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A IEKS as a Gauss–Newton Laplace approximation

The present appendix shows that the iterated extended Kalman filter (IEKS) yields a Gauss–Newton
Laplace approximation of the posterior distribution (recall Equation (6) from the main paper)

p(Y (T) | `L(Y ) = 0, `R(Y ) = 0, `0:N (Y ) = 0). (A.1)
Let δ be the Dirac delta. Introduce the random variables ZL, ZR, Z0:N as

ZL | Y (t0) ∼ δ(`L(Y )), ZR | Y (tmax) ∼ δ(`R(Y )), Zn | Y (tn) ∼ δ(`n(Y )(tn)). (A.2)
The posterior distribution in Equation (A.1) becomes

p(Y (T) | ZL = 0, ZR = 0, Z0:N = 0). (A.3)
The difference between Equation (A.1) and Equation (A.3) is only notational. The reformulation in
terms of Z will be useful in the next step. The prior distribution is Gaussian (recall Section 2.1),

p(Y (T)) = N (m(T),K(T,T)) (A.4)
for mean and covariance functions m and K that correspond directly to the stochastic differential
equation (SDE) representation in Equation 2 in the main paper [1, Chapter 12]. The use of this
general Gaussian process formulation, as opposed to a sequential notion that exploits the Markov
property, will simplify the notation (and simultaneously slightly generalise the result).

To show that the IEKS provides a Gauss–Newton version of the Laplace approximation, it is instructive
to consider a relaxed version of the Dirac likelihoods; that is, let λ > 0 and (re)define (recall the
ODE ẏ = f(y, t), and the boundary conditions Ly(t0) = y0, Ry(tmax) = ymax),

ZL | Y (t0) ∼ N (LY0(t0)− y0), λI), (A.5a)
ZR | Y (tmax) ∼ N (RY0(tmax)− ymax, λI), (A.5b)
Zn | Y (tn) ∼ N (Y1(tn)− f(Y0(tn), tn), λI). (A.5c)

In these formulas, I is always an identity matrix of appropriate size. The limit λ→ 0 recovers the
Dirac likelihoods used in the previous paragraph and in the paper. In the Gaussian relaxation, the
MAP estimate is the argument that minimises the following objective (the negative log-posterior),

arg min
Y (T)

1

2
V1(Y (T)) +

1

2
V2(Y (T)) +

1

2
V3(Y (T)), (A.6)

which uses the abbreviations
V1(Y (T)) := ‖m(T)− Y (T)‖2K(T,T)−1 , (A.7a)

V2(Y (T)) :=
1

λ
‖LY0(t0)− y0‖2 +

1

λ
‖RY0(tmax)− ymax)‖2, (A.7b)

V3(Y (T)) :=
1

λ

N∑
n=0

‖Y1(tn)− f(Y0(tn), tn)‖2. (A.7c)
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V1 captures the prior distribution, V2 the boundary conditions, and V3 the (artificial) ODE “measure-
ments”. Only V3 includes non-linearities.

Let ξ = (ξ0, ..., ξN ) ∈ R(N+1)×d(ν+1) (there are N + 1 points in T) be the result of a previous
Gauss–Newton iteration (or the initialisation, respectively). Denote by P0 and P1 the projection
matrices from Y to Y0, and Y to Y1, respectively. Gauss–Newton optimisers such as the IEKS
iteratively linearise the non-linearities of the objective “inside the norm” at ξ, and solve the resulting
linear least-squares problem in closed form [2]. In other words, let

f(y, tn) ≈ f(P0ξn, tn) +∇f(P0ξn, tn)(y − P0ξn) (A.8)

be the first-order Taylor series linearisation of f at P0ξn (each grid-point tn uses a different ξn).
Then, the IEKS minimises

V(Y (T)) :=
1

2
‖m(T)− Y (T)‖2K(T,T)−1 +

1

2λ
‖FY (T) + b‖2, (A.9)

which uses the batch notation (abbreviate Fn := P1 −∇f(P0ξn, tn)P0),

F =



L 0 . . . 0
0 . . . . . . R
F0 0 . . . 0

0 F1
. . .

...
...

