CONTENTS (APPENDIX)

704				
705	Α	Stab	ility and Gradient	14
706		A.1	Lemmas for Theorem 6	14
707		A.2	Proof of Theorem 6	15
708	R	Stab	ility on Conoral Multi-Class cSBM	17
709	D	R 1	Lemmas for Theorem 8	17
710		B.1 B.2	Proof of Theorem 8	10
711		D .2		1)
712	С	Gen	eralization Error Bound of Spectral GNNs	25
713		C .1	Proof of Theorem 9	25
714		C.2	Proof of Lemma 10	26
715				
716	D	Stab	ility on Specialized cSBM	29
717		D.1	Lemmas for Theorem 13	29
718		D.2	Expectation and Variance of A_{ij}^k and $(A^k X W)_{ij}$	32
719		D.3	Proof of Theorem 13	39
720	Б	A		4.4
721	Ľ		lysis of Properties	44
722		E.I	Proof of Proposition 12	44
723		E.2	Proof of Theorem 15	43
72/		E.3 E 4	Proof of Proposition 16	47
725		L.4		40
725	F	Deta	ils of Experiments	49
720	•	F1	Datasets	49
727		E.2	Spectral GNNs	49
120		F.3	Hyper-parameter Settings	51
729		F.4	Detailed Experimental Results	51
730			r · · · · · · · · · · · · · · · · · · ·	

A STABILITY AND GRADIENT

734 A.1 LEMMAS FOR THEOREM 6

We start by establishing the maximum variation in the sample loss and the maximum change in the gradient of the loss function with respect to the parameters $\{\Theta, W\}$ of spectral GNNs, as defined in Eq. (1). These two properties play a crucial role in the subsequent analysis.

Based on Assumption 1, we derive the following lemmas.

Lemma 17 (Bound of Loss function to Parameters). Under Assumption 1, given a loss function ℓ and a spectral GNN, for parameters $\overline{\Theta}, \overline{W}, \Theta', W'$ and any node v_i with truth class y_i we have

$$\|\ell(y_i, \hat{y}_i|_{\Theta = \bar{\Theta}, W = \bar{W}}) - \ell(y_i, \hat{y}_i|_{\Theta', W'})\|_F \le \alpha_1 \sqrt{\|\bar{\Theta} - \Theta'\|_F^2 + \|\bar{W} - W'\|_F^2}$$

where $\alpha_1 = Lip(\ell)Lip(\Psi)$.

Proof. Under Assumption 1, we have:

$$\|\ell(y_i, \hat{y}_i|_{\tau=\bar{\tau}}) - \ell(y_i, \hat{y}_i|_{\tau=\tau'})\| \le Lip(\ell) \|\hat{y}_i|_{\tau=\bar{\tau}} - \hat{y}_i|_{\tau=\tau'} \|_F;$$

$$\|Lip(\ell)\|\hat{y}_i|_{\tau=\bar{\tau}} - \hat{y}_i|_{\tau=\tau'} \|_F \le Lip(\Psi) \|\bar{\tau} - \tau'\|_F.$$

By combining the two inequalities above, we arrive at:

$$\|\ell(y_i, \hat{y}_i|_{\tau=\bar{\tau}}) - \ell(y_i, \hat{y}_i|_{\tau=\tau'})\| \le Lip(\ell)Lip(\Psi)\|\bar{\tau} - \tau'\|_F$$

Lemma 18 (Bound of Gradient to Parameters). Under Assumption 1, Assumption 2, for parameters $\bar{\Theta}, \bar{W}, \Theta', W'$ of a spectral GNN, the following holds for any node v_i with truth class y_i

$$\|\nabla \ell(y_i, \hat{y}_i|_{\Theta = \bar{\Theta}, W = \bar{W}}) - \nabla \ell(y_i, \hat{y}_i|_{\Theta', W'})\|_F \le \alpha_2 \sqrt{\|\bar{\Theta} - \Theta'\|_F^2 + \|\bar{W} - W'\|_F^2}$$

where $\alpha_2 = (Smt(\Psi)\beta_1 + Smt(\ell)Lip(\Psi)\beta_2)$.

Proof. Since we have

$$\begin{aligned} \nabla \ell(y_i, \hat{y}_i|_{\tau=\bar{\tau}}) &= \nabla_{\hat{y}_i} \ell(y, \hat{y}_i)|_{\tau=\bar{\tau}} \cdot \nabla \hat{y}_i|_{\tau=\bar{\tau}};\\ \nabla \ell(y_i, \hat{y}_i|_{\tau=\tau'}) &= \nabla_{\hat{y}_i} \ell(y, \hat{y}_i)|_{\tau=\tau'} \cdot \nabla \hat{y}_i|_{\tau=\tau'}, \end{aligned}$$

this leads to

$$\begin{aligned} \nabla \ell(y_i, \hat{y}_i|_{\tau=\bar{\tau}}) - \nabla \ell(y_i, \hat{y}_i|_{\tau=\tau'}) &= \nabla_{\hat{y}_i} \ell(y, \hat{y}_i)|_{\tau=\bar{\tau}} (\nabla \hat{y}_i|_{\tau=\bar{\tau}} - \nabla \hat{y}_i|_{\tau=\tau'}) \\ &+ (\nabla_{\hat{y}_i} \ell(y, \hat{y}_i)|_{\tau=\bar{\tau}} - \nabla_{\hat{y}_i} \ell(y, \hat{y}_i)|_{\tau=\tau'}) \nabla \hat{y}_i|_{\tau=\tau'}.\end{aligned}$$

Hence, we obtain the following

$$\begin{aligned} \|\nabla \ell(y_{i}, \hat{y}_{i}|_{\tau=\bar{\tau}}) - \nabla \ell(y_{i}, \hat{y}_{i}|_{\tau=\tau'})\|_{F} &\leq \|\nabla_{\hat{y}_{i}}\ell(y, \hat{y}_{i})|_{\tau=\bar{\tau}}\|_{F} \cdot \|\nabla\hat{y}_{i}|_{\tau=\bar{\tau}} - \nabla\hat{y}_{i}|_{\tau=\tau'}\|_{F} \\ &+ \|\nabla_{\hat{y}_{i}}\ell(y, \hat{y}_{i})|_{\tau=\bar{\tau}} - \nabla_{\hat{y}_{i}}\ell(y, \hat{y}_{i})|_{\tau=\tau'}\|_{F} \cdot \|\nabla\hat{y}_{i}|_{\tau=\tau'}\|_{F}. \end{aligned}$$
(5)

Under Assumption 1 and Assumption 2, we have:

$$\begin{aligned} \nabla \hat{y}_i|_{\tau=\bar{\tau}} - \nabla \hat{y}_i|_{\tau=\tau'} \|_F &\leq Smt(\Psi) \|\bar{\tau} - \tau'\|_F \\ \|\nabla \hat{y}_i \ell(y, \hat{y}_i)|_{\tau=\bar{\tau}} \|_F &\leq \beta_1. \end{aligned}$$

$$\tag{6}$$

Under Assumption 1, we have:

$$\begin{aligned} \|\nabla_{\hat{y}_{i}}\ell(y,\hat{y}_{i})|_{\tau=\bar{\tau}} - \nabla_{\hat{y}_{i}}\ell(y,\hat{y}_{i})|_{\tau=\tau'}\|_{F} &\leq Smt(\ell)\|\hat{y}_{i}|_{\tau=\bar{\tau}} - \hat{y}_{i}|_{\tau=\tau'}\|_{F} \\ &\leq Smt(\ell)Lip(\Psi)\|\bar{\tau}-\tau'\|_{F}. \end{aligned}$$
(7)

Under Assumption 2, we have:

$$\|\nabla \hat{y}_i|_{\tau=\tau'}\|_F \le \beta_2. \tag{8}$$

Substitute Eq. (6), Eq. (7), and Eq. (8) into Eq. (5), we have

$$\begin{aligned} \|\nabla \ell(y_i, \hat{y}_i|_{\tau=\bar{\tau}}) - \nabla \ell(y_i, \hat{y}_i|_{\tau=\tau'})\|_F &\leq Smt(\Psi) \|\bar{\tau} - \tau'\|_F \cdot \beta_1 + Smt(\ell)Lip(\Psi)\|\bar{\tau} - \tau'\|_F \cdot \beta_2 \\ &= (Smt(\Psi)\beta_1 + Smt(\ell)Lip(\Psi)\beta_2) \|\bar{\tau} - \tau'\|_F. \end{aligned}$$

A.2 PROOF OF THEOREM 6

Theorem 6 (Stability and Gradient Norm). Let Ψ be a spectral GNN trained using gradient descent for T iterations with a learning rate η on a training dataset S_m , and evaluated on a testing set \mathcal{D}_u . Under Assumption 1, for all iterations $t \in [1, T]$ and any sample (x_i, y_i) in S_m or \mathcal{D}_u , if the gradient norm satisfies $\|\nabla \ell(y_i, \hat{y}_i|_{\Theta^t, W^t})\|_F \leq \beta$, where $\{\Theta^t, W^t\}$ are the parameters at the t-th iteration, then Ψ satisfies γ -uniform transductive stability with:

$$\gamma = r\beta, \quad r = \frac{2\eta\alpha_1}{m}\sum_{t=1}^T (1+\eta\alpha_2)^{t-1},$$

where $\alpha_1 = Lip(\ell) \cdot Lip(\Psi)$ and $\alpha_2 = Smt(\Psi)\beta_1 + Smt(\ell)Lip(\Psi)\beta_2$.

Proof. We define $\tau = [\Theta; W]$ as the concatenation of the parameters Θ and W. From Lemma 17 and Lemma 18, we derive:

808

$$\|\ell(y_i, \hat{y}_i|_{\tau}) - \ell(y_i, \hat{y}_i|_{\tau'})\|_F \le \alpha_1 \|\tau - \tau'\|_F;$$
809

$$\|\nabla \ell(y_i, \hat{y}_i|_{\tau}) - \nabla \ell(y_i, \hat{y}_i|_{\tau'})\|_F \le \alpha_2 \|\tau - \tau'\|_F$$

where $\alpha_1 = Lip(\ell)Lip(\Psi)$ and $\alpha_2 = (Smt(\Psi)\beta_1 + Smt(\ell)Lip(\Psi)\beta_2)$. The updating rule for gradient descent is given by:

$$\tau^{t+1} = \tau^t - \eta \nabla \mathcal{L}_{S_m}(\tau^t);$$

$$\tau^{t+1}_{ij} = \tau^t_{ij} - \eta \nabla \mathcal{L}_{S_m^{ij}}(\tau^t_{ij}),$$

815 where 816

$$\mathcal{L}_{S_m}(\tau^t) = \frac{1}{m} \sum_{r=1}^m \ell(y_r, \hat{y}_r|_{\tau^t}) \text{ and } \mathcal{L}_{S_m^{ij}}(\tau_{ij}^t) = \frac{1}{m} \sum_{r=1}^m \ell(y_r, \hat{y}_r|_{\tau_{ij}^t})$$

represent the empirical loss on the training dataset S_m and S_m^{ij} , respectively. The difference between the empirical losses is given by:

$$\mathcal{L}_{S_m^{ij}}(\tau_{ij}^t) - \mathcal{L}_{S_m}(\tau^t) = \frac{1}{m} \left[\sum_{r=1, r \neq i, j}^m \left(\ell(y_r, \hat{y}_r |_{\tau_{ij}^t}) - \ell(y_r, \hat{y}_r |_{\tau^t}) \right) + \ell(y_j, \hat{y}_j |_{\tau_{it}^t}) - \ell(y_i, \hat{y}_i |_{\tau^t}) \right].$$

We derive the parameter difference:

$$\begin{aligned} \|\tau_{ij}^{t+1} - \tau^{t+1}\|_{F} &= \left\|\tau_{ij}^{t} - \eta \nabla \mathcal{L}_{S_{m}^{ij}}(\tau_{ij}^{t}) - \tau^{t} + \eta \nabla \mathcal{L}_{S_{m}}(\tau^{t})\right\|_{F} \\ &\leq \|\tau_{ij}^{t} - \tau^{t}\|_{F} + \eta \|\nabla (\mathcal{L}_{S_{m}}(\tau^{t}) - \mathcal{L}_{S_{m}^{ij}}(\tau_{ij}^{t}))\|_{F} \\ &= \|\tau_{ij}^{t} - \tau^{t}\|_{F} + \frac{\eta}{m} \left\|\nabla \left[\sum_{\substack{r=1\\r \neq i,j}}^{m} \left(\ell(y_{r}, \hat{y}_{r}|_{\tau_{ij}^{t}}) - \ell(y_{r}, \hat{y}_{r}|_{\tau^{t}})\right) + \ell(y_{j}, \hat{y}_{j}|_{\tau_{ij}^{t}}) - \ell(y_{i}, \hat{y}_{i}|_{\tau^{t}})\right]\right\|_{F} \end{aligned}$$

$$\leq \|\tau_{ij}^{t} - \tau^{t}\|_{F} + \frac{\eta}{m} \left\| \sum_{\substack{r=1\\r\neq i,j}}^{m} \alpha_{2} \|\tau_{ij}^{t} - \tau^{t}\|_{F} + \nabla \left[\ell(y_{j}, \hat{y}_{j}|_{\tau_{ij}^{t}}) - \ell(y_{i}, \hat{y}_{i}|_{\tau^{t}}) \right] \right\|_{F}$$
(Assumption 1)

$$\leq \|\tau_{ij}^{t} - \tau^{t}\|_{F} + \frac{\eta}{m}(m-1)\alpha_{2}\|\tau_{ij}^{t} - \tau^{t}\|_{F} + \frac{\eta}{m} \left\| \nabla \left[\ell(y_{j}, \hat{y}_{j}|_{\tau_{ij}^{t}}) - \ell(y_{i}, \hat{y}_{i}|_{\tau^{t}}) \right] \right\|_{F}$$

$$\leq \|\tau_{ij}^{t} - \tau^{t}\|_{F} + \frac{\eta}{m}(m-1)\alpha_{2}\|\tau_{ij}^{t} - \tau^{t}\|_{F} + \frac{2\eta\beta}{m} \quad (Theorem \ 13)$$

$$= \left(1 + \frac{m-1}{m}\eta\alpha_{2} \right) \|\tau_{ij}^{t} - \tau^{t}\|_{F} + \frac{2\eta\beta}{m}$$

$$\leq (1+\eta\alpha_{2})\|\tau_{ij}^{t} - \tau^{t}\|_{F} + \frac{2\eta\beta}{m}.$$

After T iterations, we obtain

$$\begin{aligned} \left\| \tau_{ij}^{T} - \tau^{T} \right\|_{F} &\leq (1 + \eta \alpha_{2}) \left\| \tau_{ij}^{T-1} - \tau^{T-1} \right\|_{F} + \frac{2\eta\beta}{m} \\ &\leq (1 + \eta \alpha_{2}) [(1 + \eta \alpha_{2}) \left\| \tau_{ij}^{T-2} - \tau^{T-2} \right\|_{F} + \frac{2\eta\beta}{m}] \\ &\leq (1 + \eta \alpha_{2})^{T} \left\| \tau_{ij}^{0} - \tau^{0} \right\|_{F} + \sum_{t=1}^{T} (1 + \eta \alpha_{2})^{t-1} \frac{2\eta\beta}{m} \\ &= \sum_{t=1}^{T} (1 + \eta \alpha_{2})^{t-1} \frac{2\eta\beta}{m}. \end{aligned}$$

Since the loss function ℓ is α_1 -Lipschitz continuous, for any sample (x_i, y_i) with parameters $\tau^T = [\Theta^T; W^T]$ and $\tau_{ij}^T = [\Theta_{ij}^T; W_{ij}^T]$, we have:

$$\begin{aligned} \left| \ell(\hat{y}_i, y_i; \tau^T) - \ell(\hat{y}_i, y_i; \tau_{ij}^T) \right| &\leq \alpha_1 \left| \tau^T - \tau_{ij}^T \right| \\ &\leq \alpha_1 \sum_{t=1}^T (1 + \eta \alpha_2)^{t-1} \frac{2\eta \beta}{m}. \end{aligned}$$

The proof is completed.

