
Appendix: Representing Hyperbolic Space
Accurately using Multi-Component Floats

Tao Yu
Department of Computer Science

Cornell University
tyu@cs.cornell.edu

Christopher De Sa
Department of Computer Science

Cornell University
cdesa@cs.cornell.edu

1 Proofs of Theorems

Here we first provide the proof of the worst case representation error in the Poincaré upper-half space
model.

Theorem 1. The representation error of storing a particular point x ∈ Un using floating-points
fl is δfl(x) = du(x,fl(x)), and the worst case representation error defined as a function of the
distance-to-origin d in the Poincaré upper-half space model is

δd := max
x∈Un,du(x,O)≤d

δfl(x) = arcosh(1 + ε2machine cosh
2(d)).

where εmachine is the machine epsilon of the underlying floating-point arithmetic. This be-
comes δd = 2εmachine + o(εmachine) if d < log(1/εmachine) and δd = 2d + 2 log(εmachine) +
o(ε−1machine exp(−2d)) if d ≥ log(1/εmachine).

Proof. Consider the error δfl(x) first as

δfl(x) = arcosh(1 +

∑n
i=1 ε

2
ix

2
i

2xnfl(xn)
)

= arcosh(1 +

∑n
i=1 ε

2
ix

2
i

2(1 + εn)x2n
)

≤ arcosh(1 +
ε2machine‖x‖2

2(1 + εn)x2n
)

= arcosh(1 + ε2machine ·
‖x‖2

2x2n
+ o(ε3machine)).

On the other hand, note that

cosh d(x,O) = 1 +

∑n−1
i=1 x

2
i + (xn − 1)2

2xn

= 1 +
‖x‖2 + 1− 2xn

2xn

=
‖x‖2 + 1

2xn
.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



Hence, 2xn cosh d = ‖x‖2 + 1, where d = d(x,O), then we have

δfl(x) = arcosh(1 + ε2machine ·
‖x‖2

2x2n
+ o(ε3machine)).

≤ arcosh(1 + ε2machine ·
2xn cosh d− 1

2x2n
+ o(ε3machine))

≤ arcosh(1 + ε2machine · (
cosh d

xn
− 1

2x2n
) + o(ε3machine))

= arcosh(1 + ε2machine · (t cosh d−
1

2
t2) + o(ε3machine))

where t = 1
xn

, note that t cosh d − 1
2 t

2 attains maximum 1
2 cosh

2 d at t = cosh d, therefore,

δfl(x) ≤ arcosh(1 +
ε2machine cosh2 d

2 + o(ε3machine)), then we can derive

δd := max
x∈Un,du(x,O)≤d

δfl(x) = arcosh(1 + ε2machine cosh
2 d).

With taylor expansion when d < log(1/εmachine) and d ≥ log(1/εmachine), the conclusion follows.

Here we provide the proof of the worst case representation error in the m-xMC-Halfspace model,
where MCF is only adopted for the first n− 1 axes.
Theorem 4. The worst case representation error of storing an exact point x ∈ Un with m-multi-
component floating-point expansion (x(m), · · · ,x(2),x(1)) (increasing order) defined as a function
of the distance-to-origin d is

δd = arcosh

(
1 + ε2machine +

ε2mmachine(1 + εmachine)

22m
cosh2(d)

)
,

where εmachine is the machine epsilon. This becomes δd = 2εmachine + o(εmachine) if
d <m log(1/εmachine) and δd = 2d+2m log(εmachine/2) + o(ε−2mmachine exp(−2d)) if d ≥
m log(1/εmachine).

Proof. Firstly, note due to the construction of multi-component floats, the error caused by the
floating point only exists at the smallest component, since MCF accounts for the errors in previous
components afterwards by adding more components. Due to the non-overlapping property of the
MCF, we have x(m+1) ≤ 1

2ulp(x(m)) = 1
2εmachinex

(m), hence, we can sequentially derive that
x(m) ≤ 2−(m−1)εm−1machinex

(1), then similarly, consider the error δfl(x) as

δfl(x) = arcosh(1 +

∑n−1
i=1 ε

2
i (x

(m)
i )2 + ε2nx

2
n

2xnfl(xn)
)