. . . . . .
...

0 . . . . . . FN


, b =



y0
ymax

∇f(ξ0, t0)ξ0 − f(ξ0, t0)
∇f(ξ1, t1)ξ1 − f(ξ1, t1)

...
∇f(ξN , tN )ξN − f(ξN , tN )

 . (A.10)

This is a linear least-squares problem and can be solved in closed form with GP regression – or, as in
the present setting, with a Kalman smoother [3]. The mean of this solution becomes the new iterate ξ.
Unless a fixed point has been found, the procedure is repeated.

The Hessian of the objective in Equation (A.9)1 and its inverse are

∇2V(x) := K(T,T)−1 +
1

λ
F>F, (A.11a)

(∇2V(x))−1 := K(T,T)−K(T,T)F>(FK(T,T)F> + λ)−1FK(T,T). (A.11b)

The functional form of the inverse is revealed by, for instance, the matrix inversion lemma [5]. The
inverse Hessian identifies as the posterior covariance of Gaussian process regression (respectively the
Kalman smoother) [6, 1].

At the final iteration of the IEKS, the objective is linearised at the MAP estimate (ξ = mMAP).
This fixed point then yields a Gaussian approximation of the posterior, where the mean is the MAP
estimate, and the covariance is the negative inverse Gauss–Newton Hessian of the log-posterior,
evaluated at the MAP estimate. This shows how the IEKS yields a Gauss–Newton Laplace transform
of the relaxed objective. The limit λ→ 0 translates this to the Dirac objectives used in the paper.

In summary, the IEKS yields a Gauss–Newton Laplace approximation of the posterior, because (i) it
uses a Gauss–Newton approximation of the non-linear objective, which (ii) can then be solved in
closed form with a Kalman smoother, which – since it delivers Gaussian posteriors – is (iii) its own
Laplace approximation. Put differently, each iteration of the IEKS yields a Gaussian approximation
of the posterior, where the covariance is the negative inverse Hessian of the log-posterior, evaluated at
the mean – when the mean converges to the MAP estimate, this makes the IEKS compute a Laplace
approximation.

B Transition densities of the bridge prior are available in closed form

The present section describes the transition densities of the bridge prior. Recall the SDE representation
of the prior process Y (Equation (2) in the main paper). Due to the Markov property, the law of Y
factorises as

p(Y (T)) = p(Y (t0))

N∏
n=1

p(Y (tn) | Y (tn−1)). (B.1)

1We call the Hessian of the Gauss–Newton objective as the Gauss–Newton Hessian of the full objective [4].
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The initial distribution

p(Y (t0)) = N (m0, σ
2C0) (B.2)

is part of the prior model (Section 2.1 in the main paper). The transition densities

p(Y (tn+1) | Y (tn)) = N (Φ(tn+1, tn)Y (tn), σ2Q(tn+1, tn)) (B.3)

use the definitions [1],

Φ(t, s) := exp(A(t− s)) (B.4a)

Q(t, s) :=

∫ t−s

0

Φ(t, τ)BB>Φ(s, τ)> dτ. (B.4b)

Both quantities can be computed with, e.g., matrix fractions [1]. A and B stem from the SDE
representation (Equation (2) in the main paper). The process noise covariance is of the form σ2Q(t, s)
because the diffusion of the Wiener process is (by assumption) Γ = σ2I (and the diffusion of the
Wiener process would enter Equation (B.4b) as BB>  BΓB> [1]).