864 B STABILITY ON GENERAL MULTI-CLASS CSBM

We derive the uniform transductive stability of spectral GNNs defined in Eq. (1) on graphs generated by $G \sim cSBM(n, f, \Pi, Q)$. Then we discuss how the non-linear feature transformation function affect the stability.

We first give a brief introduction to inequalities and lemmas used in this proof.

871 B.1 LEMMAS FOR THEOREM 8

Lemma 19 (Jensen's Inequality). Let X be an arbitrary random variable, and let $f : \mathbb{R}^1 \to \mathbb{R}^1$ be a convex function such that $\mathbb{E}[f(X)]$ is finite. Then $f(\mathbb{E}[f(X)]) \leq \mathbb{E}[f(X)]$.

Lemma 20 (Markov's Inequality). If X is a non-negative random variable, then for all a > 0,

$$P(X \ge a) \le \frac{\mathbb{E}[X]}{a}.$$

That is, the probability that X exceeds any given value a is no more than the expectation of X divided by a.

Remark. Lemma 19, Lemma 20 are important inequalities about a variable and its expectation.
Details can be found in (Evans & Rosenthal, 2004).

Lemma 21 (Cauchy-Schwarz Inequality (Arfken et al., 2011)).

$$(\sum_{k=1}^{n} a_k b_k)^2 \le (\sum_{k=1}^{n} a_k^2) (\sum_{k=1}^{n} b_k^2).$$

The square of the ℓ_2 -norm of the product of two vectors is less than or equal to the product of the squares of the ℓ_2 -norms of the individual vectors.

Lemma 22 (Trace and Frobenius Norm). For any matrix $A \in \mathbb{R}^{n \times n}$, the relation between its trance and its Frobenius norm is

$$Tr(A) \le \sqrt{n} \cdot \|A\|_F$$

Proof. The trace of A is defined as:

$$\operatorname{Tr}(A) = \sum_{i=1}^{n} a_{ii}.$$

Applying the absolute value, we have:

$$\operatorname{Tr}(A) \le \sum_{i=1}^{n} |a_{ii}|.$$

Using the Cauchy-Schwarz inequality (Lemma 21), this becomes:

$$\sum_{i=1}^{n} |a_{ii}| \le \sqrt{n} \cdot \sqrt{\sum_{i=1}^{n} |a_{ii}|^2}.$$

Since $|a_{ii}|^2 = a_{ii}^2$, we can write:

$$\sqrt{\sum_{i=1}^{n} |a_{ii}|^2} = \sqrt{\sum_{i=1}^{n} a_{ii}^2}.$$

914 Thus:

$$\operatorname{Tr}(A) \le \sqrt{n} \cdot \sqrt{\sum_{i=1}^{n} a_{ii}^2} = \sqrt{n} \cdot \|A\|_F.$$

Lemma 23 (Partial Derivatives). For spectral graph neural networks defined as $\hat{Y} =$ softmax $\left(\sum_{k=0}^{K} \theta_k \tilde{A}^k X W\right)$, with node feature matrix $X \in \mathbb{R}^{n \times f}$ and ground truth node label matrix $Y \in \mathbb{R}^{n \times C}$, the cross-entropy loss for a single sample (x_i, y_i) is given by:

$$\ell(\hat{y}_i, y_i; \Theta, W) = -\sum_{c=1}^{C} Y_{ic} \log\left(\hat{Y}_{ic}\right).$$

The partial derivatives of $\ell(\hat{y}_i, y_i; \Theta, W)$ with respect to θ_k and W_{pq} are:

$$\frac{\partial \ell(\hat{y}_i, y_i; \Theta, W)}{\partial \theta_k} = \sum_{c=1}^C \left(\hat{Y}_{ic} - Y_{ic} \right) \left(\tilde{A}^k X W \right)_{ic},$$

$$\frac{\partial \ell(\hat{y}_i, y_i; \Theta, W)}{\partial W_{pq}} = \left(\hat{Y}_{iq} - Y_{iq}\right) \left(\sum_{k=0}^{K} \theta_k \tilde{A}^k X\right)_{ip}$$

Proof. We begin with the following definitions:

$$Z = \sum_{k=0}^{K} \theta_k \tilde{A}^k X W, \quad \hat{Y}_{ic} = \frac{e^{Z_{ic}}}{\sum_{c'=1}^{C} e^{Z_{ic'}}}, \quad \ell(\hat{y}_i, y_i; \Theta, W) = -\sum_{c=1}^{C} Y_{ic} \log(\hat{Y}_{ic}),$$

where $Z \in \mathbb{R}^{n \times C}$ represents the feature matrix after aggregation, \hat{Y}_{ic} is the softmax output for class c, and $\ell(\hat{y}_i, y_i; \Theta, W)$ is the cross-entropy loss for sample (x_i, y_i) . We then compute the following partial derivatives:

$$\frac{\partial \ell(\hat{y}_i, y_i; \Theta, W)}{\partial \hat{Y}_{ic}} = -\frac{Y_{ic}}{\hat{Y}_{ic}},$$
$$\frac{\partial \hat{Y}_{ic}}{\partial Z_{ic'}} = \hat{Y}_{ic}(\delta_{cc'} - \hat{Y}_{ic'}),$$

where $\delta_{cc'}$ is the Kronecker delta, which equals 1 if c = c' and 0 otherwise.

(1) **Gradient w.r.t.** θ_k : We have:

$$\frac{\partial Z_{ic}}{\partial \theta_k} = (\tilde{A}^k X W)_{ic}$$

By the chain rule of gradient, we have:

$$\begin{aligned} \frac{\partial \ell(\hat{y}_i, y_i; \Theta, W)}{\partial \theta_k} &= -\sum_{c=1}^C \frac{\ell(\hat{y}_i, y_i; \Theta, W)}{\partial \hat{Y}_{ic}} \cdot \left(\sum_{c'=1}^C \frac{\partial \hat{Y}_{ic}}{\partial Z_{ic'}} \cdot \frac{\partial Z_{ic'}}{\partial \theta_k}\right) \\ &= -\sum_{c=1}^C \frac{Y_{ic}}{\hat{Y}_{ic}} \cdot \left(\sum_{c'=1}^C \hat{Y}_{ic} \left(\delta_{cc'} - \hat{Y}_{ic'}\right) \cdot \left(\tilde{A}^k X W\right)_{ic'}\right) \\ &= -\sum_{c=1}^C Y_{ic} \cdot \left(\sum_{c'=1}^C \left(\delta_{cc'} - \hat{Y}_{ic'}\right) \cdot \left(\tilde{A}^k X W\right)_{ic'}\right) \\ &= -\sum_{c=1}^C Y_{ic} \cdot \left(\left(\tilde{A}^k X W\right)_{ic} - \sum_{c'=1}^C \hat{Y}_{ic'} \left(\tilde{A}^k X W\right)_{ic'}\right) \\ &= -\sum_{c=1}^C Y_{ic} \left(\tilde{A}^k X W\right)_{ic} + \sum_{c'=1}^C \hat{Y}_{ic'} \left(\tilde{A}^k X W\right)_{ic'} \end{aligned}$$

(2) Gradient w.r.t. W: Based on the following

$$Z_{ic} = \sum_{k=0}^{K} \theta_k \sum_{j=1}^{n} (\tilde{A}^k)_{ij} \sum_{r=1}^{f} X_{jr} W_{rc},$$

we have

$$\frac{\partial Z_{ic}}{\partial W_{pq}} = \sum_{k=0}^{K} \theta_k \sum_{j=1}^{n} (\tilde{A}^k)_{ij} X_{jp} \delta_{cq} = \delta_{cq} \sum_{k=0}^{K} \theta_k \left(\tilde{A}^k X \right)_{ip}$$

where δ_{cq} is the Kronecker delta, which is 1 if c = q and 0 otherwise. Then, by the chain rule of gradient, we have:

$$\begin{split} \frac{\partial \ell(\hat{y}_{i}, y_{i}; \Theta, W)}{\partial W_{pq}} &= -\sum_{c=1}^{C} \frac{\ell(\hat{y}_{i}, y_{i}; \Theta, W)}{\partial \hat{Y}_{ic}} \cdot \left(\sum_{c'=1}^{C} \frac{\partial \hat{Y}_{ic}}{\partial Z_{ic'}} \cdot \frac{\partial Z_{ic'}}{\partial W_{pq}}\right) \\ &= -\sum_{c=1}^{C} \frac{Y_{ic}}{\hat{Y}_{ic}} \cdot \left(\sum_{c'=1}^{C} \hat{Y}_{ic} \left(\delta_{cc'} - \hat{Y}_{ic'}\right) \cdot \left(\delta_{c'q} \sum_{k=0}^{K} \theta_k \left(\tilde{A}^k X\right)_{ip}\right)\right) \\ &= -\sum_{c=1}^{C} Y_{ic} \cdot \left(\sum_{c'=1}^{C} \left(\delta_{cc'} - \hat{Y}_{ic'}\right) \cdot \left(\delta_{c'q} \sum_{k=0}^{K} \theta_k \left(\tilde{A}^k X\right)_{ip}\right)\right) \\ &= -\sum_{c=1}^{C} Y_{ic} \cdot \left(\left(\delta_{cq} \sum_{k=0}^{K} \theta_k \left(\tilde{A}^k X\right)_{ip}\right) - \sum_{c'=1}^{C} \hat{Y}_{ic'} \left(\delta_{c'q} \sum_{k=0}^{K} \theta_k \left(\tilde{A}^k X\right)_{ip}\right)\right) \\ &= -\sum_{c=1}^{C} Y_{ic} \left(\delta_{cq} \sum_{k=0}^{K} \theta_k \left(\tilde{A}^k X\right)_{ip}\right) + \sum_{c'=1}^{C} \hat{Y}_{ic'} \left(\delta_{c'q} \sum_{k=0}^{K} \theta_k \left(\tilde{A}^k X\right)_{ip}\right) \\ &= \sum_{c=1}^{C} \left(\hat{Y}_{ic} - Y_{ic}\right) \left(\delta_{cq} \sum_{k=0}^{K} \theta_k \left(\tilde{A}^k X\right)_{ip}\right) \\ &= \sum_{c=1}^{C} \sum_{k=0}^{K} \theta_k \delta_{cq} \left(\hat{Y}_{ic} - Y_{ic}\right) \left(\tilde{A}^k X\right)_{ip} \\ &= \left(\hat{Y}_{iq} - Y_{iq}\right) \left(\sum_{k=0}^{K} \theta_k \tilde{A}^k X\right)_{ip} . \end{split}$$

1009 B.2 PROOF OF THEOREM 8

Theorem 8. Consider a spectral GNN Ψ with polynomial order K trained using full-batch gradient descent for T iterations with a learning rate η on a training dataset S_m sampled from a graph $G \sim cSBM(n, f, \Pi, Q)$ with average node degree $d \ll n$. When $n \to \infty$ and $K \ll n$, under Assumptions 1, 2, and 4, for any node v_i , $i \in [n]$, and for a constant $\epsilon \in (0, 1)$, with probability at least $1 - \epsilon$, Ψ satisfies γ -uniform transductive stability, where $\gamma = r\beta$ and

$$\beta = \frac{1}{\epsilon} \left[O\left(\mathbb{E}\left[\| \hat{y}_i - y_i \|_F^2 \right] \right) + O\left(\| \pi_{y_i}^\top \pi_{y_i} + \Sigma_{y_i} \|_F \right) \right]$$

$$+ O\left(\sum_{k=1}^{K}\sum_{j=1}^{n}\mathbb{E}[A_{ij}^{k}] \left\|\sum_{t=1}^{n}\mathbb{E}[A_{it}^{k}]\pi_{y_{j}}^{\top}\pi_{y_{t}} + \mathbb{E}[A_{ij}^{k}]\Sigma_{y_{j}}\right\|_{F}\right)\right].$$

Proof. Any spectral GNN described in Eq. (1) with a linear feature transformation function and a polynomial basis expanded on a normalized graph matrix can be expressed in the following form:

$$\hat{Y} = \operatorname{softmax}\left(\sum_{k=0}^{K} \theta_k \tilde{A}^k X W\right),\tag{9}$$

where $\tilde{A} = D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$ is the normalized graph adjacency matrix, and D is the diagonal degree matrix. Here, $Y \in \mathbb{R}^{n \times C}$ denotes the ground truth node label matrix.

(1) Walk counting: According to Definition 7, we have

$$\mathbb{E}[A_{ij}^k] = \sum_{p \in P_{ij}^k} \prod_{(v,v') \in p} Q_{yy'}$$

(2) Feature expectation: Since we have $G \sim cSBM(n, f, \Pi, Q)$, node classes have a uniform prior $y_i \sim \mathcal{U}(1, C)$. Thus,

$$\mathbb{E} [XW]_{ij} = \frac{1}{n} \sum_{u=1}^{n} (\pi_{y_u} W)_j$$

= $\frac{1}{n} \sum_{u=1}^{n} \sum_{c=1}^{C} p(y_u = c)(\pi_c W)_j$
= $\frac{1}{n} \sum_{u=1}^{n} \sum_{c=1}^{C} \frac{1}{C} (\pi_c W)_j$
= $\frac{1}{C} \sum_{c=1}^{C} (\pi_c W)_j.$ (10)

– When $k \ge 1$, we have

$$\mathbb{E}[(\tilde{A}^k X W)_{ij}] = \mathbb{E}\left[\tilde{A}^k_{i:}\right] \mathbb{E}\left[(X W)_{:j}\right]$$
$$= \sum_{s=1}^n \mathbb{E}\left[\tilde{A}^k_{is}\right] \mathbb{E}\left[(X W)_{sj}\right]$$
$$= \sum_{s=1}^n \mathbb{E}\left[\tilde{A}^k_{is}\right] \cdot \frac{1}{C} \sum_{c=1}^C (\pi_c W)_j$$

- When k = 0, we have

$$\mathbb{E}[(IXW)_{ij}] = \mathbb{E}\left[(XW)_{ij}\right]$$
$$= \frac{1}{C}\sum_{c=1}^{C} (\pi_c W)_j.$$

Thus,

$$\mathbb{E}[(\tilde{A}^{k}XW)_{ij}] = \begin{cases} \frac{1}{C}\sum_{c=1}^{C}(\pi_{c}W)_{j}, & k = 0\\ \sum_{s=1}^{n}\mathbb{E}\left[\tilde{A}_{is}^{k}\right] \cdot \frac{1}{C}\sum_{c=1}^{C}(\pi_{c}W)_{j}, & k \ge 1 \end{cases}$$
(11)

(3) **Gradient Norm**: The gradient norm can be relaxed as:

$$\mathbb{E}\left[\|\nabla \ell(\hat{y}_{i}, y_{i}; \Theta, W)\|_{F}\right] \leq \mathbb{E}\left[\|\nabla \ell(\hat{y}_{i}, y_{i}; \Theta, W)\|_{\ell_{1}}\right]$$
$$= \sum_{k=0}^{K} \mathbb{E}\left[\|\frac{\partial \ell(\hat{y}_{i}, y_{i}; \Theta, W)}{\partial \theta_{k}}\|_{\ell_{1}}\right] + \mathbb{E}\left[\|\frac{\partial \ell(\hat{y}_{i}, y_{i}; \Theta, W)}{\partial W}\|_{\ell_{1}}\right].$$
(12)

According to Eq. (9) and Lemma 23, we get the partial derivatives $\frac{\partial \ell(\hat{y}_i, y_i; \Theta, W)}{\partial \theta_k}$ and $\frac{\partial \ell(\hat{y}_i, y_i; \Theta, W)}{\partial W_{pq}}$. Specially, when m = 1, we get the partial derivatives of empirical loss on training sample (x_i, y_i) :

$$\frac{\partial \ell(\hat{y}_i, y_i; \Theta, W)}{\partial \theta_k} = \sum_{c=1}^C \left(\hat{Y}_{ic} - Y_{ic} \right) \left(\tilde{A}^k X W \right)_{ic}$$
(13)

$$\frac{\partial \ell(\hat{y}_i, y_i; \Theta, W)}{\partial W_{pq}} = \left(\hat{Y}_{iq} - Y_{iq}\right) \left(\sum_{k=0}^K \theta_k \tilde{A}^k X\right)_{ip} \tag{14}$$

