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A DESIGN STRATEGIES AND BEST PRACTICES FOR NGMS

We share some of the design strategies and best practices that we developed while working with
NGMs here. This is to give insights to the readers on our approach and help them narrow down the
architecture choices of NGMs for applying to their data. We hope that sharing our thought process
and findings here will foster more transparency, adoption and help identify potential improvements to
facilitate the advancement of research in this direction.

* Choices for the structure loss function. We narrowed down the loss function choice to Hadamard
loss || (IL; |[W;]) % S| vs square loss ||(IL;|[W;|) — S||*. We also experimented with various choices
of Lagrangian penalties for the structure loss. We found that {5 worked better in most cases. Our
conclusion was to use Hadamard loss with either ¢ vs ¢ penalty.

 Strategies for X initialization. (I) Keep it fixed to balance between the initial regression loss and
structure loss. We utilize the loss balance technique mentioned in Rajbhandari et al. (2019). (II)
Use the proximal initialization technique clubbed with increasing A value as described in Alg. 1.
Both the techniques seem to work well, although (I) is simpler to implement and gives equivalent
results.

* Selecting width and depth of the neural view. We start with hidden layer size H = 2 X |In| twice
the input dimension. Then based on the regression and structure loss values, we decide whether
to go deeper or have a larger number of units. In our experience, increasing the number of layers
helps in reducing the regression loss while increasing the hidden layer dimensions works well to
optimize for the structure loss.

* Choices of non-linearity. For the MLP in the neural view, we played around with multiple choices
of non-linearities. We ended up using ReL.U, although tanh gave similar results.

* Handling imbalanced data. NGMs can also be adapted to utilize the existing imbalanced data
handling techniques Chawla et al. (2002); Shrivastava et al. (2015); Bhattacharya et al. (2017)
which improved results in our experience.

* Calculate upper bound on regression loss. Try fitting NGM by assuming fully connected graph to
give the most flexibility to regression. This way we get an upper bound on the best optimization
results on just the regression loss. This helps to select the depth and dimensions of MLPs required
when the sparser structure is imposed.

» Convergence of loss function. In our quest to figure out a way to always get good convergence on
both the losses (regression & structure), we tried out various approaches. (I) Jointly optimize both
the loss functions with a weight balancing term A, Eq. 2. (II) We tested out an Alternating Method
of Multipliers (ADMM) based optimization that alternately optimizes for the structure loss and
regression loss. (IIT) We also ran a proximal gradient descent approach which is sometimes suitable
for loss with /1 regularization terms. Choice (I) turned out to be effective with reasonable A values.

In the current state, it can be tedious to optimize NGMs and needs decent amount of experimentation.
It is a learning experience for us as well and we are always on a lookout to learn new techniques from
the research community.

B INFANT MORTALITY ANALYSIS

We created an NGM to model infant mortality data. The dataset is based on CDC Birth Cohort Linked
Birth — Infant Death Data Files of Health et al.. It describes pregnancy and birth variables for all live
births in the U.S. together with an indication of an infant’s death before the first birthday. We used
the data for 2015 (latest available), which includes information about 3,988,733 live births in the US
during 2015 calendar year.

We recovered the graph strucure of the dataset using uGLAD (Shrivastava et al., 2022a) and using
Bayesian network package bnlearn (Scutari, 2010) with Tabu search and AIC score. The graphs
are shown in Fig. 7 and 6 respectively. Since bnlearn does not support networks containing both
continuous and discrete variables, all variables were converted to categorical for bnlearn structure
learning and inference. In contrast, uGLAD and NGMs are both equipped to work with mixed types
of variables and were trained on the dataset prior to conversion.

Both graphs show similar sets of clusters with high connectivity within each cluster:

* describing both parents’ race and ethnicity (mrace and frace variables),
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Figure 6: The Bayesian network graph learned using score-based method for the Infant Mortality 2015 data.

« related to mother’s bmi, height (mht r) and weight, both pre-pregnancy (owgt_r) and at delivery
(dwgt_r),

* consisting of maternal morbidity variables marked with mm prefix (e.g., unplanned hysterectomy),

» showing pregnancy related complications such as hypertension and diabetes (variables prefixed
with rf and urf),

 consisting of variables related to parents’ STD infections (ip prefix),

« related to delivery complications and interventions (variables prefixed with 1d),

* showing interventions after delivery (ab prefix) such as ventilation or neonatal ICU,

¢ describing congenital anomalies diagnosed in the infant at the time of birth (variables prefixed with
Ca)s

* related to infant’s death: age at death, place, autopsy, manner, etc.