≤ arcosh(1 +

∑n−1
i=1 ε

2
i (2
−(m−1)εm−1machinex

(1)
i )2 + ε2nx

2
n

2(1 + εn)x2n
)

≤ arcosh(1 +
2−2(m−1)ε2mmachine‖x‖2 + (1− 2−2(m−1))ε2machinex

2
n

2(1 + εn)x2n
)

≤ arcosh(1 + 2−2(m−1)ε2mmachine(1 + εmachine) ·
‖x‖2

2x2n
+ ε2machine(1 + εmachine)/2).

also we have 2xn cosh d = ‖x‖2 + 1, where d = d(x,O), then we have

‖x‖2

2x2n
=

2xn cosh d− 1

2x2n

=
cosh d

xn
− 1

2x2n

= t cosh d− 1

2
t2

2



where t = 1
xn

, note that this attains maximum 1
2 cosh

2 d at t = cosh d, therefore, δfl(x) ≤ arcosh(1+

2−2(m−1)ε2mmachine(1 + εmachine) · cosh2 d+ ε2machine(1 + εmachine)/2), then we can derive

δd := max
x∈Un,du(x,O)≤d

δfl(x) = arcosh(1 + ε2machine +
ε2mmachine(1 + εmachine) · cosh2 d

22m
).

With taylor expansion when d < m log(1/εmachine) and d ≥ m log(1/εmachine), the conclusion
follows.

2 Gradient Computations

Here we show how to compute gradients in the halfspace model: assume two points u,v ∈ Rd, we
will compute the gradient gu ∈ Rd of the hyperbolic distance w.r.t. u as follows:

x =
‖u− v‖2

2udvd
, z =

√
x(x+ 2), y =

u− v

udvd
,

(gu)1:d−1 =
1

z
y1:d−1,

(gu)d =
1

z
(yd −

x

ud
).

We can either choose to compute this gradients in ordinary floating-point arithmetic, or compute them
with the adapted MCF arithmetic using the provided MCF algorithms in the m-xMC-Halfspace
model. In our implementaions, we compute this gradients with the adapted MCF arithmetic.

3 Numerical stable form of Exp

Here we offer a numerical stable form of the aforementioned exponential map Exp. Firstly, for the
first equation regarding the x-axes, i.e.,

z′i = zi +
zn

s
tanh s − vn

· vi.

Note that if vn ≥ 0, then the subtraction in the denominator of s
tanh s (close to 1) to vn (close to 0) is

the major part to the numerical error, therefore, we’d like to avoid this subtraction with a different
computation but in the same arithmetic as follows:

z′i =zi +
zn

s
tanh s − vn

· vi

=zi +
zn

s coth s− vn
· vi

=zi +
s coth s+ vn

s2 coth2 s− v2n
· zn · vi

=zi +
s coth s+ vn

s2 csc2 s+ s2 − v2n
· zn · vi

=zi +
s coth s+ vn
s2 csc2 s+ r2

· zn · vi,

where s =
√
vTv, and r2 =

n−1∑
i=1

v2i . In this way, we can avoid the numerical error caused by the

subtraction when vn ≥ 0, note that if vn < 0, then the ‘subtraction’ is actually an addition, hence we
will keep the original formula.

For the second equation regarding the y-axis, i.e.,

z′n =
zn

cosh s− sinh s
s vn

.

3



Again note that if vn ≥ 0, the subtraction in the denominator of cosh s (close to 1) to sinh s
s vn (close

to 0) is the major part to the numerical error, here we also provide a different computation but with
the same arithmetic to avoid the subtraction when vn ≥ 0 as follows:

z′n =
zn

cosh s− sinh s
s vn

=
s · zn

s cosh s− vn sinh s

=
s cosh s+ vn sinh s

s2 cosh2 s− v2n sinh
2 s
· s · zn

=
s cosh s+ vn sinh s

r2 cosh2 s+ v2n cosh
2 s− v2n sinh

2 s
· s · zn

=
s cosh s+ vn sinh s

r2 cosh2 s+ v2n
· s · zn.

Similarly, we avoid the numerical error caused by the subtraction when vn ≥ 0, and if vn < 0, then
the ‘subtraction’ is actually an addition, hence we will keep the original formula.