Thus, we have:

$$\mathbb{E}\left[\left\|\frac{\partial\ell(\hat{y}_{i}, y_{i}; \Theta, W)}{\partial\theta_{k}}\right\|_{\ell_{1}}\right] = \mathbb{E}\left[\left|\sum_{c=1}^{C} \left(\hat{Y}_{ic} - Y_{ic}\right) \left(\tilde{A}^{k}XW\right)_{ic}\right|\right]$$

$$\leq \sum_{c=1}^{C} \mathbb{E}\left[\left|\left(\hat{Y}_{ic} - Y_{ic}\right) \left(\tilde{A}^{k}XW\right)_{ic}\right|\right]$$

$$= \sum_{c=1}^{C} \mathbb{E}\left[\left|\left(\hat{Y}_{ic} - Y_{ic}\right) \left|\cdot\right| \left(\tilde{A}^{k}XW\right)_{ic}\right|\right]$$

$$\leq \sum_{c=1}^{C} \frac{1}{2}\left(\mathbb{E}\left[\left|\left(\hat{Y}_{ic} - Y_{ic}\right)^{2}\right] + \mathbb{E}\left[\left(\tilde{A}^{k}XW\right)_{ic}^{2}\right]\right)$$

$$(Lemma\ 28)$$

$$= \frac{1}{2}\left(\mathbb{E}\left[\left\|\hat{y}_{i} - y_{i}\right\|_{F}^{2}\right] + \mathbb{E}\left[\left\|\tilde{A}_{i:}^{k}XW\right\|_{F}^{2}\right]\right);$$

$$\mathbb{E}\left[\left\|\frac{\partial\ell(\hat{y}_{i}, y_{i}; \Theta, W)}{\partial W}\right\|_{\ell_{1}}\right] = \sum_{p=1}^{f} \sum_{q=1}^{C} \mathbb{E}\left[\left\|\frac{\partial\ell(\hat{y}_{i}, y_{i}; \Theta, W)}{\partial W_{pq}}\right\|_{\ell_{1}}\right]$$

$$= \sum_{p=1}^{f} \sum_{q=1}^{C} \mathbb{E}\left[\left|\left(\hat{Y}_{iq} - Y_{iq}\right)\left(\sum_{k=0}^{K} \theta_{k}\tilde{A}^{k}X\right)_{ip}\right|\right]$$

$$\leq \sum_{p=1}^{f} \sum_{k=0}^{K} |\theta_{k}| \left(\sum_{q=1}^{C} \mathbb{E}\left[\left|\left(\hat{Y}_{iq} - Y_{iq}\right)\right| \cdot \left|\left(\tilde{A}^{k}X\right)_{ip}\right|\right]\right)$$

$$\leq \sum_{p=1}^{f} \sum_{k=0}^{K} |\theta_{k}| \left(\mathbb{E}\left[\sum_{q=1}^{C} \left(\hat{Y}_{iq} - Y_{iq}\right)^{2}\right] + \mathbb{E}\left[\sum_{q=1}^{C} \left(\tilde{A}^{k}X\right)_{ip}^{2}\right]\right)$$

$$(Lemma 28)$$

$$= \sum_{p=1}^{f} \sum_{k=0}^{K} |\theta_{k}| \left(\mathbb{E}\left[\|\hat{y}_{i} - y_{i}\|_{F}^{2}\right] + C\mathbb{E}\left[\left|\tilde{A}^{k}X\right|_{ip}^{2}\right]\right)$$

$$= \sum_{k=0}^{K} |\theta_{k}| \left(f \cdot \mathbb{E}\left[\|\hat{y}_{i} - y_{i}\|_{F}^{2}\right] + C\mathbb{E}\left[\|\tilde{A}^{k}_{i}:X\|_{F}^{2}\right]\right).$$
(16)

1128 (4) **Expectation** $\mathbb{E}\left[\|\tilde{A}_{i:}^{k}XW\|_{F}^{2}\right]$ and $\mathbb{E}\left[\|\tilde{A}_{i:}^{k}X\|_{F}^{2}\right]$: For sparse graphs *G* with adjacency 1129 matrix *A*, when $d \ll n$ (average degree much smaller than the number of nodes) and 1130 $k \ll n$ (walk length much smaller than the number of nodes), A_{ia}^{k} and A_{ib}^{k} can be treated 1131 as independent variables due to the following reasons: (a). The overlap between walks of 1132 different lengths is limited due to the sparsity of the graph. (b). The existence of a *k*-length 1133 walk between two nodes is a rare event when $k \ll n$, and the joint occurrences of two rare 1136 events can be neglected. (c). When $d \ll n$, the variance of A_{ij}^{k} is negligible compared to

 $\left(\mathbb{E}[A_{i_i}^k]\right)^2$. Thus, by Eq. (11), we derive the following for the case $k \ge 1$: $\mathbb{E}[\|\tilde{A}_{i:}^{k}XW\|_{F}^{2}] = \mathbb{E}\left[\sum_{c=1}^{C} \left(\sum_{s=1}^{n} \tilde{A}_{is}^{k} \left(XW\right)_{sc}\right)^{2}\right]$ $= \mathbb{E}\left[\sum_{i=1}^{C}\sum_{i=1}^{n}\sum_{t=1}^{n}\tilde{A}_{is}^{k}\tilde{A}_{it}^{k}\left(XW\right)_{sc}\left(XW\right)_{tc}\right]$ $=\sum_{i=1}^{C}\sum_{c,t=1}^{n}\mathbb{E}\left[\tilde{A}_{is}^{k}\tilde{A}_{it}^{k}\left(XW\right)_{sc}\left(XW\right)_{tc}\right]$ $=\sum_{i=1}^{C}\sum_{s=t-1}^{n}\mathbb{E}\left[\tilde{A}_{is}^{k}\right]\cdot\mathbb{E}\left[\tilde{A}_{it}^{k}\right]\cdot\mathbb{E}\left[(XW)_{sc}\left(XW\right)_{tc}\right]$ $=\sum_{i=1}^{C}\sum_{j=1}^{n}\mathbb{E}\left[\tilde{A}_{is}^{k}\right]\left[\sum_{t=1,t\neq s}\mathbb{E}\left[\tilde{A}_{it}^{k}\right]\cdot\mathbb{E}\left[(XW)_{sc}\left(XW\right)_{tc}\right]\right]$ $+ \mathbb{E}\left[\tilde{A}_{is}^{k}\right] \cdot \mathbb{E}\left[\left(XW\right)_{sc}^{2}\right]$ $= \frac{1}{d^{2k}} \sum_{c=1}^{C} \sum_{s=1}^{n} \mathbb{E}\left[\tilde{A}_{is}^{k}\right] \left[\sum_{t=1,t\neq c}^{n} \mathbb{E}\left[\tilde{A}_{it}^{k}\right] \cdot \left(\pi_{y_{s}}W\right)_{c} \cdot \left(\pi_{y_{t}}W\right)_{c}\right]$ $+ \mathbb{E}\left[\tilde{A}_{is}^{k}\right] \cdot W_{:c}^{\top} \left(\pi_{y_{s}}^{\top} \pi_{y_{s}} + \Sigma_{y_{s}}\right) W_{:c}\right].$

When k = 0, we have:

$$\mathbb{E}\left[\|\tilde{A}_{i:}^{k}XW\|_{F}^{2}\right] = \mathbb{E}\left[\|X_{i:}W\|_{F}^{2}\right]$$
$$= \mathbb{E}\left[\sum_{c=1}^{C} (XW)_{ic}^{2}\right]$$
$$= \sum_{c=1}^{C} W_{:c}^{\top} \left(\pi_{y_{i}}^{\top}\pi_{y_{i}} + \Sigma_{y_{i}}\right) W_{:c}.$$

Thus, we obtain

$$\mathbb{E}\left[\|\tilde{A}_{i:}^{k}XW\|_{F}^{2}\right] = \begin{cases} \sum_{c=1}^{C} W_{:c}^{\top} \left(\pi_{y_{i}}^{\top}\pi_{y_{k}}+\Sigma_{y_{i}}\right)W_{:c}, k=0\\ \frac{1}{d^{2k}}\sum_{c=1}^{C}\sum_{s=1}^{n}\mathbb{E}\left[\tilde{A}_{is}^{k}\right]\left[\sum_{t=1,t\neq s}^{n}\mathbb{E}\left[\tilde{A}_{it}^{k}\right]\cdot\left(\pi_{y_{s}}W\right)_{c}\cdot\left(\pi_{y_{t}}W\right)_{c}\\ +\mathbb{E}\left[\tilde{A}_{is}^{k}\right]\cdot W_{:c}^{\top} \left(\pi_{y_{s}}^{\top}\pi_{y_{s}}+\Sigma_{y_{s}}\right)W_{:c}\right], k\geq 1 \end{cases}$$

$$(17)$$

Similarly, by Eq. (10), we have

$$\mathbb{E}\left[\|\tilde{A}_{i:}^{k}X\|_{F}^{2}\right] = \begin{cases} \sum_{c=1}^{C} I_{:c}^{\top} \left(\pi_{y_{i}}^{\top}\pi_{y_{k}}+\Sigma_{y_{i}}\right) I_{:c}, k = 0\\ \frac{1}{d^{2k}} \sum_{q=1}^{f} \sum_{s=1}^{n} \mathbb{E}\left[\tilde{A}_{is}^{k}\right] \left[\sum_{t=1, t\neq s}^{n} \mathbb{E}\left[\tilde{A}_{it}^{k}\right] \cdot \pi_{y_{s},q} \cdot \pi_{y_{t},q} \right. \\ \left. + \mathbb{E}\left[\tilde{A}_{is}^{k}\right] \cdot I_{:q}^{\top} \left(\pi_{y_{s}}^{\top}\pi_{y_{s}}+\Sigma_{y_{s}}\right) I_{:q}\right], k \ge 1 \end{cases}$$
(18)

By substituting Eq. (17) into Eq. (15), Eq. (18) into Eq. (16), and combining Eq. (15) and Eq. (16) into Eq. (12), we obtain:

$$\begin{split} \mathbb{E} \left[\| \nabla \ell(\hat{y}_{i}, y_{i}; \Theta, W) \|_{F} \right] \\ &\leq \frac{1}{2} \left(\mathbb{E} \left[\| \hat{y}_{i} - y_{i} \|_{F}^{2} \right] + \sum_{c=1}^{C} W_{c}^{\top} \left(\pi_{y_{i}}^{\top} \pi_{y_{i}} + \Sigma_{y_{i}} \right) W_{c} \right) \\ &+ \sum_{k=1}^{K} \frac{1}{2} \left[\mathbb{E} \left[\| \hat{y}_{i} - y_{i} \|_{F}^{2} \right] + \frac{1}{d^{2k}} \sum_{c=1}^{C} \sum_{s=1}^{n} \mathbb{E} \left[\bar{\lambda}_{s}^{k} \right] \\ &\cdot \left[\sum_{i=1, t \neq s}^{K} \mathbb{E} \left[\bar{\lambda}_{t}^{k} \right] \left(\pi_{y_{i}} W_{v} \right)_{c} \left(\pi_{y_{i}} W_{v} \right)_{c} + \mathbb{E} \left[\bar{\lambda}_{ts}^{k} \right] \cdot W_{c}^{\top} \left(\pi_{y_{i}}^{\top} \pi_{y_{s}} + \Sigma_{y_{s}} \right) W_{s} \right] \right] \\ &+ \left| \theta_{0} \right| \left(f \cdot \mathbb{E} \left[\| \hat{y}_{i} - y_{i} \|_{F}^{2} \right] + C \sum_{c=q}^{f} J_{i}^{\top} \left(\pi_{y_{i}}^{\top} \pi_{y_{i}} + \Sigma_{y_{i}} \right) L_{q} \right) \\ &+ \sum_{k=1}^{K} \left[\theta_{k} \right] \left[f \cdot \mathbb{E} \left[\| \hat{y}_{i} - y_{i} \|_{F}^{2} \right] + C \frac{1}{d^{2k}} \sum_{c=1}^{C} \sum_{s=1}^{n} \mathbb{E} \left[\bar{\lambda}_{s}^{k} \right] \\ &\cdot \left[\sum_{i=1, t \neq s}^{K} \mathbb{E} \left[\bar{\lambda}_{t}^{k} \right] \cdot \pi_{y_{s}, q} \cdot \pi_{y_{s}, q} + \mathbb{E} \left[\bar{\lambda}_{t}^{k} \right] \cdot I_{i}^{T} \left(\pi_{y_{i}}^{\top} \pi_{y_{s}} + \Sigma_{y_{s}} \right) L_{q} \right] \right] \\ &= \left(\frac{K + 1}{2} + f \sum_{k=0}^{K} \left| \theta_{k} \right| \right) \mathbb{E} \left[\| \hat{y}_{i} - y_{i} \|_{F}^{2} \right] \\ &+ \frac{1}{2} \sum_{c=1}^{C} W_{c}^{\top} \left(\pi_{y_{i}}^{T} \pi_{y_{s}} + \Sigma_{y_{s}} \right) W_{c} + \left| \theta_{0} \right| C \sum_{c=1}^{C} I_{c}^{\top} \left(\pi_{y_{i}}^{T} \pi_{y_{s}} + \Sigma_{y_{s}} \right) L_{c} \right] \\ &+ \frac{1}{2} \sum_{c=1}^{C} W_{c}^{\top} \left(\pi_{y_{i}}^{T} \pi_{y_{s}} + \Sigma_{y_{s}} \right) W_{c} + \left| \theta_{0} \right| C \sum_{c=1}^{C} I_{c}^{\top} \left(\pi_{y_{i}}^{T} \pi_{y_{s}} + \Sigma_{y_{s}} \right) W_{c} \right] \\ &+ \sum_{k=1}^{K} \frac{1}{d^{2k}} \sum_{c=1}^{C} \sum_{s=1}^{K} \mathbb{E} \left[\tilde{\lambda}_{s}^{k} \right] \\ &\cdot \left[\sum_{t=1, k \neq s}^{L} \mathbb{E} \left[\tilde{\lambda}_{k}^{k} \right] \left| \cdot \left(\pi_{y_{s}} W_{y_{s}} \cdot \left(\pi_{y_{s}} W_{y_{s}} + \Sigma_{y_{s}} \right) I_{c} \right] \\ \\ &+ \sum_{k=1}^{K} \frac{1}{d^{2k}} \mathbb{E} \left[\tilde{\lambda}_{i} \right] \mathbb{E} \left[\left| \tilde{\lambda}_{i} - y_{i} \right| \right]_{c}^{k} \right] \\ \\ &= \left(\frac{K + 1}{2} + f \sum_{k=0}^{K} \left| \theta_{k} \right| \right) \mathbb{E} \left[\left| \tilde{y}_{i} - y_{k} \right| \right]_{c}^{k} \right] \\ \\ &+ \left[\sum_{t=1, k \neq s}^{K} \mathbb{E} \left[\tilde{\lambda}_{k}^{k} \right] \left| \pi_{y_{s}} \pi_{y_{s}} \pi_{y_{s}} \pi_{y_{s}} + \pi_{y_{s}} \right] H_{c} \\ \\ &+ \left[\sum_{t=1, k \neq s}^{K} \mathbb{E} \left[\frac{1}{2} \mathbb{E} \left[\tilde{\lambda}_{k}^{k} \right] \right] \left| \frac{W_{c}^{\top}} \left(\sum_{c=1}^{K} \left[\tilde{\lambda}_{k}^{k} \right] \left| \frac{\pi}{$$

