings indicate that improved data quality can significantly
enhance object-text alignment and visual quality of Shape-E. This experiment substantiates that
our pipeline, characterized by detailed captions and quality filtering, is also effective for direct 3D
objects generation represented by neural field.
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A chibi phoenix reborn from ashes, flames gently 
flickering around it

Zero123++ Instant3D Ours

A cracked teapot heating on an old stove

Zero123++ Instant3D Ours

Figure 22: Visualization of generated objects compared to other edge-cutting methods

A.8 MORE RESULTS VISUALIZATION

A.8.1 COMPARISON WITH OTHER METHODS

A.8.2 VISUALIZATION OF GENERATED OBJECTS WITH DIFFERENT STYLES

A.9 BROADER IMPACTS

Potential positive societal impacts: The proposed framework, Bootstrap3D, enhances the quality
and consistency of 3D models, which can benefit various industries such as entertainment, education,
virtual reality, and digital art. By generating and sharing a large synthetic dataset of high-quality
synthetic multi-view images, We will promotes open access to resources that can accelerate progress
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A miniature robot companion, poised for adventure 
with glowing eyes

A galactic lighthouse guiding traverlers through 
space-time anomalies

Zero123++ Instant3D Ours Zero123++ Instant3D Ours

Figure 23: Visualization of generated objects compared to other edge-cutting methods

in the field. The model and data can serve as educational tools for students and researchers, fostering
learning and innovation in machine learning and 3D modeling.

Potential negative societal impacts: High-quality 3D models could be used to create deepfakes or
misleading content, which may contribute to disinformation or malicious activities. Monitoring and
Defense Mechanisms: Developing tools to detect and prevent the misuse of the generated 3D mod-
els, particularly in contexts like disinformation and surveillance. There may be unintended biases
in the generated data or models, leading to unfair treatment of specific groups if the technology is
deployed in applications affecting societal decision-making.
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A tranquil, winter cabin

Zero123++ Instant3D Ours

A serene, celestial observatory

Zero123++ Instant3D Ours

Figure 24: Visualization of generated objects compared to other edge-cutting methods
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A blinking star

Zero123++ Instant3D Ours

A  warm, glowing streetlamp

Zero123++ Instant3D Ours

Figure 25: Visualization of generated objects compared to other edge-cutting methods

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

A colossal, stone giant wandering a deserted 
landscape.

Zero123++ Instant3D Ours

A teal cup, steaming with hot tea.

Zero123++ Instant3D Ours

Figure 26: Visualization of generated objects compared to other edge-cutting methods
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A blooming lotus in a pond
Zero123++ Instant3D Ours (CAD) Ours (Cartoon) Ours (Photorealistic)

Figure 27: Visualization of generated objects compared to other edge-cutting methods with
different style control.
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An ice castle at the pole
Zero123++ Instant3D Ours (CAD) Ours (Cartoon) Ours (Photorealistic)

Figure 28: Visualization of generated objects compared to other edge-cutting methods with
different style control.
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A pair of worn-outed boots
Zero123++ Instant3D Ours (CAD) Ours (Cartoon) Ours (Photorealistic)

Figure 29: Visualization of generated objects compared to other edge-cutting methods with
different style control.
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A hissing snake
Zero123++ Instant3D Ours (CAD) Ours (Cartoon) Ours (Photorealistic)

Figure 30: Visualization of generated objects compared to other edge-cutting methods with
different style control.
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A flaming candel
Zero123++ Instant3D Ours (CAD) Ours (Cartoon) Ours (Photorealistic)

Figure 31: Visualization of generated objects compared to other edge-cutting methods with
different style control.
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