Algorithm 1: Add-Expansion, modified from [4]
Input: m-components expansions (a1, · · · , am) and (b1, · · · , bm), both in decreasing order.
initialize e← 0
for i = 1 to m do
(hp, e1)← Two-Sum(ai, bi)
(hi, e2)← Two-Sum(hp, e)
e← fl(e1 + e2)

end for
hm+1 ← e
Return: (h1, · · · , hm, hm+1)

4 More Algorithms Operating MCF

We intend to provide more algorithms to compute MCF expansions in this section, to begin with, the
sum of two expansions in Alg. 1 Add-Expansion, different from its version firstly proposed in [4],
we modify the algorithm to output an expansion with m+ 1.

Next, we aim to offer algorithms for multiplication of an expansion to a single p-bit floating-point
number here. To begin with, we need an algorithm for multiplications between two p-bit floating-point
numbers to form a non-overlapping expansion, termed as Two-Prod. We firstly show the following
Lemma 1 for the purpose, particularly designed for 53-bit IEEE double precision floating point
numbers.

Algorithm 2: Split
Input: 53-bit double precision floats a

t← fl((227 + 1) · a)
ahi ← fl(t− fl(t− a))
alo ← fl(a− ahi)

Return: (ahi, alo)

Lemma 1. [1] Alg. 2 Split splits a 53-bit IEEE double precision floating point number into ahi and
alo, each with 26 bits of significand, such that a = ahi + alo. ahi contains the first 26 bits, while alo
contains the lower 26 bits. Note that this algorithm can be easily generated to any p-bit floating-point
number [4].

With this, we show how to multiply two p-bit floating-point numbers to get an non-overlapping
expansion in Alg. 3 Two-Prod.

4



Algorithm 3: Two-Prod
Input: double precision floats a, b

p← fl(a · b)
(ahi, alo)← Split(a)
(bhi, blo)← Split(b)
err1 ← fl(x− fl(ahi · bhi))
err2 ← fl(err1 − fl(alo · bhi))
err3 ← fl(err2 − fl(ahi · blo))
y ← fl(fl(alo · blo)− err3)

Return: (x, y)

Theorem 2. [1, 4] Alg. 3 computes p = fl(a · b) and corresponding roundoff error e = err(a · b).

Herein, we provide the multiplication algorithm of an expansion to a single p-bit floating-point number
in Alg. 4 Scale-Expansion. Note that both Alg. 4 Scale-Expansion and Alg. 1 Add-Expansion
grows the expansion only one more to be m + 1 components, hence, we will need to apply the
Renormalize algorithm to reduce the number of components.

Algorithm 4: Scale-Expansion, modified from [4]
Input: m-components expansion (a1, · · · , am) in decreasing order, p-bit float b.
initialize e← 0
for i = 1 to m do
(hp, e1)← Two-Prod(ai, b)
(hi, e2)← Two-Sum(hp, e)
e← fl(e1 + e2)

end for
hm+1 ← e
Return: (h1, · · · , hm, hm+1)

5 RSGD & MCs-Halfspace Model

We provide the RSGD algorithm adapted in the m-xMCs-Halfspace model using the provided MCF
algorithms in Alg. 5:

Algorithm 5: RSGD in the m-xMCs-Halfspace model
Require: Objective function f
Require: z ∈ Un, Epochs T , and learning rate η

for t = 0 to T − 1 do
gradz f ⇐ zn∇zf , . Riemannian gradient
v = −η · gradzf , . learning rate
s⇐

√
vTv

gradz1:n−1
⇐ zn

s
tanh s−vn

· vi, . gradient of x-axis values
w ⇐ Grow-Expansion(z1:n−1, gradz1:n−1

)

z′1:n−1 ⇐ Renormalize(w), . Update x-axis values
z′n = zn

cosh s− sinh s
s vn

, . Update y-axis values
end for

output z′

As mentioned in the main body of the paper, we can appy MCF on all coordinates to get the
m-MC-Halfspace model. The distance computations within this model are consistent to the m-
xMC-Halfspace model, while the key difference is the usage of the Alg. 4 Scale-Expansion in the

5



m-MC-Halfspace model, since the last coordinate of the model is involved mostly in multiplications.
More importantly, we show in Alg. 6 how to do RSGD in the m-MCs-Halfspace model.