Under Assumption 4, we can further simplify and relax the expression to:

$$\mathbb{E}\left[\left\|\nabla\ell(\hat{y}_{i}, y_{i}; \Theta, W)\right\|_{F}\right] \leq \left(\frac{K+1}{2} + f\sum_{k=0}^{K} B_{\Theta}\right) \mathbb{E}\left[\left\|\hat{y}_{i} - y_{i}\right\|_{F}^{2}\right] \\
+ \frac{1}{2}Tr\left(W^{T}\left(\pi_{y_{i}}^{\top}\pi_{y_{i}} + \Sigma_{y_{i}}\right)W\right) + B_{\Theta}CTr\left(\pi_{y_{i}}^{\top}\pi_{y_{i}} + \Sigma_{y_{i}}\right) \\
+ \sum_{k=1}^{K} \frac{1}{d^{2k}}\sum_{s=1}^{n} \mathbb{E}\left[\tilde{A}_{is}^{k}\right]Tr\left(\sum_{\substack{t=1\\t\neq s}}^{n} \mathbb{E}\left[\tilde{A}_{it}^{k}\right]\pi_{y_{s}}^{\top}\pi_{y_{t}} + \mathbb{E}\left[\tilde{A}_{is}^{k}\right]\left(\pi_{y_{s}}^{\top}\pi_{y_{s}} + \Sigma_{y_{s}}\right)\right) \\
+ \sum_{k=1}^{K} \frac{CB_{\Theta}}{d^{2k}}\sum_{s=1}^{n} \mathbb{E}\left[\tilde{A}_{is}^{k}\right]\left[\sum_{\substack{t=1\\t\neq s}}^{n} \mathbb{E}\left[\tilde{A}_{it}^{k}\right]Tr\left(\pi_{y_{s}}^{\top}\pi_{y_{t}}\right) + \mathbb{E}\left[\tilde{A}_{is}^{k}\right]Tr\left((\pi_{y_{s}}^{\top}\pi_{y_{s}} + \Sigma_{y_{s}})\right)\right] \\
\leq \left(\frac{K+1}{2} + fB_{\Theta}(K+1)\right)\mathbb{E}\left[\|\hat{y}_{i} - y_{i}\|_{F}^{2}\right] \\
+ \left(\frac{B_{W}^{2}}{2} + B_{\Theta}C\right)Tr\left(\pi_{y_{i}}^{\top}\pi_{y_{i}} + \Sigma_{y_{i}}\right) \\
+ \sum_{k=1}^{K} \frac{1+CB_{\Theta}}{d^{2k}}\sum_{j=1}^{n} \mathbb{E}\left[A_{ij}^{k}\right]\operatorname{Tr}\left(\sum_{\substack{t=1\\t\neq j}}^{n} \mathbb{E}\left[A_{it}^{k}\right]\pi_{y_{j}}^{\top}\pi_{y_{t}} + \mathbb{E}\left[A_{ij}^{k}\right]\left(\pi_{y_{j}}^{\top}\pi_{y_{j}} + \Sigma_{y_{j}}\right)\right). \tag{19}$$

With Lemma 22, we rewrite it as

$$\mathbb{E}\left[\|\nabla \ell(\hat{y}_{i}, y_{i}; \Theta, W)\|_{F}\right] \leq O\left(\mathbb{E}\left[\|\hat{y}_{i} - y_{i}\|_{F}^{2}\right]\right) + O\left(\|\pi_{y_{i}}^{\top}\pi_{y_{i}} + \Sigma_{y_{i}}\|_{F}\right) \\ + O\left(\sum_{k=1}^{K}\sum_{j=1}^{n}\mathbb{E}\left[A_{ij}^{k}\right]\|\sum_{t=1}^{n}\mathbb{E}\left[A_{it}^{k}\right]\pi_{y_{j}}^{\top}\pi_{y_{t}} + \mathbb{E}\left[A_{ij}^{k}\right]\Sigma_{y_{j}}\|_{F}\right)$$

$$(20)$$

(5) Concentration Bound: By Jensen's inequality (Lemma 19), we have:

$$\mathbb{E}[\|\nabla \ell(\hat{y}_i, y_i; \Theta, W)\|_F]^2 \le \mathbb{E}[\|\nabla \ell(\hat{y}_i, y_i; \Theta, W)\|_F^2],$$

which implies:

$$\mathbb{E}[\|\nabla \ell(\hat{y}_i, y_i; \Theta, W)\|_F] \le \sqrt{\mathbb{E}[\|\nabla \ell(\hat{y}_i, y_i; \Theta, W)\|_F^2]}.$$
(21)

Using Markov's inequality (Lemma 20), for a positive constant *a*, we have:

$$\mathbb{P}(\|\nabla \ell(\hat{y}_i, y_i; \Theta, W)\|_F \ge a) \le \frac{\mathbb{E}[\|\nabla \ell(\hat{y}_i, y_i; \Theta, W)\|_F]}{a} = \epsilon.$$
(22)

Solving for *a*, we obtain:

$$a = \frac{\mathbb{E}[\|\nabla \ell(\hat{y}_i, y_i; \Theta, W)\|_F]}{\epsilon}.$$
(23)

Therefore, combining Eq. (20), Eq. (21), Eq. (22), and Eq. (23), with probability at least $1 - \epsilon$, we have:

$$\|\nabla \ell(\hat{y}_i, y_i; \Theta, W)\|_F \le \beta = \frac{1}{\epsilon} \mathbb{E}[\|\nabla \ell(\hat{y}_i, y_i; \Theta, W)\|_F].$$

When $\|\nabla \ell(\hat{y}_i, y_i; \Theta, W)\|_F \leq \beta$, according to Theorem 6, spectral GNNs on graphs $G \sim cSBM(n, f, \Pi, Q)$ have γ -uniform transductive stability. We rewrite this in Big-O notation

as:

$$\gamma = r \cdot \beta, \quad \beta = \frac{1}{\epsilon} \left[O\left(\mathbb{E} \left[\| \hat{y}_i - y_i \|_F^2 \right] \right) + O\left(\| \pi_{y_i}^\top \pi_{y_i} + \Sigma_{y_i} \|_F \right) \right]$$

+
$$O\left(\sum_{k=1}^{K}\sum_{j=1}^{n}\mathbb{E}[A_{ij}^{k}]\left\|\sum_{t=1}^{n}\mathbb{E}[A_{it}^{k}]\pi_{y_{j}}^{\top}\pi_{y_{t}} + \mathbb{E}[A_{ij}^{k}]\Sigma_{y_{j}}\right\|_{F}\right)\right],$$

where r is the same constant as in Theorem 6.

C GENERALIZATION ERROR BOUND OF SPECTRAL GNNS

We derive the generalization error bound of spectral GNNs based on their uniform transductive stability. Subsequently, we analyze how the number of training samples affects the generalization error bound.

We begin by introducing two lemmas for this proof.

Lemma 24 (Inequality for permutation (El-Yaniv & Pechyony, 2006)). Let Z be a random permutation vector. Let f(Z) be an (m,q)-symmetric permutation function satisfying $||f(Z) - f(Z^{ij})|| \le \beta$ for all $i \in I_1^m$ and $j \in I_{m+1}^{m+q}$. Define $H_2(n) \triangleq \sum_{i=1}^n \frac{1}{i^2}$ and $\Omega(m,q) \triangleq q^2 (H_2(m+q) - H_2(q))$. Then

$$\mathbb{P}\left(f(Z) - \mathbb{E}[f(Z)] \geq \epsilon\right) \leq \exp\left(-\frac{\epsilon^2}{2\beta^2 \Omega(m,q)}\right)$$

Lemma 25 (Risk and uniform stability (El-Yaniv & Pechyony, 2006)). Given any training set S_m and test set \mathcal{D}_u , the following holds:

$$\mathbb{E}\left[\mathcal{L}_{\mathcal{D}_u}(\Theta, W) - \mathcal{L}_{S_m}(\Theta, W)\right] = \mathbb{E}\left[\Delta(i, j, i, i)\right], \quad i \in I_1^m, \ j \in I_{m+1}^{m+q},$$

where $\Delta(i, j, i, i)$ denotes the change in the loss of sample (x_i, y_i) when the model is trained on two datasets: one with (x_i, y_i) in the training set and another with (x_j, y_j) from the test set exchanged with (x_i, y_i) .

1327 C.1 PROOF OF THEOREM 9

Theorem 9 (Generalization Error Bound). Let $H_2(n) \triangleq \sum_{i=1}^n \frac{1}{i^2}$ and $\Omega(m, n - m) \triangleq (n - m)^2 (H_2(n) - H_2(n - m))$. For $\epsilon \in (0, 1)$, if a spectral GNN is γ -uniform transductive stability with probability $1 - \epsilon$, then under Assumption 3, for $\delta \in (0, 1)$, with probability at least $(1 - \delta)(1 - \epsilon)$, the generalization error $\mathcal{L}_{\mathcal{D}_u}(\Theta, W) - \mathcal{L}_{S_m}(\Theta, W)$ is upper-bounded by:

$$\gamma + \left(2\gamma + \left(\frac{1}{n-m} + \frac{1}{m}\right)(B_{\ell} - \gamma)\right)\sqrt{2\Omega(m, n-m)\log\frac{1}{\delta}}.$$
(3)

1336 Proof. Let $\Delta(i, j, s, t) \triangleq \ell(\hat{y}_t, y_t; \Theta_{ij}^T, W_{ij}^T) - \ell(\hat{y}_s, y_s; \Theta^T, W^T)$, where Θ_{ij}^T, W_{ij}^T are model parameters trained on dataset S_m^{ij} for T iterations and Θ^T, W^T are model parameters trained on dataset S_m . We first derive a bound on the permutation stability of the function $f(S_m, \mathcal{D}_u) \triangleq \mathcal{L}_{\mathcal{D}_u}(\Theta, W) - \mathcal{L}_{S_m}(\Theta, W)$, where q = n - m. The bound is given as:

$$\left\| \left(\mathcal{L}_{\mathcal{D}_{u}}(\Theta, W) - \mathcal{L}_{S_{m}}(\Theta, W) \right) - \left(\mathcal{L}_{\mathcal{D}_{u}}(\Theta^{ij}, W^{ij}) - \mathcal{L}_{S_{m}}(\Theta^{ij}, W^{ij}) \right) \right\| \leq \frac{1}{q} \sum_{r=m+1, r \neq j}^{m+q} \left\| \Delta(i, j, r, r) \right\| + \frac{1}{q} \left\| \Delta(i, j, i, j) \right\| + \frac{1}{m} \sum_{r=1, r \neq i}^{m} \left\| \Delta(i, j, r, r) \right\| + \frac{1}{m} \left\| \Delta(i, j, j, i) \right\|.$$

$$(24)$$

According to Definition 5, Assumption 3 and Theorem 6, we have

$$\max_{1 \le r \le m+q} \|\Delta(i,j,r,r)\| \le \gamma = \alpha_1 \sum_{t=1}^T (1+\eta\alpha_2)^{t-1} \frac{2\eta\beta}{m}$$

1349

1341

1300 1301

1296

1297 1298

1299

1302 1303

1304 1305

1307

1308

1312

1318 1319

1321 1322

Thus, Eq. (24) is bounded: $\| (\mathcal{L}_{\mathcal{D}_{u}}(\Theta, W) - \mathcal{L}_{S_{m}}(\Theta, W)) - (\mathcal{L}_{\mathcal{D}_{u}}(\Theta^{ij}, W^{ij}) - \mathcal{L}_{S_{m}}(\Theta^{ij}, W^{ij})) \|$ $\leq \frac{q-1}{q}\gamma + \frac{1}{q}B_{\ell} + \frac{m-1}{m}\gamma + \frac{1}{m}B_{\ell}$ $=\left(\frac{q-1}{a}+\frac{m-1}{m}\right)\gamma+\left(\frac{1}{a}+\frac{1}{m}\right)B_{\ell}$ Let $\tilde{\beta} = \left(\frac{q-1}{q} + \frac{m-1}{m}\right)\gamma + \left(\frac{1}{q} + \frac{1}{m}\right)B_{\ell}$. Then, the function $f(S_m, \mathcal{D}_u) = \mathcal{L}_{\mathcal{D}_u}(\Theta, W) - \mathcal{L}_{\mathcal{D}_u}(\Theta, W)$ $\mathcal{L}_{S_m}(\Theta, W)$ has transductive stability $\tilde{\beta}$. Apply Lemma 24 to $f(S_m, \mathcal{D}_u)$, equating the bound to δ $\exp\left(-\frac{\epsilon^2}{2\tilde{\beta}^2\Omega(m,q)}\right) = \delta,$ we get $\epsilon = \tilde{\beta} \sqrt{2\Omega(m,q) \log \frac{1}{s}}$ Therefore, we obtain that the probability at least $1 - \delta$ that $\mathcal{L}_{\mathcal{D}_{u}}(\Theta, W) - \mathcal{L}_{S_{m}}(\Theta, W) - \mathbb{E}\left[\mathcal{L}_{\mathcal{D}_{u}}(\Theta^{ij}, W^{ij}) - \mathcal{L}_{S_{m}}(\Theta^{ij}, W^{ij})\right] \leq \tilde{\beta}\sqrt{2\Omega(m, q)\log\frac{1}{s}}$ (25) According to Lemma 25 and Theorem 6, for $1 \le i \le m, m+1 \le j \le n$, we have $\mathbb{E}\left[\mathcal{L}_{\mathcal{D}_{u}}(\Theta^{ij}, W^{ij}) - \mathcal{L}_{S_{m}}(\Theta^{ij}, W^{ij})\right] = \mathbb{E}\left[\Delta(i, j, i, i)\right] \le \gamma$ (26)Substitute Eq. (26) into Eq. (25), we get: $\mathcal{L}_{\mathcal{D}_u}(\Theta, W) \le \mathcal{L}_{S_m}(\Theta, W) + \gamma + \tilde{\beta} \sqrt{2\Omega(m, q) \log \frac{1}{\delta}}$ It is rewritten as: $\mathcal{L}_{\mathcal{D}_u}(\Theta, W) - \mathcal{L}_{S_m}(\Theta, W) \le \gamma + \left(2\gamma + \left(\frac{1}{n-m} + \frac{1}{m}\right)(B_\ell - \gamma)\right)\sqrt{2\Omega(m, n-m)\log\frac{1}{\delta}}$ C.2 PROOF OF LEMMA 10 **Lemma 10.** Consider a spectral GNN trained with m samples as $n \to \infty$. As the sample size m increases, the generalization error bound decreases at the rate $O(1/m) + O(\sqrt{2\log(1/\delta)/m})$. *Proof.* The proof is proceeded in three steps: (1) $\frac{1}{n-m}$ is neglectable compared with $\frac{1}{m}$: As m < n, we have m = o(n).

