
7 Supplementary Material

7.1 Baseline models and Hyperparameters

• Gaussian Process (GP): We trained the GP model based on spatial location without using the
explanatory feature [62]. The prior is constant mean and RBF kernel, and we optimized the model
parameters by maximum likelihood estimation. The prediction variance was used as the uncertainty
measure. • Deep Gaussian Process (Deep GP): We implememted a hybrid Gaussian process neural
network [66]. The sample explanatory features were fed into a multi-layer perceptron, then the
learned latent features and sample spatial locations were fed into a Gaussian process model. The
GP variance is used as the uncertainty measure. • Spatial graph neural network (Spatial GNN):
We first constructed a spatial graph based on each sample’s k-nearest-neighbor by spatial distance.
Then we trained a GNN model [47] on the constructed graph structure. The model contains two
GCN layers. To evaluate the uncertainty of GNN models, we use the MC-dropout [58] method.
The method does multiple forward dropout inferences at test time and computes the variance of the
prediction as the uncertainty measure. • Multipole graph neural operator (MGNO): MGNO [32]
belongs to the family of neural operator models that learn the infinite-dimensional function mapping
in the continuous space. It contains a multi-level graph neural network to capture the long-range
interactions among particles with linear complexity. We use the PyTorch implementation from its
official website. • NodeFormer: NodeFormer [26] is an efficient graph transformer model for
learning the implicit graph structure among samples. It utilizes kernelized random Fourier features for
efficient attention learning. • Galerkin Transformer: GalerkinTransformer [35] uses softmax-free
attention mechanism and acheieve linearlized transformer. The approach derives a Petrov-Galerkin
interpretation to approximate the operator. We also quantify the prediction uncertainty based on
the MC dropout method. The dropout rate is tuned based on the validation dataset. • Hierarchical
Spatial Transformer (HST): This is our proposed method. We implemented it with PyTorch. The
model architecture and hyperparameters are in the hyperparameter paragraph.

Model hyper-parameters: Our HST model used three spatial attention layers in both the encoder and
the decoder, the latent representation embedding dimension was 64, and the quadtree leaf node size
threshold was 20 by default. For the training process, we used the MSE loss with a decaying learning
rate that reduced the learning rate by half if the validation loss did not improve over five epochs (with
an initial learning rate of 10�4 and a minimum rate of 10�7). We also used early stopping with a
patience of 10 epochs and a maximum of 50 epochs. The optimizer was Adam with �1 = 0.9 and
�2 = 0.98. The L2 regularization weight was 10�4. The batch size was 512.

Uncertainty evaluation hyper-parameters: We use an accuracy and uncertainty threshold Tac

and Tau to group samples’ prediction into four categories: accurate certain, accurate uncertainty,
inaccurate certain, and inaccurate uncertain. The threshold for accuracy is determined by the mean
absolute error (MAE) loss Tac =

Pn
i=1(yi�ŷ)

n , where n is the number of validation samples. The
accurate prediction index set is A = {i||yi � ŷ| < Tac}, and inaccurate prediction index set is
I = {i||yi � ŷ| > Tac}. We use T

A
au and T

I
au to represent the uncertainty threshold for accurate

and inaccurate prediction, respectively. Then T
A
au = Average(UA), where UA = {ui|i 2 A}. Then

T
I
au = Average(UI), where UI = {ui|i 2 I}.

Dataset description: We use three real-world datasets, including two water quality datasets collected
from the Southwest Florida coastal area, and one sea-surface temperature and one PDE simulation
dataset to evaluate our proposed model: • Red tide dataset The input data are satellite imagery
obtained from the MODIS-Aqua sensor and in-situ red tide data obtained from Florida Fish and
Wildlife’s (FWC) HAB Monitoring Database. We have 104, 100 point samples and it is split into
training, validation, and test sets with a ratio of 7 : 1 : 2. • Turbidity dataset: We used the same
satellite imagery features as in the red tide dataset. The ground truth samples measure the turbidity of
the Southwest Florida coastal water. It contains 13808 point samples. The dataset is split into train
validation and test sets with the same ratio as the red tide dataset. • Darcy flow for PDE operator
learning: The Darcy flow dataset contain 100 simulated images with 241*241 resolution . For
each image, we subsample 100 graph samples from the original image, where each graph contains
400 nodes. We construct a KNN graph based on the node coordinates. For the test dataset, we do
inference on the whole grid map, thus the test dataset contains 100 images with 241*241 resolution.
• Sea Surface Temperature: We used the sea surface temperature dataset of Atlantic ocean [70].
The dataset consists of daily temperature acquisition on 481⇥ 781 pixels from 2006 to 2017. The

