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This file is used to supplement the main paper and has three sections. First, we give detailed proof of
two theorems proposed in the main paper in Section 1. Second, all experimental results not presented
in the main body because of limited pages are shown in Section 2. Third, we have introduced the
importance of the re-ordering function in our method. In Section 3, we will further discuss that under
what circumstances the re-ordering will lead more substantial improvements. We will analysis this
question with the Law School dataset. In Section 4, we give implementation details.

1 PROOF OF THEOREM

1.1 PROOF OF THEOREM 1

Theorem 1. Over T rounds of batch training, our FaRULi suffers cumulative loss:

LFaRULi ≤ Cβ ·min
l?

{ T∑
t=1

L(l),t
EFRL

}L
l=1

+
lnL

1− β
, (1)

where Cβ = ln(1/β)/(1− β) > 0 is a monotonically decreasing scalar.

Proof: Before our analysis, two loss formulas need to be introduced. For the l-th layer, its cumu-
lative loss over T rounds is defined as: L(l)

EFRL =
∑T
t=1 `

(l)
t , and the loss is denoted as L(l) in the

follows for simplicity. Similarly, let LFaRULi =
∑T
t=1

∑L
l=1 p

(l)
t `

(l)
t =

∑T
t=1 pt · `t as the total

cumulative loss suffered by our algorithm. Different from the formal content, a new parameter p is
introduced to represent a normalization function, where pt is a vector including parameters p of all
layers, and allocated by corresponding weight parameter αt = [α

(1)
t , . . . , α

(L)
t ]>. In particular, the

relationship between them and the updating rule of parameter α is described as:

α
(l)
t+1 = α

(l)
t · β`

(l)
t , pt =

αt∑L
l=1 α

(l)
t

. (2)

To conduct further proof, we here introduce:

Lemma 1. (Freund & Schapire, 1997) βr 6 1− (1− β), for β > 0 and r ∈ [0, 1].

Then, combined with Eq. (2) and Lemma 1, this implies

L∑
l=1

α
(l)
t+1 =

L∑
l=1

α
(l)
t β

`
(l)
t
i ,

6
L∑
l=1

α
(l)
t

(
1− (1− β)`

(l)
t

)
,

=
( L∑
l=1

α
(l)
t

)
(1− (1− β)pt · `t) .

(3)

Applying repeatedly for t = 1, . . . , T yields
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L∑
l=1

α
(l)
T+1 6

T∏
t=1

(1− (1− β)pt · `t) ,

6 exp
(
− (1− β)

T∑
t=1

pt · `t
)
,

= exp
(
− (1− β)LFaRULi

)
,

since 1 + x 6 ex for all x and LFaRULi =
∑T
t=1 pt · `t.

Then, we get the follow formula,

ln
( L∑
l=1

α
(l)
T+1

)
6 ln exp (−(1− β)LFaRULi) ,

LFaRULi 6
− ln

(∑L
l=1 α

(l)
T+1

)
1− β

.

(4)

Next, going back to Eq. (2),

α
(l)
T+1 = α

(l)
1

T∏
t=1

β`
(l)
t ,

= α
(l)
1 βL

(l)

,

(5)

and for all layers, we get,
L∑

l=1

α
(l)
T+1 =

L∑
l=1

α
(l)
1 βL(l)

,

> βmaxl∈LL(l)
L∑

l=1

α
(l)
1 .

(6)

By now, all preparations for analyzing Theorem 1 are complete. Combined Eq. (5) and Eq. (6),

LFaRULi 6
− ln

(∑
l∈L α

(l)
1

)
− (lnβ) maxl∈L L(l)

1− β
. (7)

This is a general bound statement where all layers are be considered. For any l ∈ {1, . . . , L}, we
achieve a special case:

LFaRULi 6
− lnα

(l)
1 − L(l) lnβ

1− β
. (8)

The bound 8 state that our FaRULi only perform a little bit worse than the best l-th layer among the
sequence. The difference lies in the choice of β and the initial weight α(l)

1 of each layer. If every
weight is set equally such that α(l)

1 = 1/L, then this bound becomes:

LFaRULi 6
minl L(l) ln(1/β) + lnL

1− β
. (9)

The bound given in Eq. (9) can be written as:

LFaRULi ≤ Cβ ·min
l?

{ T∑
t=1

L(l),t
EFRL

}L
l=1

+
lnL

1− β
,

where Cβ = ln(1/β)/(1− β) > 0 as stated in Theorem 1. �
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1.2 PROOF OF THEOREM 2

Theorem 2. Denoted by εR(i)(ĥ) and εTi(ĥ) the empirical risks suffered by using ĥ to predict data
in R(i) and Ti, respectively. LetH be a hypothesis space on X with VC dimension d. |R(i)| and |Ti|
are samples of size n from two domains R(i) and Ti respectively. For any δ ∈ (0, 1), with probability
at least 1− δ,

εTi(ĥ) ≤ εR(i)(ĥ) +
1

2
d̂H∆H

(
|R(i)|, |Ti|

)
+ 4

√
d log (2n) + log

(
2
δ

)
4n

+ γ. (10)

Proof: To proof our theorem, we first introduce the triangle inequality for classification error (Ben-
David et al., 2006; Crammer et al., 2008) which implies that ε (h1, h2) ≤ ε (h1, h3) + ε (h2, h3).
Then, we have:

εTi(h) ≤ εTi(h∗) + εTi(h, h
∗),

= εTi (h∗) + εTi (h, h∗)

+ εR(i) (h, h∗)− εR(i) (h, h∗) ,

≤ εTi (h∗) + εR(i) (h, h∗)

+ |εTi (h, h∗)− εR(i) (h, h∗)| .