B.1 Initial distribution

The first objective of the present section is the parametrisation of the updated initial distribution
(recall the shorthand for the information sources, first introduced in Equation (7) in the main paper)

p(Y (t0) | `L, `R). (B.5)

It arises as follows. The joint distribution is

p(Y (t0), `L, `R) = N (ξ, σ2Ξ), (B.6)

with

ξ :=

(
m0

Lm0 − y0
RΦ(tmax, t0)m0 − ymax

)
, Ξ :=

Ξ1 Ξ2 Ξ3

Ξ>2 Ξ4 Ξ5

Ξ>3 Ξ>5 Ξ6

 , (B.7)

where we abbreviated

Ξ1 := C0, (B.8a)

Ξ2 := C0L
>, (B.8b)

Ξ3 := C0Φ(tmax, t0)>R>, (B.8c)

Ξ4 := LC0L
>, (B.8d)

Ξ5 := LC0Φ(tmax, t0)>R>, (B.8e)

Ξ6 := R
[
Φ(tmax, t0)C0Φ(tmax, t0)> +Q(tmax, t0)

]
R>. (B.8f)

Mean and covariance of Y (t0) conditioned on `L and `R now follow from standard conditioning rules
of Gaussian distributions [6]. SinceC0 and the process noise of the covariance depend multiplicatively
on σ, so does Ξ.

B.2 Transition densities

Let Y (tn) ∼ N (mn, σ
2Cn) and recall `L and `R. The second objective of the present section is the

transition density from Y (tn−1) to Y (tn) under acknowledgement of the boundary conditions. The
joint distribution of Y (tn+1) and the right-hand side boundary condition, given Y (tn), is

p(Y (tn+1), δR | Y (tn)) = N (ζ, σ2Λ) (B.9)

with

ζ =

(
Φ(tn+1, tn)mn

RΦ(tmax, tn)mn − ymax

)
, and Λ =

(
Λ1 Λ>2
Λ2 Λ3

)
, (B.10)
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which uses the abbreviations

Λ1 := Φ(tn+1, tn)CnΦ(tn+1, tn)> + σ2Q(tn+1, tn) (B.11a)

Λ2 := Λ1Φ(tmax, tn+1)>R> (B.11b)

Λ3 := R
[
Φ(tmax, tn+1)Λ1Φ(tmax, tn+1)> + σ2Q(tmax, tn+1)

]
R>. (B.11c)

Notably, since the covariance of Y (tn) depends multiplicatively on σ2, all entries of Λ do as well
(this will be useful in Appendix C). Finally, the distribution p(Y (tn+1) | `R, Y (tn)) is Gaussian with
mean and covariance that are available with the usual conditioning formula for multivariate Gaussians
[6]. On a side note: Λ3 is ill-conditioned for tmax ≈ tn+1, which is a problem that can be solved with
appropriate preconditioning as well as square-root implementation [7].

C The quasi-MLE is essentially unaffected by the bridge

The present section proves that the quasi-maximum likelihood estimate (quasi-MLE) for the diffusion
σ is available in closed form, even for the bridge prior. A formula is given as well. We say that a
matrix X depends multiplicatively on σ2, if it satisfies X = σ2X̆ for some X̆ . First, we need to
establish that all the covariances that contribute to the (approximate) prediction error decomposition
depend multiplicatively on σ2. This has partly been done in Appendix B. Second, this multiplicative
dependency gives rise to a closed-form solution for the quasi-MLE.

Tronarp et al. [8] establish that for a conventional Gauss–Markov prior, and noise-free ODE measure-
ments, the covariances of the predictive distribution p(Y (tn+1 | Y (tn)) depend multiplicatively on
σ2. Appendix B established the same for the predictive distribution p(Y (tn+1) | δR, Y (tn)) of the
bridge.

The same will hold not only for the predictive distribution, but also for the filtering covariances,
as shown next. The (iterated) extended Kalman filter approximates the non-linear ODE likelihood
[9, 10]

p(`n | Y (tn)) = δ(Y1(tn)− f(Y0(tn), tn)) (C.1)

with a first order Taylor approximation around some ξn ∈ Rd(ν+1) (recall from Appendix B that P0

is the projection matrix from Y to Y0),

p(`n | Y (tn)) ≈ δ(Y1(tn)−∇f(P0ξn, tn)(Y0(tn)− P0ξn)). (C.2)

For the non-iterated Kalman filter, ξn is the mean of the predictive distribution [10]; for the iterated
extended Kalman smoother, ξn is the mean of the previous iteration [3]. Since this is a noise-
free (i.e. Dirac) likelihood, the law of `n given Y (tn) is Gaussian with a covariance that depends
multiplicatively on σ2. Therefore, the covariance of Y (tn+1) conditioned on `n = 0 (approximately,
with an [iterated] extended Kalman filter), depends multiplicatively on σ2 as well.