Algorithm 6: RSGD in the m-MCs-Halfspace model
Require: Objective function f
Require: z ∈ Un, Epochs T , and learning rate η

for t = 0 to T − 1 do
gradz f ⇐ zn∇zf , . Riemannian gradient
v = −η · gradzf , . learning rate
s⇐

√
vTv

gradz1:n−1
⇐ zn

s
tanh s−vn

· vi, . gradient of x-axis values
wx ⇐ Grow-Expansion(z1:n−1, gradz1:n−1

)

z′1:n−1 ⇐ Renormalize(wx), . Update x-axis values
wy ⇐ Scale-Expansion(zn, 1

cosh s− sinh s
s vn

)

z′n ⇐ Renormalize(wy), . Update y-axis values
end for

output z′

In this way, for the addition & subtraction occurring in the exponential map, between a potentially
large floating-point coordinate number to a small floating-point gradient is done in MCF arithmetic.
Notice that we only adopt MCF arithmetic in part of the distance, gradient and exponential map
computations, and leave the rest of computations computed in ordinary floating-point arithmetic.

6 Experiment details

We conducted our experiments based on the implementation of [5], with all learning experiments in
PyTorch based on ordinary float64. For the initialization of all models, we drawn randomly from the
uniform distribution U(−1e− 5, 1e− 5). Particularly, for the initialized embedding of the upper-half
space model and MCF-based models, the last axis is initialized with 1 + U(−1e− 5, 1e− 5), since
the corresponding origin in halfspace model is (0, · · · , 0, 1).
We train embeddings of different dataset for 1000 epochs except for the largest WordNet-Nouns
dataset with 500 epochs. At the start of the training, we train models with an initial “burn-in" phase
firstly proposed in [2], which helps find a good initial angular layout and a good resulting embedding,
simply by using a reduced learning rate η/100.

For most of the hyper-parameters in our experiment, we adopt the recommended values from the
implementations of [5, 2, 3], the negative sampling size is 50 in the experiments. We vary batchsize
within {32, 64, 128} and use grid search to find the optimal learning rate in each case.

We mention an interesting tuning result here, take the training of the halfspace model over the
WordNet Mammal for example, we varies the learning rates for different batchsize as shown in
Table. 1. We found that, if trained with a larger batchsize, when the learning rate is adjusted
(increased) properly, the embedding performance of the converged model with a large batchsize
can nearly match the best performance of the converged model with a smaller batchsize. Similar
phenomenon was observed for the rest dataset in different dimensions for different models. Hence,
we can safely choose batchsize=128 in our main experiments for its running time advantage, with a
learning rate 5.0. We provide the code together with the parameters of our implementation in the
supplementary material.

6



BATCHSIZE LR MAP (%) MR

32

0.3 72.96 2.53
1.0 87.65 1.99
2.0 93.65 1.43
3.0 90.95 1.81

64

0.3 29.34 18.45
1.0 84.97 1.78
2.0 89.90 1.76
3.0 92.29 1.57
4.0 92.36 1.66

128

1.0 61.79 3.98
2.0 81.12 2.28
3.0 87.45 1.89
4.0 91.27 1.55
5.0 92.07 1.50
6.0 92.32 1.56
20.0 87.80 2.79

Table 1: Embedding performances of the halfspace model on the wordnet Mammal dataset with
different hyperparameter setting.

References
[1] Yozo Hida, Xiaoye S Li, and David H Bailey. Library for double-double and quad-double

arithmetic. 2007.

[2] Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical represen-
tations. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 6338–6347.
Curran Associates, Inc., 2017.

[3] Maximillian Nickel and Douwe Kiela. Learning continuous hierarchies in the Lorentz model
of hyperbolic geometry. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80, pages 3779–3788. PMLR, 2018.

[4] Jonathan Richard Shewchuk. Adaptive precision floating-point arithmetic and fast robust geo-
metric predicates. Discrete & Computational Geometry, 18(3):305–363, 1997.

[5] Tao Yu and Christopher M De Sa. Numerically accurate hyperbolic embeddings using tiling-based
models. In Advances in Neural Information Processing Systems, volume 32, pages 2023–2033.
Curran Associates, Inc., 2019.

7


	Proofs of Theorems
	Gradient Computations
	Numerical stable form of Exp
	More Algorithms Operating MCF
	RSGD & MCs-Halfspace Model
	Experiment details