$$\frac{m}{n-m} = \frac{m}{n} \cdot \frac{1}{1-\frac{m}{n}} \text{ when } n \to \infty, \text{ we have } \frac{m}{n} \to 0 \text{ and } \frac{1}{1-\frac{m}{n}} \to 1 \text{ as } m = o(n). \text{ Therefore,}$$
$$\lim_{n \to \infty} \frac{m}{n-m} = 0, \lim_{n \to \infty} \frac{\frac{1}{n-m}}{\frac{1}{m}} = 0;$$

which indicates

$$\frac{1}{n-m} = o(\frac{1}{m})$$

(2) $\Omega(m, n-m)$ increase with m: As $H_2(k) = \sum_{i=1}^{k} \frac{1}{i^2}$, we have:

$$H_2(n) - H_2(n-m) = \sum_{i=n-m+1}^n \frac{1}{i^2}$$

As

$$m \cdot \frac{1}{n^2} \leq \sum_{i=n-m+1}^n \frac{1}{i^2} \leq m \cdot \frac{1}{(n-m)^2},$$
we have

$$m \cdot \frac{1}{n^2} \leq H_2(n) - H_2(n-m) \leq m \cdot \frac{1}{(n-m)^2}.$$
Multiple two sides with $(n-m)^2$, we have:

$$(n-m)^2 \cdot m \cdot \frac{1}{n^2} \leq (n-m)^2 \cdot (H_2(n) - H_2(n-m)) \leq (n-m)^2 \cdot m \cdot \frac{1}{(n-m)^2},$$
As $\Omega(m, n-m) = (n-m)^2 (H_2(n) - H_2(n-m))$, we have:

$$\frac{m(n-m)^2}{n^2} \leq \Omega(m, n-m) \leq m$$
i.e.,

$$\Omega(m, n-m) = O(m)$$
(3) Generalization error bound: From Theorem 6, we have $\gamma = O(\frac{1}{m})$. Therefore:

$$\gamma + \left(2\gamma + \left(\frac{1}{n-m} + \frac{1}{m}\right)(B_t - \gamma)\right)\sqrt{2\Omega(m, n-m)\log\frac{1}{\delta}}$$

$$= O(\frac{1}{m}) + \left(O(\frac{1}{m}) + \left(o(\frac{1}{m}) + \frac{1}{m}\right)\left(B_t - O(\frac{1}{m})\right)\right)\sqrt{2O(m)\log\frac{1}{\delta}}$$

$$= O(\frac{1}{m}) + B_tO(\frac{1}{m}O(m^{1/2})\sqrt{2\log\frac{1}{\delta}}$$

$$= O\left(\frac{1}{m} + B_t\sqrt{\frac{2\log(\frac{1}{\delta})}{m}}\right)$$
In summary, the decay rate of generalization error bound is $O\left(\frac{1}{m} + O(\sqrt{\frac{2\log(\frac{1}{\delta})}{m}}\right)$.
Proposition 11. For a spectral GNN Ψ_5 with a non-linear feature transformation function $f_W(X) = \delta(XW)$, assume the gradient norm bound β in Theorem 9 is the same for Ψ and Ψ_5 . If $Lip(\hat{\sigma}) \leq 1$
and $Sm(\hat{\sigma}) \leq 1$, then $\gamma_{\phi} \leq \gamma$, where γ_{ϕ} is the stability of Ψ_{ϕ} .

$$\Psi(M,X) = \sigma(\sum_{k=0}^{K} \tilde{A}^{k} X W)$$

1455 and spectral GNN $\Psi_{\tilde{\sigma}}$:

$$\Psi_{\tilde{\sigma}}(M,X) = \sigma(\sum_{k=0}^{K} \tilde{\sigma}\left(\tilde{A}^{k}XW\right) \Big)$$

 $\left\|\Psi_{\tilde{\sigma}}(\Theta_1, W_1) - \Psi_{\tilde{\sigma}}(\Theta_2, W_2)\right\|$

(1) **Lipschitz Constant:** For any two sets of parameters (Θ_1, W_1) and (Θ_2, W_2) , we have:

$$= \|\sigma(\sum_{i=0}^{K} \theta_{1k} \tilde{\sigma}(\tilde{A}^{k} X W_{1})) - \sigma(\sum_{i=0}^{K} \theta_{2k} \tilde{\sigma}(\tilde{A}^{k} X W_{2}))\|$$

$$\leq Lip(\sigma) \| \sum_{i=0}^{K} \theta_{1k} \tilde{\sigma}(\tilde{A}^k X W_1) - \sum_{i=0}^{K} \theta_{2k} \tilde{\sigma}(\tilde{A}^k X W_2) \|$$

$$\leq Lip(\sigma) \|\sum_{\substack{i=0\\K}}^{K} (\theta_{1k} - \theta_{2k}) \tilde{\sigma}(\tilde{A}^k X W_1) + \sum_{\substack{i=0\\K}}^{K} \theta_{2k} (\tilde{\sigma}(\tilde{A}^k X W_1) - \tilde{\sigma}(\tilde{A}^k X W_2)) \|$$

$$\leq Lip(\sigma)(\|\sum_{i=0}^{K}(\theta_{1k}-\theta_{2k})\tilde{\sigma}(\tilde{A}^{k}XW_{1})\|+\|\sum_{i=0}^{K}\theta_{2k}(\tilde{\sigma}(\tilde{A}^{k}XW_{1})-\tilde{\sigma}(\tilde{A}^{k}XW_{2}))\|)$$

$$\leq Lip(\sigma)(\|\Theta_1 - \Theta_2\|_F \cdot \max_k \|\tilde{\sigma}(\tilde{A}^k X W_1)\|_2 + \|\Theta_2\|_F \cdot Lip(\tilde{\sigma}) \cdot \max_k \|\tilde{A}^k X (W_1 - W_2)\|_2)$$

Since $Lip(\tilde{\sigma}) \leq 1$, we have:

$$\|\Psi_{\tilde{\sigma}}(\Theta_1, W_1) - \Psi_{\tilde{\sigma}}(\Theta_2, W_2)\| \le Lip(\sigma)(\|\Theta_1 - \Theta_2\|_F \cdot C_1 + \|\Theta_2\|_F \cdot \|W_1 - W_2\|_F \cdot C_2)$$

where C_1, C_2 are constants depending on X, A. The right hand side is identical to the bound we get for Ψ without the activation function. Therefore, $Lip(\Psi_{\tilde{\sigma}}) \leq Lip(\Psi)$.

(2) **Smoothness Constant:** We first get partial derivatives of Ψ and $\Psi_{\tilde{\sigma}}$ with respect to θ_k :

$$\begin{split} \frac{\partial \Psi}{\partial \theta_k} &= \nabla \sigma(\sum_{i=0}^K \theta_i \tilde{A}^i X W) \cdot \tilde{A}^k X W \\ \frac{\partial \Psi_{\tilde{\sigma}}}{\partial \theta_k} &= \nabla \sigma(\sum_{i=0}^K \theta_i \tilde{\sigma}(\tilde{A}^i X W)) \cdot \tilde{\sigma}(\tilde{A}^k X W) \end{split}$$

Partial derivatives of Ψ and $\Psi_{\tilde{\sigma}}$ with respect to W are:

$$\frac{\partial \Psi}{\partial W} = \nabla \sigma (\sum_{i=0}^{K} \theta_i \tilde{A}^i X W) \cdot \sum_{i=0}^{K} \theta_i \tilde{A}^i X$$
$$\frac{\partial \Psi_{\tilde{\sigma}}}{\partial W} = \nabla \sigma (\sum_{i=0}^{K} \theta_i \tilde{\sigma} (\tilde{A}^i X W)) \cdot \sum_{i=0}^{K} \theta_i \nabla \tilde{\sigma} (\tilde{A}^i X W) \cdot \tilde{A}^i X$$

The Lipschitz constant of these gradients determine the smoothness. For $\Psi_{\tilde{\sigma}}$, the additional $\tilde{\sigma}$ and $\nabla \tilde{\sigma}$ terms do not increase the Lipschitz constant of the gradient as $Lip(\tilde{\sigma}) \leq 1, Smt(\tilde{\sigma}) \leq 1$:

- $\tilde{\sigma}$ is 1-Lipschitz, so it doesn't increase the difference between inputs.

- $\nabla \tilde{\sigma}$ is bounded by 1 (since $Smt(\tilde{\sigma}) \leq 1$), so it doesn't amplify the gradient.

Therefore, the Lipschitz constant of the gradient of $\Psi_{\tilde{\sigma}}$ is at most equal to that of Ψ , i.e., :

$$Smt(\Psi_{\tilde{\sigma}}) \leq Smt(\Psi)$$

(3) Stability $\gamma_{\tilde{\sigma}}$: According to Theorem 6, we have $\alpha_1 = Lip(\ell) \cdot Lip(\Psi)$ and $\alpha_2 = Smt(\Psi)\beta_1 + Smt(\ell)Lip(\Psi)\beta_2$. Thus, we have a smaller $\alpha_{1\tilde{\sigma}}, \alpha_{2\tilde{\sigma}}$ as $Lip(\Psi_{\tilde{\sigma}}) \leq Lip(\Psi)$ and $\Psi_{\tilde{\sigma}}) \leq Smt(\Psi)$. Then, we have $r_{\tilde{\sigma}} \leq r$.

As β is the same for $\Psi_{\tilde{\sigma}}$ and Ψ and $\gamma_{\tilde{\gamma}} = \beta r_{\tilde{\sigma}}, \gamma = \beta r$, we have

$$\gamma_{ ilde{\sigma}} \leq \gamma$$

¹⁵¹² D STABILITY ON SPECIALIZED CSBM

We establish the uniform transductive stability of spectral GNNs with the architecture described in Eq. (1) on graphs generated by $G \sim cSBM(n, f, \mu, u, \lambda, d)$. Theorem 13 is a specialized form of Theorem 8, where the data model is specialized to nodes with binary classes and Gaussian node features.

1518 We present lemmas essential for calculating node features after graph convolution in Appendix D.1. 1519 Then we derive the expectation and variance of the element A_{ij}^k in the adjacency matrix and the ex-1520 pectation and variance of node features after graph convolution in Appendix D.2. Using these results, 1521 we derive the transductive stability of spectral GNNs on the specialized data model in Appendix D.3.

1523 D.1 LEMMAS FOR THEOREM 13

Lemma 26 (Poisson Limit Theorem (Durrett, 2019)). For each n, let $X_{n,m}$, $1 \le m \le n$, be independent random variables with $\mathbb{P}(X_{n,m} = 1) = p_{n,m}$ and $\mathbb{P}(X_{n,m} = 0) = 1 - p_{n,m}$. Suppose:

1.
$$\sum_{m=1}^{n} p_{n,m} \to \lambda \in (0,\infty)$$
, and

1527

1522

2.
$$\max_{1 \le m \le n} p_{n,m} \to 0$$
,

then if $S_n = \sum_{m=1}^n X_{n,m}$, S_n converges in distribution to a Poisson random variable with mean λ , i.e., $S_n \sim \text{Poisson}(\lambda)$.

Remark. The Poisson limit theorem, also known as the law of rare events, states that the total number of events will follow a Poisson distribution if the probability of occurrence of an event is small in each trial but there are a large number of trials. For more details, see (Durrett, 2019).

Lemma 27 (Binomial Coefficient Approximation). When $n \gg k$, the binomial coefficient $\binom{n}{k}$ can be approximated as:

$$\binom{n}{k} \approx \frac{n^k}{k!}.$$

1540 *Proof.* The binomial coefficient is defined as:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Expanding the factorial terms for n!, we have:

$$\binom{n}{k} = \frac{n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-k+1) \cdot (n-k)!}{k! \cdot (n-k)!}.$$

Canceling the (n - k)! terms in the numerator and denominator gives:

$$\binom{n}{k} = \frac{n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-k+1)}{k!}.$$

When $n \gg k$, the terms $(n-1), (n-2), \ldots, (n-k+1)$ are approximately equal to n. Therefore, the product simplifies as:

 $n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-k+1) \approx n^k.$

Substituting this approximation, we obtain:

$$\binom{n}{k} \approx \frac{n^k}{k!}, \quad \text{for } n \gg k$$

Lemma 28 (Expectations of $\mathbb{E}[AB]$). For any two random variables A and B, the following inequality holds:

$$\mathbb{E}[AB] \le \frac{1}{2}\mathbb{E}[A^2] + \frac{1}{2}\mathbb{E}[B^2].$$

1541 1542 1543

1537

1538 1539

1544

1546 1547 1548

1554

1555

1556 1557

Proof. Define a function f(t) for any real number t:

$$f(t) = \mathbb{E}\left[\left(\frac{1}{\sqrt{2}}A - \frac{t}{\sqrt{2}}B\right)^2\right]$$

Since f(t) is the expectation of a squared term, it is non-negative for any real t, i.e., $f(t) \ge 0$. Expanding f(t), we get:

$$f(t) = \mathbb{E}\left[\frac{1}{2}A^2 - tAB + \frac{t^2}{2}B^2\right].$$

Rearranging terms, this becomes:

$$f(t) = \frac{1}{2}\mathbb{E}[A^2] - t\mathbb{E}[AB] + \frac{t^2}{2}\mathbb{E}[B^2].$$

Since $f(t) \ge 0$ for all t, substitute t = 1 to simplify:

$$f(1) = \frac{1}{2}\mathbb{E}[A^2] - \mathbb{E}[AB] + \frac{1}{2}\mathbb{E}[B^2] \ge 0.$$

Rearranging this inequality gives:

$$\mathbb{E}[AB] \le \frac{1}{2}\mathbb{E}[A^2] + \frac{1}{2}\mathbb{E}[B^2].$$

Thus, the result holds.

Lemma 29 (Monotonicity of $g(\lambda)$). The function $g(\lambda) = \left(\left(d + \lambda\sqrt{d}\right)^k - \left(d - \lambda\sqrt{d}\right)^k\right)^2$ satisfies the following properties:

- It monotonically increases on $\lambda \in [0, \sqrt{d}]$.
- It monotonically decreases on $\lambda \in [-\sqrt{d}, 0]$.
- It achieves its minimum value when $\lambda = 0$.

Proof. First, observe that $g(\lambda)$ is an even function because:

$$g(-\lambda) = \left(\left(d - \lambda \sqrt{d} \right)^k - \left(d + \lambda \sqrt{d} \right)^k \right)^2 = \left(\left(d + \lambda \sqrt{d} \right)^k - \left(d - \lambda \sqrt{d} \right)^k \right)^2 = g(\lambda).$$

Thus, it is symmetric about $\lambda = 0$. Therefore, we only need to analyze its behavior for $\lambda \ge 0$, and the results for $\lambda < 0$ follow by symmetry.

Define:

 $A = d + \lambda \sqrt{d}, \quad B = d - \lambda \sqrt{d}.$

Then, the function $g(\lambda)$ can be rewritten as:

$$g(\lambda) = (A^k - B^k)^2.$$

Using the chain rule:

$$g'(\lambda) = 2(A^k - B^k) \cdot \frac{\partial}{\partial \lambda} (A^k - B^k)$$

The derivative of $A^k - B^k$ with respect to λ is:

$$\frac{\partial}{\partial \lambda} (A^k - B^k) = k \sqrt{d} (A^{k-1} + B^{k-1}).$$

Thus:

$$g'(\lambda) = 2k\sqrt{d}(A^k - B^k)(A^{k-1} + B^{k-1}).$$

When $\lambda \ge 0$, $A \ge B > 0$, we have: $A^k - B^k > 0, \quad A^{k-1} + B^{k-1} > 0.$ Therefore: $q'(\lambda) \ge 0$ for $\lambda \ge 0$. This shows that $q(\lambda)$ is monotonically increasing on $[0, \sqrt{d}]$. By the even symmetry of $q(\lambda)$, we have: $q'(-\lambda) = -q'(\lambda).$ Since $g'(\lambda) \ge 0$ for $\lambda \ge 0$, it follows that $g'(\lambda) \le 0$ for $\lambda \le 0$. Thus, $g(\lambda)$ monotonically decreases on $[-\sqrt{d}, 0]$. At $\lambda = 0$, A = B = d, we have: $a(0) = (d^k - d^k)^2 = 0.$ Thus, $q(\lambda)$ achieves its minimum value when $\lambda = 0$. The proof is complete. **Lemma 30** (Monotonicity of $g(\lambda)$). The function $g(\lambda) = \sum_{s=1}^{k} \left(d + \lambda \sqrt{d} \right)^{k-s} \left(d - \lambda \sqrt{d} \right)^{s}$ satis-fies the following properties: • It monotonically decreases on $\lambda \in [0, \sqrt{d}]$. • It monotonically increases on $\lambda \in [-\sqrt{d}, 0]$. • It achieves its maximum value at $\lambda = 0$. *Proof.* The function $g(\lambda)$ can be rewritten as: $g(\lambda) = (2d)^k - \left(d + \lambda\sqrt{d}\right)^k - \left(d - \lambda\sqrt{d}\right)^k$ Differentiate $g(\lambda)$ with respect to λ : $g'(\lambda) = k\sqrt{d} \left[\left(d - \lambda\sqrt{d} \right)^{k-1} - \left(d + \lambda\sqrt{d} \right)^{k-1} \right].$ • When $\lambda > 0$, we have $\left(d - \lambda \sqrt{d}\right) < \left(d + \lambda \sqrt{d}\right)$. This implies $\left(d - \lambda \sqrt{d}\right)^{k-1} < d^{k-1}$ $\left(d + \lambda\sqrt{d}\right)^{k-1}$ and $g'(\lambda) < 0$. Therefore, $g(\lambda)$ is strictly decreasing on $\lambda \in [0, \sqrt{d}]$. • When $\lambda < 0$, we have $\left(d - \lambda\sqrt{d}\right) > \left(d + \lambda\sqrt{d}\right)$. This implies $\left(d - \lambda\sqrt{d}\right)^{k-1} >$ $\left(d + \lambda \sqrt{d}\right)^{k-1}$ and $g'(\lambda) > 0$. Therefore, $g(\lambda)$ is strictly increasing on $\lambda \in [-\sqrt{d}, 0]$. • When $\lambda = 0$, we have $\left(d + \lambda\sqrt{d}\right) = \left(d - \lambda\sqrt{d}\right) = d$ and $g(0) = (2d)^k - 2d^k$. This is the maximum value of $q(\lambda)$, as $q'(\lambda)$ changes sign from positive to negative at $\lambda = 0$. The proof is complete.

