Under review as a conference paper at ICLR 2021

A APPENDIX
We introduce more implementation details and experimental results in the following sub-sections.

A.1 PARALLEL ABDUCTION

As described in section[3.2] Meta apq tries to estimate the most probable z by abduction following
Equation 3] Given training data D = {(z;,y;)}/y, let ® = (21,...,%5), Yy = (Y1,--.,Yn) and
z = (z1,...,2n), we have the posterior of H U z as follows:

P(H,z|B,z,y,0) o P(Hy,z|B,x,0)
= P(y|B,H,z)P;-(H|B)Py(z|x)
= Pa*(H|B)HP(ZIHB,H,Zi)Pe(ZHfEi)v (6)
i=1
where the last equation holds because the examples are drawn i.i.d. from the underlying distribution.

Therefore, the logical abduction in the expectation step of Meta 454 can be parallelised naturally:

1. Sample an abductive hypothesis H from the prior distribution H ~ P, (H|B);

2. Parallelly abduce z; from H and (x;, y;), and then calculate their scores by Equation
3. Aggregate the results by Equation [6}

4. Get the best H U z and continue the maximisation step to optimise 6.

We applied this strategy in our implementation of M eta 4,4 and have achieved better efficiency on
multi-threaded CPUs.

A.2 MNIST CUMULATIVE SUM/PRODUCT

9% Non-abducible primitives of list operations.
head ([H|_],H) .

tail ([-IT],T).

empty ([]) .

% Abducible primitives for generating CLP constraints.
abduce_add ([X,Y|T], [N|T],Abduced, 1.0) : -
(not (ground (N)) —->
metagol:new_var (N); number (N)),
atomics_to_string ([X,’+’,Y,"#=",N], Abduced).
abducemult ([X,Y|T], [N|T],Abduced, 1.0) :—
(not (ground (N)) ->
metagol:new_var (N); number (N)),
atomics_to_string ([X,’*’,Y,’#=",N], Abduced).
abduce_eq ([X|T], [N|T],Abduced, 1.0) : -
(not (ground (N)) ->
metagol:new_var (N); number (N)),
atomics_to_string ([X,’#=',N], Abduced).

Figure 4: Background knowledge used in the MNIST cumulative sum/product tasks.

The background knowledge used in the MNIST cumulative sum/product experiments is shown in
Figure[d] We demonstrate how it works by the following example.

Example (Constraint abduction) Given a training example £ ([E], F1, . B, 15)., Metaapq
will try to learn a program of the dyadic predicate f to satisfy (i.e., logically prove) the example.
The program to be learned is the abductive hypothesis H. The learning process is similar to generic
Meta-Interpretive Learning (Muggleton et al.|[2014) except that it abduces some ground expressions
(the Abduced atom in Figure {4) according to the definition of the abducible primitives. In the

11

Under review as a conference paper at ICLR 2021

1.01

10 , W

4
EY

Pseudo-label Accuracy
))
IS o

Pseudo-label Accuracy

° °

IS ®

4
o

o
N}

/ —+— Abduction Accuracy —+— Abduction Accuracy
0.2 Test Accuracy Test Accuracy

1 10 20 30 40 50 1 10 20 30 40 50
Epochs Epochs

(a) MNIST sum (b) MNIST product
1.0 cHHH]
091
9 I Zos
€ 0.8 it e
206/ 206
: s
'ng) 305
€ 0.4 < sl
—— Abduction Accuracy —— Abduction Accuracy
02 Test Accuracy 0.3 Test Accuracy
1 10 20 30 0 50 1 10 20 30 40 50
Epochs Epochs
(c) MNIST sum with 1-shot CNN pre-train (d) MNIST product with 1-shot CNN pre-train

Figure 5: Pseudo-label accurracy during Meta apq and M eta apg+1-shot NN l€arning.