15

Table 4: Comparison on model performance on Sea Surface Temperature dataset
Model Sea Surface Tem

MSE MAE
GP 1.68 1.25
Spatial GNN 1.60 1.17
All-pair transformer 1.52 1.15
HST (Our method) 1.56 1.15

image is divided into 64⇥ 64 subregions, and we subsampled 400 point samples from the grid pixels.
We use the years from 2016 to 2017 as the test dataset and the years from 2015 and 2016 as the
validation dataset.

7.2 Comparison on prediction performance

In this section, we present the result for sea surface temperature. The results are shown in Table 4.
We can observe that all-pair transformers perform the best and our model performs better than GP
and spatial GNN models. For this dataset, we do not consider the temporal aspect of temperature
dynamics, and we only focus on the prediction of continuous spatial locations.

7.3 Sensitivity analysis

(a) Quadtree leaf node size (b) Length scale (c) Attention layer (d) Embedding dimension

Figure 7: Parameters sensitivity analysis.

We also conducted a sensitivity analysis of our model to different hyper-parameters, including the
quadtree leaf node size threshold M , spatial position encoding (kernel bandwidth) length scale �, the
number of attention layers in the encoder and decoder, and the embedding dimension of the latent
representation. We use the red tide dataset as an example to conduct the sensitivity analysis. When
evaluating the influence of one parameter, we keep all other parameters unchanged. The results are
summarized in Figure 7. First, we evaluate model sensitivity to the threshold of quadtree leaf node
size. We can see that the MSE first decreases with a 20 or 40 threshold because the neighbor samples
increase. The MSE then increases when increasing the threshold to 80, because the quadtree depth
is too small, and less hierarchical information is contained in the tree. Second, we evaluate model
sensitivity to the length scale of spatial position encoding, which determines the model’s initial auto-
correlation range in the continuous space. We change the length scale of spatial position encoding
from 0.01 to 1. The corresponding test MSE scores are in Figure 7(b). The model MSE first drops to
0.51 and then increases to 6.2. The model is generally stable in the length scale range of 0.01 to 0.5.
Then we change the number of attention layers in the model from 1 to 4. The results in Figure 7(c)
show that the performance is best when using 2 spatial attention layers, and the performance is stable.
Then we analyze the influence of latent representation dimension in Figure 7(d). We change the
embedding dimension from 16 to 32, 64, 128, and it shows that embedding dimension 64 performs
well and the model performs stable if continuing to increase the latent dimension.

7.4 Uncertainty Quantification

We provide additional uncertainty quantification results for the turbidity dataset in Table 5. We can
observe that our method outperforms existing uncertainty quantification baseline methods.

16

Table 5: Comparison on uncertainty quantification performance on turbidity dataset
Model Accurace Uncertainty AvUa/

AvUc AvU

GP
Certain Uncertain

0.23Accurate 254 1548 0.14
Inaccurate 343 617 0.65

Deep
GP

Certain Uncertain
0.38Accurate 436 1466 0.23

Inaccurate 315 545 0.64

Spatial
GNN

Certain Uncertain
0.44Accurate 1238 730 0.63

Inaccurate 526 268 0.34

Galerkin
Transformer

Certain Uncertain
0.40Accurate 1036 872 0.54

Inaccurate 602 252 0.30

HST
(Our model)

Certain Uncertain
0.49Accurate 828 1194 0.41

Inaccurate 297 443 0.60

17

	Introduction
	Problem Statement
	Related Work
	Approach
	Multi-resolution representation learning within a quadtree hierarchy
	Spatial representation of individual points (quadtree external nodes)
	Spatial representation of coarse cells (quadtree internal nodes)

	Efficient Hierarchical Spatial Attention
	Decoder: inference on a new point with uncertainty quantification

	Experimental Evaluation
	Comparison on prediction performance
	Comparison on uncertainty quantification performance (UQ)
	Analysis on computation and memory cost

	Conclusion and Future Work
	Supplementary Material
	Baseline models and Hyperparameters
	Comparison on prediction performance
	Sensitivity analysis
	Uncertainty Quantification

