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The supplementary materials is organized in two sections. The first section gives the detailed low rank
approximation we use for the generation in section|l} Then we present the remaining experiments
conducted on the benchmark datasets in section 2]

1 Dimensionality Reduction and Scaling

As mentioned in the paper one of the drawbacks of the CTWALK pipeline is the size of the resulting
tensor fed as input to the bi-level multi-head attention network. Coupling that with the CTGAN
discriminator calls for scaling down this tensor. To be more specific, since each node at each time
point is assigned a different embedding of size e,, being the concatenation of the node Deepwalk
embedding and its wy, attributes, the overall tensor is of size n x T' X es where n is the number of
nodes and 7'. If a node does not exist at a given time point, then a random embedding is generated
using a normal distribution with mean 0 and variance I—%I
An additional complication arises from a mismatch between CTGAN generator output type and
TAGGEN input type. While the TAGGEN discriminator requires a node/timepoint embedding for each
particular position in the random walk, the CTGAN generator gives a probability distribution over
each of the constituent parts of the embedding. Thus, to square this circle, we consider the expected
embedding when choosing a time point 7 € {1, ..., T} and, independently, a node n € V,

E[X]=)_Y P(r=t)P(N =n)T(t,n), (1)

where T'(t,n) € R is the embedding at each time ¢ and node n.

Therefore, we propose the following solution using parallel factor analysis, a form of PCA/SVD that
generalizes to arbitrary tensors. It uses a rank-r approximation for the tensor

T(t7 n, Z) ~ Z at7'bn7'di7'7 (2)

where T'(t,n, i) is the i*" entry of the embedding T'(t, n, ), and r indexes the low rank approximation.
Putting everything together, we arrive at

EX;] = > Y P(r=t)P(N=n)T(tn,i)
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This representation is very efficient as:

Q

* The two inner summations can be re-written as matrix multiplications,
* they can be combined using element-wise products,

* the final summation can be written as a final matrix multiplication.

Hence, using this low-rank decomposition we obtain a method that can be applied to largerdata sets.

2 Additional Results

In this section we provide the remaining results of the experiments that were mentioned in the
Experiments section of the main paper. Indeed in figure[T] we have the attribute comparison for the
cycling dataset and figure 2] presents the results of the time series related statistics over the three
benchmark datasets. The experiments were conducted using a machine with 32Gb of RAM, an Intel
Core i17-10700K processor and a Titan XP Graphics card with 12Gb of graphic memory.

We observe that CTWALK performs as well if not better than CTGAN for attribute generation on
the cycling dataset as emphasized by figure[I] Indeed we see that it manages to get the end station
rankings closer to the original dataset ones, as well as having closer start hour distribution and ride
duration.

In figure 2] we can see that CTWALK outperforms in most cases the temporal synthetic graph attributes
produced by CTGAN. This is expected indeed as CTGAN takes the time parameter as another
discrete variable and not as an independent time parameter, as CTWALK does.
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Figure 2: Time series results for several statistics (Number of Nodes, Number of Edges, Number of
Triangles and Reciprocity) on the synthetic and real world networks (Triangles, Cycling Data and
DBLP).
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