1674 D.2 EXPECTATION AND VARIANCE OF A_{ij}^k and $(\tilde{A}^k X W)_{ij}$

Theorem 31 (Expectation and Variance of A_{ij}^k). Let the graph be generated by $G \sim cSBM(n, f, \mu, u, \lambda, d)$. For $n \to \infty$, $d \ll n$, and $2 \le k \le k^2 \ll n$, the number of k-length walks connecting nodes v_i and v_j follows a Poisson distribution, $Poisson(\rho')$, where:

$$\rho' = \begin{cases} \rho_{=} = \frac{(k-1)!}{n \cdot 2^{k-1}} \sum_{a=2}^{k+1} O\left(\sum_{\substack{s=\min(2,2(a-1),2(k+1-a))\\s=\min(2,2(a-2),2(k+1-a))}} c_{in}^{k-s} \cdot c_{out}^{s}\right), & \text{if } y_i = y_j \\ \rho_{\neq} = \frac{(k-1)!}{n \cdot 2^{k-1}} \sum_{a=1}^{k} O\left(\sum_{\substack{s=1\\s=1}}^{\min(2a-1,2(k-a)+1)} c_{in}^{k-s} \cdot c_{out}^{s}\right), & \text{if } y_i \neq y_j \end{cases}$$

The expectation and variance are:

$$\mathbb{E}[A_{ij}^k] = \rho', \quad \mathbb{V}\left[A_{ij}^k\right] = \rho'.$$

1689 When k = 1, the 1-length walk (i.e., a single edge) connecting nodes v_i and v_j follows a Bernoulli 1690 distribution, Ber(p), where:

$$p = \begin{cases} p_{=} = \frac{c_{in}}{n}, & \text{if } y_i = y_j, \\ p_{\neq} = \frac{c_{out}}{n}, & \text{if } y_i \neq y_j. \end{cases}$$

The expectation and variance in this case are:

$$\mathbb{E}[A_{ij}^k] = p, \quad \mathbb{V}\left[A_{ij}^k\right] = p(1-p)$$

Proof. According to Definition 7, the expectation of A_{ij}^k , the number of k-length walks between nodes v_i and v_j , is given by:

$$\mathbb{E}[A_{ij}^k] = \sum_{p \in \mathcal{P}_{ij}^k} \prod_{(v,v') \in p} Q_{yy'},$$

where \mathcal{P}_{ij}^k represents the set of all k-length walks between v_i and v_j , and $Q_{yy'}$ is the probability of an edge between nodes v and v', conditioned on their respective classes y and y'.

When C = 2 (binary classes), the edge probabilities $Q_{yy'}$ are:

$$Q_{yy'} = \begin{cases} \frac{c_{in}}{n}, & \text{if } y = y', \\ \frac{c_{out}}{n}, & \text{if } y \neq y', \end{cases}$$

where c_{in} and c_{out} are the intra-class and inter-class edge probabilities, respectively.

1711 Case 1: $y_i = y_j$ and $k \ge 2$

1712For nodes v_i and v_j sharing the same class y_i , we consider walks of length k that include a nodes1713sharing the class y_i and k + 1 - a nodes with different classes. Since v_i and v_j both belong to class1714 y_i , we need to choose a - 2 nodes from the same cluster and k - a + 1 nodes from the other cluster.1715The total number of ways to arrange these nodes in a walk is (k - 1)!, as there are k - 1 positions to1716fill. The probability of each edge depends on whether it connects nodes of the same class or different1717classes.

1718

1679

1681

1683

1687

1693

1695 1696

1698

1699 1700

1701

1710

1719 1720 The number of ways to choose the nodes is as follows:

• Choose a-2 nodes from $\frac{n}{2}-2$ nodes in the same cluster: $\binom{n}{2}-2}{a-2}$.

• Choose k - a + 1 nodes from $\frac{n}{2}$ nodes in the other cluster: $\binom{\frac{n}{2}}{k-a+1}$.

1722 1723

The number of ways to arrange these nodes is (k - 1)!. Considering the class changes in the *k*-length walk, let *s* denote the number of walk class changes:

1726 1727

• If $2a \ge k+1$, then $s_{\min} = \min(2, 2(k+1-a))$ and $s_{\max} = 2(k+1-a)$.

• If $2a \le k+1$, then $s_{\min} = \min(2, 2(a-2))$ and $s_{\max} = 2(a-1)$.

The probability of a k-length walk with
$$a$$
 nodes sharing the same class as v_i is:

$$p_k^a(v_i, v_j \mid y_i = y_j) = \begin{cases} \left(\frac{n}{2}-2\right) \cdot \left(\frac{n}{2}\right) \cdot (k-1)! \cdot \left(\sum_{\substack{s=\min(2,2(k+1-a))\\s=\min(2,2(k+1-a))}}^{2(k+1-a)} \left(\frac{c_{in}}{n}\right)^{k-s} \cdot \left(\frac{c_{out}}{n}\right)^s\right), \text{ if } 2a \ge k+1; \\ \left(\frac{n}{2}-2\right) \cdot \left(\frac{n}{2}\right) \cdot (k-1)! \cdot \left(\sum_{\substack{s=\min(2,2(a-2))\\s=\min(2,2(a-2))}}^{2(a-1)} \left(\frac{c_{in}}{n}\right)^{k-s} \cdot \left(\frac{c_{out}}{n}\right)^s\right), \text{ if } 2a < k+1. \end{cases}$$

The total probability of a k-length walk connecting v_i and v_j when $y_i = y_j$ is: $p_k(v_i, v_j \mid y_i = y_j)$

$$=\sum_{a=2}^{\frac{k+1}{2}} {\binom{\frac{n}{2}-2}{a-2}} \cdot {\binom{\frac{n}{2}}{k-a+1}} \cdot (k-1)! \cdot \sum_{s=\min(2,2(a-2))}^{2(a-1)} {\binom{\frac{c_{in}}{n}}{s}}^{k-s} \cdot {\binom{\frac{c_{out}}{n}}{s}}^{s} + \sum_{\frac{k+1}{2}}^{k+1} {\binom{\frac{n}{2}-2}{a-2}} \cdot {\binom{\frac{n}{2}}{k-a+1}} \cdot (k-1)! \cdot \sum_{s=\min(2,2(k+1-a))}^{2(k+1-a)} {\binom{\frac{c_{in}}{n}}{s}}^{k-s} \cdot {\binom{\frac{c_{out}}{n}}{s}}^{s}.$$
(27)

Using Lemma 27, the binomial coefficients simplify as:

$$\binom{\frac{n}{2}-2}{a-2} = \frac{\left(\frac{n}{2}-2\right)^{a-2}}{(a-2)!}, \quad \binom{\frac{n}{2}}{k-a+1} = \frac{\left(\frac{n}{2}\right)^{k-a+1}}{(k-a+1)!}$$

Thus, we have

$$\binom{\frac{n}{2}-2}{a-2} \cdot \binom{\frac{n}{2}}{k-a+1} \cdot (k-1)! = O\left(\left(\frac{n}{2}\right)^{k-1} \cdot \binom{k-1}{a-2}\right).$$

Substituting into Eq. (27), we get:

$$p_{k}(v_{i}, v_{j} \mid y_{i} = y_{j}) = \sum_{a=2}^{\frac{k+1}{2}} O\left(\left(\frac{n}{2}\right)^{k-1} \cdot \binom{k-1}{a-2}\right) \cdot \left(\sum_{s=\min(2,2(a-2))}^{2(a-1)} \left(\frac{c_{in}}{n}\right)^{k-s} \cdot \left(\frac{c_{out}}{n}\right)^{s}\right) + \sum_{\frac{k+1}{2}}^{k+1} O\left(\left(\frac{n}{2}\right)^{k-1} \cdot \binom{k-1}{a-2}\right) \cdot \left(\sum_{s=\min(2,2(a-2))}^{2(k+1-a)} \left(\frac{c_{in}}{n}\right)^{k-s} \cdot \left(\frac{c_{out}}{n}\right)^{s}\right) = \frac{1}{n \cdot 2^{k-1}} \sum_{a=2}^{\frac{k+1}{2}} O\left(\left(\binom{k-1}{a-2} \cdot \left(\sum_{s=\min(2,2(a-2))}^{2(a-1)} c_{in}^{k-s} \cdot c_{out}^{s}\right)\right)\right) + \frac{1}{n \cdot 2^{k-1}} \sum_{\frac{k+1}{2}}^{k+1} O\left(\left(\binom{k-1}{a-2} \cdot \left(\sum_{s=\min(2,2(a-2))}^{2(k+1-a)} c_{in}^{k-s} \cdot c_{out}^{s}\right)\right)\right) = \frac{(k-1)!}{n \cdot 2^{k-1}} \sum_{a=2}^{k+1} O\left(\sum_{s=\min(2,2(a-2),2(k+1-a))}^{\min(2(a-1),2(k+1-a))} c_{in}^{k-s} \cdot c_{out}^{s}\right).$$

$$(28)$$

Case 2: $y_i \neq y_j$ and $k \geq 2$

For nodes v_i and v_j , when they belong to different classes $(y_i \neq y_j)$, we count the walks of length k where there are a nodes of the same class as v_i and k + 1 - a nodes of the class of v_j . We need to choose a - 1 nodes from the same cluster as v_i and k - a nodes from the cluster of v_j . The total number of ways to arrange these nodes in a walk is (k - 2)!, as there are k - 2 positions to fill.

The number of ways to choose the nodes is:

- Choose a-1 nodes from $\frac{n}{2}-1$ nodes in the same cluster as $v_i: \begin{pmatrix} \frac{n}{2}-1\\ a-1 \end{pmatrix}$;
- Choose k a nodes from $\frac{n}{2} 1$ nodes in the same cluster as $v_j: \binom{n}{2} 1 \binom{n}{k-a}$.

The number of ways to arrange these nodes is (k - 1)!. Considering the class changes in the k-length walk, let s denote the number of class changes. The minimum and maximum values of s are:

- If $2a \ge k+1$, then $s_{\min} = 1$ and $s_{\max} = 2(k-a) + 1$;
- If $2a \le k + 1$, then $s_{\min} = 1$ and $s_{\max} = 2a 1$.

The probability of a k-length walk with a nodes sharing the same class as v_i is:

$$p_k^a(v_i, v_j | y_i \neq y_j) = \\ \begin{cases} \left(\frac{n}{2} - 1\right) \cdot \left(\frac{n}{2} - 1\right) \cdot (k - 1)! \cdot \left(\sum_{s=1}^{2(k-a)+1} \left(\frac{c_{in}}{n}\right)^{k-s} \cdot \left(\frac{c_{out}}{n}\right)^s\right), & \text{if } 2a \ge k+1 \\ \left(\frac{n}{2} - 1\right) \cdot \left(\frac{n}{2} - 1\right) \cdot (k - 1)! \cdot \left(\sum_{s=1}^{2a-1} \left(\frac{c_{in}}{n}\right)^{k-s} \cdot \left(\frac{c_{out}}{n}\right)^s\right), & \text{if } 2a < k+1 \end{cases}$$

The total probability of a k-length walk connecting v_i and v_j when $y_i \neq y_j$ is:

$$p_{k}(v_{i}, v_{j}|y_{i} \neq y_{j}) = \sum_{a=1}^{\frac{k+1}{2}} \binom{n}{2} - 1}{a-1} \cdot \binom{n}{k-a} \cdot (k-1)! \cdot \left(\sum_{s=1}^{2a-1} \left(\frac{c_{in}}{n}\right)^{k-s} \cdot \left(\frac{c_{out}}{n}\right)^{s}\right) + \sum_{a=\frac{k+1}{2}}^{k} \binom{n}{2} - 1}{a-1} \cdot \binom{n}{k-a} \cdot (k-1)! \cdot \left(\sum_{s=1}^{2(k-a)+1} \left(\frac{c_{in}}{n}\right)^{k-s} \cdot \left(\frac{c_{out}}{n}\right)^{s}\right)$$
(29)

When $k \ll n$, using Lemma 27, we have

$$\binom{\frac{n}{2}-1}{a-1} = \frac{(\frac{n}{2}-1)^{a-1}}{(a-1)!}, \binom{\frac{n}{2}-1}{k-a} = \frac{(\frac{n}{2}-1)^{k-a}}{(k-a)!}.$$

Then:

$$\binom{\frac{n}{2}-1}{a-1} \cdot \binom{\frac{n}{2}-1}{k-a} \cdot (k-1)! = \frac{(\frac{n}{2}-1)^{a-1}}{(a-1)!} \cdot \frac{(\frac{n}{2}-1)^{k-a}}{(k-a)!} \cdot (k-1)!$$
$$= \left(\frac{n}{2}-1\right)^{k-1} \cdot \binom{k-1}{a-1}$$

We simplify Eq. (29) to

$$p_{k}(v_{i}, v_{j}|y_{i} \neq y_{j}) = \sum_{a=1}^{k+1} \left(\frac{n}{2} - 1\right)^{k-1} \cdot \binom{k-1}{a-1} \cdot \left(\sum_{s=1}^{2a-1} \left(\frac{c_{in}}{n}\right)^{k-s} \cdot \left(\frac{c_{out}}{n}\right)^{s}\right) \\ + \sum_{a=\frac{k+1}{2}}^{k} \left(\frac{n}{2} - 1\right)^{k-1} \cdot \binom{k-1}{a-1} \cdot \left(\sum_{s=1}^{2(k-a)+1} \left(\frac{c_{in}}{n}\right)^{k-s} \cdot \left(\frac{c_{out}}{n}\right)^{s}\right) \\ = \frac{1}{n \cdot 2^{k-1}} \sum_{a=1}^{\frac{k+1}{2}} O\left(\binom{k-1}{a-1} \cdot \left(\sum_{s=1}^{2a-1} c_{in}^{k-s} \cdot c_{out}^{s}\right)\right) + \frac{1}{n \cdot 2^{k-1}} \sum_{a=\frac{k+1}{2}}^{k} O\left(\binom{k-1}{a-1} \cdot \left(\sum_{s=1}^{2(k-a)+1} c_{in}^{k-s} \cdot c_{out}^{s}\right)\right) \right) \\ = \frac{(k-1)!}{n \cdot 2^{k-1}} \sum_{a=1}^{k} O\left(\binom{\min(2a-1,2(k-a)+1)}{2s-1} c_{in}^{k-s} \cdot c_{out}^{s}\right).$$
(30)

When k = 1, we have $A^k = A$ and

Case 3: k = 1

In the following, we show that when a graph is sparse and k is small, A_{ij}^k can be modeled using a Poisson distribution.

 $\mathbb{E}[A_{ij}] = \begin{cases} \frac{c_{in}}{n}, & \text{if } y_i = y_j, \\ \frac{c_{out}}{n}, & \text{if } y_i \neq y_j. \end{cases}$

- For sparse graphs with a large number of nodes $(n \to \infty, d \ll n)$, the probability of a potential k-length walk existing is very small.
- When $k \ll n$, the dependence between two different k-length walks is negligible.
- The number of potential k-length walks is large $(n^{k-1} \text{ as } n \to \infty)$.