Apart from these clusters, there are a few highly connected variables in both graphs: gestational age
(combgest and oegest), delivery route (rdmeth_rec), Apgar score, type of insurance (pay),
parents’ ages (fage and mage variables), birth order (tbo and 1bo), and prenatal care.

With all these similarities, however, the total number of edges varies greatly between the two graphs
and the number of edges unique to each graph outnumbers the number of edges the two graphs
have in common (see Figure 8).One reason for the differences lies in the continuous-to-categorical
conversion performed prior to Bayesian network structure discovery and training. The two graph
recovery algorithms are very different in both algorithmic approach and objective function. We plan
to further explore NGMs’ sensitivity to input graph recovery algorithm in future work.

Infant mortality dataset is particularly challenging, since cases of infant death during the first year
of life are (thankfully) rare. Thus, any queries concerning such low probability events are hard to
estimate with accuracy.

NGM-generic architecture: Since we have mixed input data type, real and categorical data, we
utilize the NGM-generic architecture as shown in Fig. 3. We consider a 2-layer neural view with
hidden layer dimension as HH = 1000. The categorical input was converted to its one-hot vector
representation and added to the real features which gave us roughly ~ 500 features as input. The
neural view input from the encoder had the same dimension as input. Similarly, we maintained same
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Figure 7: The CI graph recovered by uGLAD for the Infant Mortality 2015 data.

dimension from the neural view output to the decoder output. The entire NGM-generic parameters
were learned by minimizing the eq. 4 using the ‘adam’ optimizer.

Sensitivity to the input graph: To study the effect of different graph structures on NGMs, we
train separate models on the Bayesian Network graph (after moralizing) and the CI graph from
uGLAD given in Fig. 6 & 7 respectively. We plot the dependency functions between pairs of nodes
based on the common and unique edges found in the comparison plots of Fig. 8. For each pair of
features, say (f1, f2), the dependency function is obtained by running inference P( f1|f2) by varying
the value of f5 over its range as shown in Fig. 9.

Comparing NGM inference in models with different input graphs shows some interesting patterns:

» Strong positive correlation of mother’s delivery weight (dwgt_r) with pre-pregnancy weight
(pwgt_r) is shown in both models.

» Similarly, both models show that married mothers (dmar= 1) are likely to gain more weight than
unmarried (dmar= 2).

* Both models agree that women with high BMI tend to gain less weight during their pregnancies
than women with low BMI.

* A discrepancy appears in cases of the dependence of both BMI and weight gain during pregnancy
on mother’s height (mht r). According to the NGM trained with a BN graph, higher weight gain
and higher BMI are more likely for tall women, while the CI-trained NGM shows the opposite.

» Possibly the most interesting are the graphs showing the dependence of the timing a women starts
prenatal care (precare specifies the month of pregnancy when prenatal care starts) on the type
of insurance she carries. For both models, Medicaid (1) and private insurance (2) mean early
start of care and there is a sharp increase (delay in prenatal care start) for self-pay (3) and Indian
Health Service (4). Models disagree to some extent on less common types of insurance (military,
government, other, unknown).

Our experiments on infant mortality dataset demonstrate usefulness of NGMs to model complex
mixed-input real-world domains. We are currently running more experiments designed to capture
more information on NGMs’ sensitivity to input graph recovery algorithm and inference accuracy.
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Figure 8: Comparing the graphs recovered by uGLAD and Bayesian Network recovery package (Scutari, 2010)
after moralization (moralized edges are denoted by ‘skyblue’).
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Figure 9: Evaluating effects of varying input graphs for learning NGMs. Comparing the NGM dependency
plots recovered by using Bayesian Network graph vs the CI graph obtained by running uGLAD . Similar
architecture of NGMs were chosen and the data preprocessing was also kept as alike as possible. For the feature
pairs in the top box, the trends match for both the graphs, while in the bottom box the dependency plots differ.
We observed that the dependency trends discovered by the NGM trained on the CI graph matches the correlation
of the CI graph. Common edges present in both the graphs [(pwgt-r, dwgt-r), (wWtgain, mhtr), (bmi, mhtr),
(precare, pay)], edges only present in CI graph [(wtgain, dmar), (wtgain, bmi)]. It is interesting to observe that
even for some common edges, eg. (wtgain, mhtr), that represents strong direct dependence between the features,
the trends can still differ significantly. This highlights the importance of the input graph structure chosen to train
NGMs.