Consider the following take on the prediction error decomposition [11],2

p(`L, `0:N , `R | σ) = p(`0 | `L, `R, σ)p(`R | `L, σ)p(`L | σ)

N∏
n=1

p(`n | `n−1, `R, σ) (C.3)

which mirrors the factorisation of the prior in Equation (8) of the main paper. All of the terms in
Equation (C.3) are (approximated by) Gaussian distributions (which has been shown above),

p(`L | σ) = N (zL, σ
2SL) (C.4a)

p(`R | `L, σ) = N (zR, σ
2SR) (C.4b)

p(`0 | `L, `R, σ) ≈ N (z0, σ
2S0) (C.4c)

p(`n | `n−1, `R, σ) ≈ N (zn, σ
2Sn) (C.4d)

either because they are Gaussian by construction (the boundary conditions are linear), or because the
(iterated) extended Kalman filter employs a Gaussian approximation. The joint likelihood of `L, `R,

2It is not the traditional prediction error decomposition in so far as it employs the bridge prior.
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and `0:N is maximised by the term that minimises the negative log-probability of all of these random
variables being zero (neglecting some additive constants that do not depend on σ),

−2 log p(`L, `0:N , `R | σ) ≈ 1

σ2
Ψ0 + log(σ2)Ψ1 + const (C.5)

which employs the abbreviations

Ψ0 := z>LS
−1
L zL + z>RS

−1
R zR +

N∑
n=0

z>n S
−1
n zn, Ψ1 := dL + dR + d(N + 1). (C.6)

Setting the derivative of the likelihood in Equation (C.5) with respect to σ to zero, yields

− 2

σ3
Ψ0 +

2

σ
Ψ1 = 0 ⇔ σ2 =

Ψ0

Ψ1
(C.7)

which gives a formula for the quasi-maximum likelihood estimate of the diffusion. From the first
iteration of the IEKS onwards, this quasi-MLE equals the quasi-MLE from Tronarp et al. [9]; for the
initialisation via the extended Kalman smoother, the bridge prior alters the linearisation over the law
of `n, and thus affects the quasi-MLE.

D Solve higher-order BVPs directly

The present appendix explains how BVPs based on higher-order ODEs can be solved directly without
transforming them into first-order problems. A more comprehensive explanation is provided by
Bosch et al. [12]. Many problems in the test set by Mazzia [13] are second-order. The 32nd problem
in [13] (which features in Section 6 of the main paper) is fourth-order.

As an instructive example, consider the second order ODE

ÿ(t) = f(ẏ(t), y(t), t). (D.1)

If y and ẏ would be stacked into a new state z := (ẏ, y), the ODE could equivalently be written as

ż(t) = g(z(t), t), (D.2)

with g(z(t)) = f(ẏ(t), y(t)). Recall from Equation (4) in the main paper that such first-order ODEs
give rise to the information operator

`1st(Y )(t) := Y1(t)− f(Y0(t), t). (D.3)

With this approach, higher-order ODEs can be solved. The increased dimensionality of the ODE
problem makes this inefficient (as outlined in Section 8).

ODE information operators can straightforwardly be generalised to second-order ODEs, via

`2nd(Y )(t) := Y2 − f(Y1(t), Y0(t), t). (D.4)

Higher-order ODEs, like the fourth-order ODE that has been part of the experiments, use the same
concept: provided ν ≥ 4, we can define a likelihood for fourth-order ODEs,

`4th(Y )(t) := Y4 − f(Y3(t), Y2(t), Y1(t), Y0(t), t). (D.5)

The only requirement for this to work is that ν is sufficiently large. All of these likelihood func-
tions can be used inside an extended Kalman filter. Solving higher-order BVPs directly, without
transforming them into first-order problems, is not uncommon for BVP solvers [14, Section 5.6].
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