MNIST sum/product tasks, the Abduced atoms are strings like “X+FJ#=3", which is a CLP(Zf]
constraint. According to the definition in Figure] when the Prolog variable is not grounded (i.e.,
constant), the abducible variable will create a new variable to represent N; if the Prolog variable
is grounded to a number, which means it is the final output in our example, then there is no need
to generate a new variable to represent it. Assume that the currently sampled H is the cumulative
sum program in Figure then for the example £ ([E],], . Bl1, 15) Metaapq can abduce
four CLP(Z) constraints: “EJ+FJ#=N1", “N1+EJ#=N2", “N2+[J#=N3" and “N3#=15". Note that
the scores of the abducibles in Figure [Z_f] are all 1.0, which means that these constraints are hard
constraints that have to be satisfied.

After abducing the constraints, M eta 454 Will call the CLP(Z) to solve them, giving a small set of
pseudo-labels z that satisfy those constraints. Then, Meta 434 Will try to calculate the scores of the
abduced H U z according to Equation [5} P,«(H|B) is directly given by H’s complexity, i.e., the
size of the program; Py(z|x) is given by the probabilistic facts by the perception neural network,
which are shown in Figure[6] The predicate “nn (Img, Label, Prob)” means the probability of
Img being an instance of Label is Prob. To get the probability of all pseudo-labels of an image
sequence, Meta 454 simply multiplies the probabilities of each image:

po(z|r) = Hpe(2j|l‘j),

where x; is the j-th image in x (first argument of predicate nn), z; is the abduced pseudo-label of
x; (second argument of nn), and the probability is the third argument of nn.

We also report the pseudo-label accuracy of abduction and perception during training, which are
shown in Figure 5] The blue lines are the accuracy of the abduced labels (i.e., the accuracy of the
expectation of z) in each EM iteration; the orange lines are the accuracy of the perceptual neural
net’s classification accuracy on the MNIST test set. As we can observe, the convergence speed of
cumulative sum is slower, because its the posterior distribution on pseudo-labels (P(H, z| B, z,y, 0))
is much denser than that of cumulative product. After applying the 1-shot CNN pre-train, whose test

>https://github.com/triska/clpz

12

Under review as a conference paper at ICLR 2021

nn (B}, 0,P00) nn (B, 1,P01) nn (E}, 2,P02)
nn (F], 0,P10) nn(F], 1,P11) nn(F], 2,p12)
nn(H,0,P20). nn(H,1,P21) nn(H, 2,P22)
nn (K, 0,P30) nn(E, 1,p31) nn (K, 2,P32)

Figure 6: Monadic probabilistic facts generated by neural network in the sum/product tasks.

nnpred(X,Y,P) :— nn(X,Y,P), !.
nn_pred(X,Y,P) :- nn(Y,X,Pl), P is 1-P1, !.

nn (B}, F,r01). nn(EA,H,P02). nn(E},E P02).
nn(F],H,p12). nn(E1,E. P13). nn(H B P13).

Figure 7: Dyadic probabilistic facts generated by neural network in the sorting task.

% List operations.
head ([HI|-],H) .
tail ([-IT],T).
empty ([]) .

% Background knowledge about permutation
permute (L1,0,L2) :—
length (L1, N),
findall (S, between(1,N,S),01),
% generate permutation with Prolog’s built-in predicate
catch (permutation(01,0),_, fail),
permutel (L1,0,L2) .
90 permute the image list with order O
permutel ([],[],-) .
permutel ([S|List], [O|0Os],List2) :—
nthl (O, List2,S),
permutel (List,Os,List2).

% Abducible primitives.
abduce.nn_pred([X,Y]|-],nn_pred(X,Y), Score) :—
nn_pred(X,Y, Score) .

Figure 8: Background knowledge used in the MNIST sorting task.

accuracy is shown at 0 epoch in the figures, the convergence speed of MNIST cumulative sum is
significantly improved because the EM algorithm is less-likely to be trapped in local optimums.

A.3 MNIST SORTING

Different to the MNIST cumulative sum/product tasks which learn a perceptual neural network
predicting the digit in each single image, in the MNIST sorting task, Meta 4 uses a perceptual
neural network to learn an unknown binary relation between two images. Examples are shown in
Figure The neural network uses the same convnet as before to take the input from a pair of
images (the first two arguments of predicate nn), and then a Multi-Layered Perception (MLP) is
used to predict the probability PIJ. The first two clauses translate the neural network’s output nn
to the probabilistic facts for Meta 454°s abduction.