Thus, according to Lemma 26, the number of k-length walks connecting nodes v_i and v_j , A_{ij}^k , follows a Poisson distribution $Poisson(\rho')$ when $k \ge 2$, where:

$$\rho' = \begin{cases} \rho_{=} = \frac{(k-1)!}{n \cdot 2^{k-1}} \sum_{a=2}^{k+1} O\left(\sum_{\substack{s=\min(2,2(a-1),2(k+1-a))\\s=\min(2,2(a-2),2(k+1-a))}}^{\min(2(a-1),2(k+1-a))} c_{in}^{k-s} \cdot c_{out}^{s}\right), & \text{if } y_{i} = y_{j}, \\ \rho_{\neq} = \frac{(k-1)!}{n \cdot 2^{k-1}} \sum_{a=1}^{k} O\left(\sum_{\substack{s=1\\s=1}}^{\min(2a-1,2(k-a)+1)} c_{in}^{k-s} \cdot c_{out}^{s}\right), & \text{if } y_{i} \neq y_{j}. \end{cases}$$

When k = 1, $p(v_i, v_j)$ follows a Bernoulli distribution Ber(p), where:

$$p = \begin{cases} \frac{c_{in}}{n}, & \text{if } y_i = y_j, \\ \frac{c_{out}}{n}, & \text{if } y_i \neq y_j. \end{cases}$$

This completes the proof.

Theorem 32 (Expectation and variance of $(\tilde{A}^k X W)_{ij}$). Given a graph generated by $G \sim$ $cSBM(n, f, \mu, u, \lambda, d)$. The input node feature matrix is X and the normalized adjacency ma-trix is \tilde{A} . The k-th power matrix \tilde{A}^k is applied to obtain a new feature matrix $\tilde{A}^k XW$, then the expectation and the variance of $(\tilde{A}^k X W)_{ij}$ are as follows:

For k = 1*:*

$$\mathbb{E}\left[(\tilde{A}^k X W)_{ij} \right] = \frac{1}{2d} \sqrt{\frac{\mu}{n}} \left(c_{in} - c_{out} \right) y_i u W_{:j}$$

$$\mathbb{V}\left[(\tilde{A}^k X W)_{ij} \right] = \frac{1}{2 \cdot d^2} \left(d - \frac{c_{in}^2 + c_{out}^2}{n} \right) \cdot \left(\frac{\mu}{n} \left(u W_{:j} \right)^2 + \frac{||W_{:j}||_2^2}{f} \right)$$

For $k \geq 2$:

$$\mathbb{E}\left[(\tilde{A}^k X W)_{ij}\right] = \frac{(k-1)!}{d^k \cdot 2^{k-1}} O\left(c_{in}^k - c_{out}^k\right) \sqrt{\frac{\mu}{n}} y_i u W_{:j}$$

$$\mathbb{V}\left[(\tilde{A}^{k}XW)_{ij} \right] = \frac{(k-1)!}{d^{2k} \cdot 2^{k}} \left(\sum_{a=2}^{k+1} O\left(\sum_{s=\min(2,2(a-2),2(k+1-a))}^{\min(2(a-1),2(k+1-a))} c_{in}^{k-s} \cdot c_{out}^{s} \right) + \sum_{a=1}^{k} O\left(\sum_{s=1}^{\min(2a-1,2(k-a)+1)} c_{in}^{k-s} \cdot c_{out}^{s} \right) \right) \left(\frac{\mu}{n} \left(uW_{:j} \right)^{2} + \frac{||W_{:j}||_{2}^{2}}{f} \right)$$

Proof. Given that the node feature x_i for node v_i , generated by a conditional Stochastic Block Model (cSBM) conditioned on u and node class y_i , is distributed as:

$$x_i \sim \mathcal{N}\left(\sqrt{\frac{\mu}{n}}y_i u, \frac{I_f}{f}\right)$$

For a linear transformation matrix W, the transformed node feature is given by:

$$x_i W \sim \mathcal{N}\left(\sqrt{\frac{\mu}{n}} y_i u W, \frac{W^T W}{f}\right)$$

Feature after transformation with W and propagation with \tilde{A}^k is

$$\begin{split} \left(\tilde{A}^{k}XW\right)_{ij} &= \sum_{r=1}^{n} \tilde{A}^{k}_{ir}(XW)_{rj} \\ &= \sum_{r=1}^{n} \tilde{A}^{k}_{ir} \left(\sqrt{\frac{\mu}{n}} y_{r}uW_{:j} + \frac{\epsilon_{r}W_{:j}}{\sqrt{f}}\right) \\ &= \sum_{r=1}^{n} \tilde{A}^{k}_{ir} \sqrt{\frac{\mu}{n}} y_{r}uW_{:j} \end{split}$$

and

$$\mathbb{E}\left[\left(\tilde{A}^{k}XW\right)_{ij}\right] = \sqrt{\frac{\mu}{n}} \left(\sum_{r=1}^{n} \mathbb{E}\left[\tilde{A}^{k}_{ir}\right]y_{r}\right) uW_{:j}$$
(31)

We now derive the expectation $\mathbb{E}[A_{ij}^k]$ of the adjacency matrix A raised to the power k.

1916
1917 **1. Expectation**
$$\mathbb{E}\left[\left(\tilde{A}^k X W\right)_{ij}\right]$$
 when $k \ge 2$
1918

Two clusters generated by cSBM are in equal size. According to Theorem 31, we have

$$\begin{aligned} & \begin{array}{l} 1920\\ 1921\\ 1922\\ 1922\\ 1922\\ 1923\\ 1924\\ 1925\\ 1924\\ 1925\\ 1926\\ 1926\\ 1926\\ 1926\\ 1926\\ 1926\\ 1927\\ 1926\\ 1927\\ 1928\\ 1926\\ 1927\\ 1928\\ 1928\\ 1929\\ 1929\\ 1929\\ 1930\\ 1931\\ 1931\\ 1931\\ 1931\\ 1931\\ 1931\\ 1932\\ 1931\\ 1932\\ 1933\\ 1934\\ 1935\\ 1934\\ 1935\\ 1934\\ 1935\\ 1936\\ 1936\\ 1937\\ 1936\\ 1937\\ 1936\\ 1937\\ 1936\\ 1937\\ 1936\\ 1937\\ 1938\\ 1936\\ 1937\\ 1938\\ 1936\\ 1937\\ 1938\\ 1936\\ 1937\\ 1938\\ 1936\\ 1937\\ 1938\\ 1936\\ 1937\\ 1938\\ 1936\\ 1937\\ 1938\\ 1936\\ 1937\\ 1938\\ 1936\\ 1937\\ 1938\\ 1936\\ 1937\\ 1938\\ 1936\\ 1937\\ 1938\\ 1936\\ 1937\\ 1938\\ 1936\\ 1937\\ 1938\\ 1936\\ 1937\\ 1938\\ 1939\\ 1940\\ 194\\ 1940\\ 194\\ 1940\\ 194\\ 1940\\ 194\\ 1940\\ 194\\ 1940\\ 194\\ 1940\\ 194\\ 1940\\ 194\\ 1940\\ 194\\ 1940\\ 194\\ 1940$$

2. Variance $\mathbb{E}\left[\left(\tilde{A}^k X W\right)_{ij}\right]$ when $k\geq 2$

The variance of new feature X'_{ij} given u, Y can be expressed as:

$$\begin{split} & \mathbb{V}\left[\left(\bar{A}^{k}XW\right)_{ij}\right] = \mathbb{V}\left[\sum_{r=1}^{n} \bar{A}_{ir}^{k}\left(\sqrt{\frac{\mu}{n}}y_{r}uW_{ij} + \frac{\epsilon_{r}W_{ij}}{\sqrt{f}}\right)\right] \\ &= \sum_{r=1}^{n} \mathbb{V}\left[\bar{A}_{ir}^{k}\left(\sqrt{\frac{\mu}{n}}y_{r}uW_{ij} + \frac{\epsilon_{r}W_{ij}}{\sqrt{f}}\right)\right], \quad \text{feature dimension independent} \\ &= \sum_{r=1}^{n} \left[\mathbb{E}\left[\left(\bar{A}^{k}\right)_{ir}^{2}\right]\mathbb{E}\left[\left(\sqrt{\frac{\mu}{n}}y_{r}uW_{ij} + \frac{\epsilon_{r}W_{ij}}{\sqrt{f}}\right)^{2}\right] - \left(\mathbb{E}\left[\bar{A}_{ir}^{k}\right]\right)^{2}\left(\mathbb{E}\left[\sqrt{\frac{\mu}{n}}y_{r}uW_{ij} + \frac{\epsilon_{r}W_{ij}}{\sqrt{f}}\right]\right)^{2}\right] \\ &= \sum_{r=1}^{n} \left[\mathbb{E}\left[\left(\bar{A}^{k}\right)_{ir}^{2}\right]\left(\left(\sqrt{\frac{\mu}{n}}y_{r}uW_{ij}\right)^{2} + \frac{||W_{ij}||^{2}}{f}\right) - \left(\mathbb{E}\left[\bar{A}_{ir}^{k}\right]\right)^{2}\left(\sqrt{\frac{\mu}{n}}y_{r}uW_{ij} + \frac{\epsilon_{r}W_{ij}}{\sqrt{f}}\right]\right)^{2}\right] \\ &= \sum_{r=1}^{n} \left[\mathbb{E}\left[\left(\bar{A}^{k}\right)_{ir}^{2}\right]\left(\left(\sqrt{\frac{\mu}{n}}y_{r}uW_{ij}\right)^{2} + \frac{||W_{ij}||^{2}}{f}\right) - \left(\mathbb{E}\left[\bar{A}_{ir}^{k}\right]\right)^{2}\left(\sqrt{\frac{\mu}{n}}y_{r}uW_{ij}\right)^{2}\right] \\ &= \sum_{r=1}^{n} \left[\left(\left(\mathbb{E}\left[\bar{A}_{ir}^{k}\right]\right)^{2} + \mathbb{V}\left[\bar{A}_{ir}^{k}\right]\right) \cdot \left(\left(\sqrt{\frac{\mu}{n}}y_{r}uW_{ij}\right)^{2} + \frac{||W_{ij}||^{2}}{f}\right) \\ &- \left(\mathbb{E}\left[\bar{A}_{ir}^{k}\right]\right)^{2}\left(\sqrt{\frac{\mu}{n}}y_{r}uW_{ij}\right)^{2}\right] \\ &= \frac{1}{d^{2k}}\sum_{r=1}^{n} \left[\left(\mathbb{E}\left[A_{ir}^{k}\right]\right)^{2} + \mathbb{V}\left[A_{ir}^{k}\right]\right) \cdot \left(\frac{\mu}{n}\left(uW_{ij}\right)^{2} + \frac{||W_{ij}||^{2}}{f}\right) \\ &- \left(\mathbb{E}\left[\bar{A}_{ir}^{k}\right]\right)^{2}\frac{\mu}{n}\left(uW_{ij}\right)^{2} \right] \\ &= \frac{1}{d^{2k}}\sum_{r=1}^{n} \left[\left(\mathbb{E}\left[A_{ir}^{k}\right]\right)^{2} + \mathbb{V}\left[A_{ir}^{k}\right]\right) \cdot \left(\frac{\mu}{n}\left(uW_{ij}\right)^{2} + \frac{||W_{ij}||^{2}}{f}\right) \\ &= \frac{1}{d^{2k}}\frac{n}{2}\left(\mathbb{E}\left[A_{ir}^{k}\right]\right)^{2} + \mathbb{V}\left[A_{ir}^{k}\right] + \mathbb{V}\left[A_{ir}^{k}\right] + \mathbb{V}\left[\frac{\mu}{n}\left(uW_{ij}\right)^{2} + \frac{||W_{ij}||^{2}}{f}\right) \\ &= \frac{1}{d^{2k}}\frac{n}{2}\left(\mathbb{E}\left[A_{ir}^{k}\right]\right)^{2} + \mathbb{V}\left[A_{ir}^{k}\right] + \mathbb{V}\left[A_{ir}^{k}\right] + \mathbb{V}\left[\frac{\mu}{n}\left(uW_{ij}\right)^{2} + \frac{||W_{ij}||^{2}}{f}\right) \\ &= \frac{1}{d^{2k}}\frac{n}{2}\left(\mathbb{E}\left[A_{ir}^{k}\right]\right)^{2} + \mathbb{V}\left[A_{ir}^{k}\right] + \mathbb{V}\left[A_{ir}^{k}\right] + \mathbb{V}\left[\frac{\mu}{n}\left(uW_{ij}\right)^{2}\right] + \frac{||W_{ij}||^{2}}{f} \\ &+ \frac{1}{d^{2k}}\frac{n}{2}\left(\mathbb{V}\left[A_{ir}^{k}\right] + \mathbb{V}\left[\frac{\mu}{n}\left[\frac{\mu}{n}\right]\right] \right] \\ &= \frac{1}{d^{2k}}\frac{n}{2}\left(\mathbb{V}\left[A_{ir}^{k}\right] + \mathbb{V}\left[A_{ir}^{k}\right] + \mathbb{V}\left[\frac{\mu}{n}\left[\frac{\mu}{n}\left[\frac{\mu}{n}\right]\right] + \mathbb{V}\left[\frac{\mu}{n}\left[\frac{\mu}{n}\left[\frac{\mu}{n}\right]\right] \\ &= \frac{1}{d^{2k}}\frac{n}{2}\left(\mathbb{V}\left[\frac{\mu}{$$

According to Theorem 31, when $k \ge 2$, we have

$$\left(\mathbb{E}\left[A_{ij}^{k}|y_{i}=y_{j}\right]\right)^{2} = \left(\frac{(k-1)!}{n\cdot2^{k-1}}\sum_{a=2}^{k+1}O\left(\sum_{s=\min(2,2(a-2),2(k+1-a))}^{\min(2(a-1),2(k+1-a))}c_{in}^{k-s}\cdot c_{out}^{s}\right)\right)^{2}$$

$$\left(\mathbb{E}\left[A_{ij}^{k}|y_{i}\neq y_{j}\right]\right)^{2} = \left(\frac{(k-1)!}{n\cdot 2^{k-1}}\sum_{a=1}^{k}O\left(\sum_{s=1}^{\min(2a-1,2(k-a)+1)}c_{in}^{k-s}\cdot c_{out}^{s}\right)\right)^{2}$$

$$\begin{split} \mathbb{V}\left[(\tilde{A}^{k}XW)_{ij} \right] &= \frac{1}{d^{2k}} \frac{n}{2} \left(\left(\mathbb{E} \left[A_{ir}^{k} | y_{i} = y_{r} \right] \right)^{2} + \left(\mathbb{E} \left[A_{ir}^{k} | y_{i} \neq y_{r} \right] \right)^{2} \right) \cdot \frac{||W_{ij}||_{2}^{2}}{f} \\ &+ \frac{1}{d^{2k}} \frac{n}{2} \left(\mathbb{V} \left[A_{ir}^{k} | y_{i} = y_{r} \right] + \mathbb{V} \left[A_{ir}^{k} | y_{i} \neq y_{r} \right] \right) \cdot \left(\frac{\mu}{n} \left(uW_{:j} \right)^{2} + \frac{||W_{:j}||_{2}^{2}}{f} \right) \\ &= \frac{\left((k-1)! \right)^{2}}{n \cdot d^{2k} \cdot 2^{2k-1}} O\left(\left(\sum_{a=2}^{k+1} O\left(\sum_{a=1}^{\min(2(a-1),2(k+1-a))} c_{in}^{k-s} \cdot c_{out}^{s} \right) \right) \right)^{2} \right) \\ &+ \left(\sum_{a=1}^{k} O\left(\sum_{s=1}^{\min(2a-1,2(k-a)+1)} c_{in}^{k-s} \cdot c_{out}^{s} \right) \right)^{2} \right) \cdot \frac{||W_{:j}||_{2}^{2}}{f} \\ &+ \frac{(k-1)!}{d^{2k} \cdot 2^{k}} \left(\sum_{a=2}^{k+1} O\left(\sum_{s=\min(2,2(a-2),2(k+1-a))} c_{in}^{k-s} \cdot c_{out}^{s} \right) \right) \\ &+ \sum_{a=1}^{k} O\left(\sum_{a=2}^{\min(2a-1,2(k-a)+1)} c_{in}^{k-s} \cdot c_{out}^{s} \right) \right) \left(\frac{\mu}{n} \left(uW_{:j} \right)^{2} + \frac{||W_{:j}||_{2}^{2}}{f} \right) \\ &= \frac{(k-1)!}{d^{2k} \cdot 2^{k}} \left(\sum_{a=2}^{k+1} O\left(\sum_{s=\min(2,2(a-2),2(k+1-a))} c_{in}^{k-s} \cdot c_{out}^{s} \right) \right) \\ &+ \sum_{a=1}^{k} O\left(\sum_{s=1}^{\min(2(a-1),2(k+1-a))} c_{in}^{k-s} \cdot c_{out}^{s} \right) \\ &+ \sum_{a=1}^{k} O\left(\sum_{s=1}^{\min(2(a-1),2(k+1-a))} c_{in}^{k-s} \cdot c_{out}^{s} \right) \right) \left(\frac{\mu}{n} \left(uW_{:j} \right)^{2} + \frac{||W_{:j}||_{2}^{2}}{f} \right), \quad n \to \infty \end{split}$$