(11)

To proceed with the proof, we adapt the definition and inequality suggested by Ben-David et al.
(2010) as follows:
Definition 1. For a hypothesis spaceH, the symmetric difference hypothesis spaceH∆H is the set
of hyperspheres

g ∈ H∆H ⇐⇒ g(x) = h(x)⊕ h′(x) for some h, h′ ∈ H,

where⊕ is the XOR function, determining whether the outcomes of two functions h and h′ are equal.

If the maximum discrepancy between two functions across two domains are founded, then this value
defines the H-divergence distance of two domains as follows:
Lemma 2. For any hyperspheres h, h′ ∈ H,

|εR(i) (h, h′)− εTi (h, h′)| ≤ 1

2
dH∆H

(
Ti,R(i)

)
.

So, by Lemma 2, we have:

εTi(h) ≤ εTi(h∗) + εR(i)(h, h∗) +
1

2
dH∆H(R(i), Ti),

≤ εTi(h∗) + εR(i)(h) + εR(i)(h∗)

+
1

2
dH∆H(R(i), Ti),

= εR(i)(h) +
1

2
dH∆H(R(i), Ti) + γ.

(12)

With adapting Lemma 3 proposed by Ben-David et al. (2010), the H-divergence distance between
two domains Ti and R(i) can be estimated using a finite number of samples extracted from each
domain as follows:
Lemma 3. LetH be a hypothesis space onX with V C dimension d. If |R(i)| and |Ti| are samples of
size n from two domains R(i) and Ti respectively and dH

(
|R(i)|, |Ti|

)
is the empiricalH-divergence

between samples, then for any δ ∈ (0, 1), with probability at least 1− δ,

dH

(
R(i), Ti

)
≤ dH

(
|R(i)|, |Ti|

)
+ 4

√
d log(2n) + log

(
2
δ

)
n

.

combining Lemma 3 with Eq. (12), we arrive at:
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εTi(h) ≤ εR(i)(h) +
1

2
dH∆H

(
|R(i)|, |Ti|

)
+ 4

√
d log (2n) + log

(
2
δ

)
4n

+ γ,

(13)

as desired. �

2 COMPLETE EXPERIMENTAL RESULTS

The trends of accuracy and statistical parity among all six datasets are displayed as Figure 1 and
Figure 2, respectively.
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Figure 1: The trends of Accuracy of our FaRULi approach and its 5 competitors on 6 datasets.

3 RESEARCH QUESTION

We have discussed the improvement brought by the re-ordering function of our method. In the next
research question, we will further analysis under what circumstances the re-ordering process will
contribute the most, combing Law School dataset as an example.

Q3. Under what circumstances will re-ordering lead to more substantial improvements?

The introduction of re-ordering is meant to find the task that is closest to the current retained dataset
among multiple tasks. Thus, when a newly observed task shows a distribution that is dissimilar
to the current retained dataset, but tasks observed afterward exhibit similar distributions, the re-
ordering can enhance the performance of our method. When comparing with the variant UnFaIRL,
which is identical to FaRULi in all aspects except for the lack of the re-ordering function, the overall
performance of FaRULiis 0.6% higher in accuracy and 2.4% lower in statistical parity than UnFaIRL
among all six datasets. Especially for the Law School dataset, for example, FaRULi performs the
best in both accuracy and statistical parity compared to all other methods observed from Table 1
(in main paper). Only as shown in the Figure 2f, FaRULi has the higher statistical parity values
than FaMTL, which owns full label information, for the first two tasks. However, starting from T2,
the statistical parity of FaRULi becomes similar to that of FaMTL, and the gap further widens by
T3. This suggests that DT3 provides more fair knowledge to the retained dataset than T1. When
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Figure 2: The trends of Statistical Parity of our FaRULi approach and its 5 competitors on 6 datasets.

Figure 3: Distribution of Law School dataset. T0 and T3 are grouped, represented by yellow
points; All other tasks are grouped, represented by blue points;

we reveal the learning order of FaRULi for Law School( T0 → T3 → T2 → T1 → T5 → T4),
we can observe that re-ordering indeed identified two tasks, T3 and T2, that are closer to T0 than
the adjacent task T1, and subsequently altered the learning sequence, instead of using the default
sequence: T0 → T1 → T2 → T3 → T4 → T5. Moreover, when we consider T0 and T3 as one
group and the other tasks as another group, we use the T-SNE (Van der Maaten & Hinton, 2008)
to reduce instances of them into a two-dimensional space. As shown in Figure 3, the yellow points
represent T0 and T3, and the blue points represent other tasks. Except for a few yellow points mixing
with blue points, most yellow points in the two-dimensional space are concentrated in two distinct
clusters from the blue points. This further substantiates that T0 and T3 constitute the most similar
pair among all tasks. Hence, the four comparative methods that adopt lifelong learning but lack a
re-ordering all yielded inferior results due to the wrong sequence. Even FaMTL, which possesses
full label information and simultaneously learns all tasks, delivered slightly inferior results to our
method due to the potential interference caused by the different distributions between the group of
T0 and T3 and other tasks. Therefore, we can conclude that the introduction of the re-ordering is as
we designed it to be: when the task adjacent to the retained dataset presents a distinct distribution,
the re-ordering must alter the learning order to enhance the performance of our model.

4 IMPLEMENTATION DETAILS
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4.1 Implementation Details

We implement FaRULi with PyTorch (Paszke et al., 2019) and all experiments are benchmarked on
virtual machines, configured as 4 x Intel(R) Xeon(R) Gold 6148 CPU, one Nvidia V100 GPU, and
16GB RAM. The model of FaDL is implemented with the Fairlearn package (Bird et al., 2020).
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