Example (Dyadic facts abduction) Background knowledge of the MNIST sorting task is shown
in Figure[§] Different to the previous example which abduces the label of each input image, in the
sorting task, the facts being extracted from raw data are dyadic relationship between two images.
Given an training example with input z = [},], E, El1. the perceptual neural network will
process all the pairwise combinations among them and output a score as shown in Figure[7] Because
the pairwise combinations are just a half of pairwise permutations, we also provided a symmetric
rule to complete them (the first two clauses in Figure[7). During Meta apq’s induction, the abduced

13

Under review as a conference paper at ICLR 2021

=
o
|

I o o
N © ©

Pairwise Image Ordering Accuracy
o
o

—}— Test Accuracy

o
]

T T y T T T
1 5 10 20 30 40 50
Epochs

Figure 9: MNIST pairwise ordering (nn_pred) accuracy during learning.

metarule ([P,Q], [P,A], [[Q,A]])

metarule ([P,Q], [P,A], [[Q,A,B], [P,B]])
metarUle([PrQIRJ 14 [P,A] ’ [[QIA!BJ 14 [R/B] J)
metarule ([P,Q,R], [P,A,B], [[Q,A], [R,A,B]])
metarule ([P,Q], [P,A,B], [[Q,A,B]])

metarule ([P,Q,R], [P,A,B], [[Q,A,B], [R,A,B]])
metarule([P,Q,RJ ’ [PIAIB] ’ [[Q,A,B,CJ ’ [Rr Cll)
metarule ([P,Q,R], [P,A,B], [[Q,A,B], [R,B]])
metarule ([P,Q,R], [P,A,B], [[Q,A,C], [R,C,BI])

Figure 10: Meta-rules used in all the experiments.

facts are the pairwise probabilistic facts themselves instead of CLP(Z) constraints like before, so
the Score is the probability of each probabilistic fact. In other words, in the sorting task, the
abduction of z (the truth values of the probabilistic facts) is performed simultaneously with logical
induction. Recall the Prolog code of Metaapq in Figure 2] there is a greedy process that keeps
the current most probable abduction with getmaxprob (Max) and setmaxprob (Max). The
greedy strategy is used to prune the search space of z, it excludes the facts with low probability and
quickly find a locally optimal z (truth value assignment), which will be used as pseudo-labels to
train the perceptual neural network in the maximisation step.

Figure [9] shows the perception accuracy during training. The test pairs contains 10,000 randomly
sampled images from the MNIST test set. The vertical line at epoch 5 shows the time point when
Meta 4,4 switching from the sub-task (learning concept of “sorted” with target predicate s) to the
main tasks (learning permutation sort). The results in this figure verifies that the perception model
is successfully re-used in this experiment.

A.4 REPRODUCIBILITY

We introduce more experimental details in this subsection. All experiments are completed on a PC
with AMD Ryzen 3900X CPU and Nvidia 2080Ti GPU. The data and source codes of Metapq
will be available after the publication of this work.

A.4.1 META-RULES

The meta-interpreter of Metaapq uses a set of meta-rules to guide the induction of the logic the-
ory H. We use the meta-rules from the higher-order meta-interpreter M etagolhoE] (Cropper et al.,
2020), which are shown in Figure[I0]It has been shown that these meta-rules have universal Turing
expressivity and can represent higher-order programs (Cropper et al., 2020).

Shttps://github.com/andrewcropper/mlj19-metaho

14

Under review as a conference paper at ICLR 2021

A.4.2 NEURAL NETWORK & HYPERPARAMETERS

The convnet in our experiments is from PyTorch’s MNIST tutoria as|Trask et al. (2018)) suggested.
The LSTM and RNN models in the MNIST cumulative sum/product experiments have 2 hidden
layers with dimension 64; the NAC and NALU modules have 2 hidden layers with dimension 32. In
the MNIST sorting experiments, we set the hyperparameter 7 = 1.0 for NeuralSort, which is the
default value in the original codeﬁ Moreover, the output of NeuralSort is a vector with floating
numbers, in order to reproduce the result from the original paper, we rank the output scores to
generate the final prediction of orderings.

"https://github.com/pytorch/examples/tree/master/mnist
8https://github.com/ermongroup/neuralsort

15