Two clusters generated by cSBM are in equal size. Then, Eq. (32) is written as:

3. Expectation and variance of $\left(\tilde{A}^k X W\right)_{ij}$ when k = 1

$$\mathbb{E}\left[(\tilde{A}XW)_{ij}\right] = \sqrt{\frac{\mu}{n}} \left(\sum_{r=1}^{n} \mathbb{E}\left[\tilde{A}_{ir}\right] y_r\right) uW_{:j}$$

$$= \frac{1}{d} \sqrt{\frac{\mu}{n}} \left(\sum_{r=1}^{n} \mathbb{E}\left[A_{ir}|y_i = y_r\right] y_i - \sum_{r=1}^{n} \mathbb{E}\left[A_{ir}|y_i \neq y_r\right] y_i\right) uW_{:j}$$

$$= \frac{1}{d} \sqrt{\frac{\mu}{n}} \left(\frac{n}{2} \frac{c_{in}}{n} y_i - \frac{n}{2} \frac{c_{out}}{n} y_i\right) uW_{:j}$$

$$= \frac{1}{2d} \sqrt{\frac{\mu}{n}} \left(c_{in} - c_{out}\right) y_i uW_{:j}$$

when k = 1, we have

$\left(\mathbb{E}\left[A_{ij}^k y_i=y_j\right]\right)^2 =$	$\left(\frac{c_{in}}{n}\right)^2$
$\left(\mathbb{E}\left[A_{ij}^k y_i\neq y_j\right]\right)^2 =$	$\left(\frac{c_{out}}{n}\right)^2$

Eq. (32) is written as:

2073 D.3 Proof of Theorem 13

We first give a lemma about the order of $\mathbb{E}\left[A_{ij}^k\right]$, which will be used in proof of Theorem 13. Lemma 33 (order of $\mathbb{E}\left[A_{ij}^k\right]$). The order of $\mathbb{E}\left[A_{ij}^k\right]$ is $O\left(\frac{k! \cdot d^k}{n \cdot 2^k}\right)$.

 $\mathbb{V}\left[(\tilde{A}XW)_{ij}\right] = \frac{1}{d^2} \frac{n}{2} \left(\left(\mathbb{E}\left[A_{ir}^k | y_i = y_r\right] \right)^2 + \left(\mathbb{E}\left[A_{ir}^k | y_i \neq y_r\right] \right)^2 \right) \cdot \frac{||W_{:j}||_2^2}{f}$

 $=\frac{1}{d^2}\frac{n}{2}\left(\left(\frac{c_{in}}{n}\right)^2 + \left(\frac{c_{out}}{n}\right)^2\right) \cdot \frac{||W_{:j}||_2^2}{f}$

 $= \frac{1}{2n \cdot d^2} \left(c_{in}^2 + c_{out}^2 \right) \cdot \frac{||W_{:j}||_2^2}{f}$

 $+\frac{1}{d^{2}}\frac{n}{2}\left(\mathbb{V}\left[A_{ir}^{k}|y_{i}=y_{r}\right]+\mathbb{V}\left[A_{ir}^{k}|y_{i}\neq y_{r}\right]\right)\cdot\left(\frac{\mu}{n}\left(uW_{:j}\right)^{2}+\frac{||W_{:j}||_{2}^{2}}{f}\right)$

 $+\frac{1}{d^2}\frac{n}{2}\left(\frac{c_{in}}{n}\left(1-\frac{c_{in}}{n}\right)+\frac{c_{out}}{n}\left(1-\frac{c_{out}}{n}\right)\right)\cdot\left(\frac{\mu}{n}\left(uW_{:j}\right)^2+\frac{||W_{:j}||_2^2}{f}\right)$

Proof. According to Theorem 31, $A_{ij}^k | y_i = y_j$ and $A_{ij}^k | y_i \neq y_j$ obeys different Poisson distributions. As

 $+\frac{1}{2 \cdot d^2} \left(d - \frac{c_{in}^2 + c_{out}^2}{n} \right) \cdot \left(\frac{\mu}{n} \left(u W_{:j} \right)^2 + \frac{||W_{:j}||_2^2}{f} \right)$

 $= \frac{1}{2 \cdot d^2} \left(d - \frac{c_{in}^2 + c_{out}^2}{n} \right) \cdot \left(\frac{\mu}{n} \left(u W_{:j} \right)^2 + \frac{||W_{:j}||_2^2}{f} \right), \quad n \to \infty$

$$c_{in}^{k-s} \cdot c_{out}^s = O\left(d^k\right)$$

we have,

similarly, we

$$\begin{split} \rho_{=} &= \frac{(k-1)!}{n \cdot 2^{k-1}} \sum_{a=2}^{k+1} O\left(\sum_{s=\min(2,2(a-2),2(k+1-a))}^{\min(2(a-1),2(k+1-a))} c_{in}^{k-s} \cdot c_{out}^{s}\right) \\ &= \frac{(k-1)!}{n \cdot 2^{k-1}} \sum_{a=2}^{k+1} O\left(\sum_{s=\min(2,2(a-2),2(k+1-a))}^{\min(2(a-1),2(k+1-a))} d^{k}\right) \\ &= \frac{(k-1)!}{n \cdot 2^{k-1}} \sum_{a=2}^{k+1} O\left(k \cdot d^{k}\right) \\ &= \frac{(k-1)!}{n \cdot 2^{k-1}} O\left(k^{2} \cdot d^{k}\right) \\ &= O\left(\frac{k! \cdot d^{k}}{n \cdot 2^{k}}\right) \end{split}$$
 have $\rho_{\neq} = O\left(\frac{k! \cdot d^{k}}{n \cdot 2^{k}}\right)$

Below, we prove Theorem 13, which is a specific case of Theorem 8 when the graph is generated by $G \sim cSBM(n, f, \mu, u, \lambda, d)$.

Theorem 13. Consider a spectral GNN Ψ parameterized by Θ , W trained using full-batch gradient descent for T iterations with a learning rate η on a training dataset containing m samples drawn from nodes on a graph $G \sim cSBM(n, f, \mu, u, \lambda, d)$. When $n \to \infty$, $k \ll n$, and $d \ll n$, under

Assumptions 1, 2, and 4, for any node v_i on the graph, with probability at least $1 - \epsilon$ for a constant $\epsilon \in (0,1), \Psi$ satisfies γ -uniform transductive stability, where $\gamma = r\beta$ and

$$\beta = \frac{1}{\epsilon} \left[O\left(\mathbb{E}\left[\|\hat{y}_i - y_i\|_F^2 \right] \right) + O\left(\sum_{k=2}^K \left(\mathbb{E}\left[\left(A_{ij}^k \mid y_i = y_j \right)^2 \right] + \mathbb{E}\left[\left(A_{ij}^k \mid y_i \neq y_j \right)^2 \right] \right) \right) \right].$$

Proof. Any spectral GNNs in Eq. (1) with linear feature transformation function, and polynomial basis expanded on normalized graph matrix can be transformed into the format:

$$\hat{Y} = softmax(\sum_{k=0}^{K} \theta_k \tilde{A}^k X W)$$
(33)

where $\tilde{A} = D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$ is the normalized graph adjacency matrix, D is the diagonal degree matrix. We denotes $Y \in \mathbb{R}^{n \times C}$ as the ground truth node label matrix.

When graph $G \sim cSBM(n, f, \mu, u, \lambda, d)$, the node feature

$$x_i \sim \mathcal{N}(y_i \sqrt{\mu/nu}, I_f/f)$$

Denote B = XW and $S = BB^{\top}$, then we have

$$B_{ik} \sim \mathcal{N}(y_i \sqrt{\frac{\mu}{n}} u W_{:k}, \frac{\|W_{:k}\|_F^2}{f})$$

• when $i \neq j$, B_{ik} , B_{jk} are independent, then

$$\mathbb{E}[S_{ij}] = \sum_{k=1}^{C} \mathbb{E}\left[B_{ik}B_{kj}^{\top}\right]$$
$$= \sum_{k=1}^{C} y_i y_j \frac{\mu}{n} \left(uW_{:k}\right)^2$$
$$= y_i y_j \frac{\mu}{n} \|uW\|_F^2;$$

• when i = j:

$$\mathbb{E}[S_{ii}] = \frac{\mu}{n} \|uW\|_F^2 + \frac{\|W\|_F^2}{f}$$

When node number $n \to \infty$, we have

$$\sum_{q=1,q\neq j}^{n} \mathbb{E}\left[S_{jq}\right] = \frac{n}{2} y_{j}^{2} \frac{\mu}{n} \|uW\|_{F}^{2} + \frac{n}{2} y_{j}(-y_{j}) \frac{\mu}{n} \|uW\|_{F}^{2} = 0.$$

Therefore,

According to Theorem 31,

• when $k \geq 2$, $A_{ij}^k \sim Poisson(\rho'_k)$, then $\mathbb{E}\left[\|\tilde{A}_{i:}^{k}XW\|_{F}^{2}\right] = \mathbb{E}\left[\tilde{A}_{i:}^{k}XW\left(XW\right)^{\top}\left(\tilde{A}_{i:}^{k}\right)^{\top}\right]$ $= \mathbb{E}\left[\tilde{A}_{i:}^{k}S\left(\tilde{A}_{i:}^{k}\right)^{\top}\right]$ $= \mathbb{E}\left[\sum_{i=1}^{n}\sum_{j=1}^{n} \left(\tilde{A}_{ij}^{k}\tilde{A}_{iq}^{k}S_{jq}\right)\right]$ $= \frac{1}{d^{2k}} \mathbb{E} \left| \sum_{i=1}^{n} \sum_{i=1}^{n} \left(A_{ij}^{k} A_{iq}^{k} S_{jq} \right) \right|$ $= \frac{1}{d^{2k}} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{E}\left[A_{ij}^{k} A_{iq}^{k}\right] \mathbb{E}\left[S_{jq}\right]$ $= \frac{1}{d^{2k}} \sum_{k=1}^{n} \mathbb{E}\left[\left(A_{ij}^{k}\right)^{2}\right] \mathbb{E}\left[S_{jj}\right] + \frac{1}{d^{2k}} \sum_{k=1}^{n} \sum_{k=1}^{n} \mathbb{E}\left[A_{ij}^{k}A_{iq}^{k}\right] \mathbb{E}\left[S_{jq}\right]$ $=\frac{1}{d^{2k}}\frac{n}{2}\mathbb{E}\left[\left(A_{ij}^{k}\right)^{2}\mid y_{i}=y_{j}\right]\mathbb{E}\left[S_{jj}\right]+\frac{1}{d^{2k}}\frac{n}{2}\mathbb{E}\left[\left(A_{ij}^{k}\right)^{2}\mid y_{i}\neq y_{j}\right]\mathbb{E}\left[S_{jj}\right]$ $+\frac{1}{d^{2k}}\frac{n^{2}}{4}\cdot\frac{\mu}{n}\|uW\|_{F}^{2}\cdot(\rho_{k=}-\rho_{k\neq})^{2}\quad (Eq. (34))$ $=\frac{1}{d^{2k}}\frac{n}{2}\left(\rho_{k=}+\rho_{k=}^{2}+\rho_{k\neq}+\rho_{k\neq}^{2}\right)\left(\frac{\mu}{n}\|uW\|_{F}^{2}+\frac{\|W\|_{F}^{2}}{f}\right)$ $+\frac{1}{d^{2k}}\frac{n^2}{4}\cdot\frac{\mu}{m}\|uW\|_F^2\cdot(\rho_{k=}-\rho_{k\neq})^2$ $=\frac{1}{2d^{2k}}\zeta_k\left(\mu\|uW\|_F^2+\frac{n\|W\|_F^2}{f}\right)+\frac{n\mu}{4d^{2k}}\|uW\|_F^2\cdot\left(\rho_{k=}-\rho_{k\neq}\right)^2$ where $\zeta_{k} = \rho_{k=}^{2} + \rho_{k=} + \rho_{k\neq}^{2} + \rho_{k\neq}$ • when $k = 1, A_{ij} \sim Ber(p)$, then $\mathbb{E}\left[\|\tilde{A}_{i:}XW\|_{F}^{2}\right] = \frac{1}{d^{2}}\frac{n}{2}\left(p_{=}^{2} + p_{=}(1-p_{=}) + p_{\neq}^{2} + p_{\neq}(1-p_{\neq})\right)\left(\frac{\mu}{n}\|uW\|_{F}^{2} + \frac{\|W\|_{F}^{2}}{f}\right)$ $= \frac{1}{d^2} \frac{n}{2} \left(p_{=} + p_{\neq} \right) \left(\frac{\mu}{n} \| uW \|_F^2 + \frac{\|W\|_F^2}{\epsilon} \right)$ $= \frac{1}{d^2} \frac{n}{2} \frac{2d}{n} \left(\frac{\mu}{n} \| uW \|_F^2 + \frac{\|W\|_F^2}{f} \right)$ $= \frac{1}{d} \left(\frac{\mu}{n} \| uW \|_F^2 + \frac{\| W \|_F^2}{f} \right)$ Substituting $\mathbb{E} \left| \| \tilde{A}_{i:} X W \|_{F}^{2} \right|$ into Eq. (15), we have $\mathbb{E}\left[\left|\frac{\partial \ell(\hat{y}_i, y_i; \Theta, W)}{\partial \theta_i}\right|\right] =$ $\begin{cases} \frac{1}{2} \left(\mathbb{E} \left[\| \hat{y}_i - y_i \|_F^2 \right] + \left(\frac{\mu}{n} \| uW \|_F^2 + \frac{\| W \|_F^2}{f} \right) \right), \\ \frac{1}{2} \left(\mathbb{E} \left[\| \hat{y}_i - y_i \|_F^2 \right] + \frac{1}{d} \left(\frac{\mu}{n} \| uW \|_F^2 + \frac{\| W \|_F^2}{f} \right) \right), \\ \frac{1}{2} \left(\mathbb{E} \left[\| \hat{y}_i - y_i \|_F^2 \right] + \frac{1}{2d^{2k}} \zeta_k \left(\mu \| uW \|_F^2 + \frac{n \| W \|_F^2}{f} \right) + \frac{n \mu}{4d^{2k}} \| uW \|_F^2 \cdot \left(\rho_{k=} - \rho_{k\neq} \right)^2 \right), \end{cases}$ if k = 0if k = 1if $k \geq 2$ (35)

Similarly, we have

$$\mathbb{E}\left[\|\tilde{A}_{i:}^{k}X\|_{F}^{2}\right] = \begin{cases} \frac{\mu}{n} \|u\|_{F}^{2} + 1, & \text{if } k = 0\\ \frac{1}{d} \left(\frac{\mu}{n} \|u\|_{F}^{2} + 1\right), & \text{if } k = 1\\ \frac{1}{2d^{2k}}\zeta_{k} \left(\mu\|u\|_{F}^{2} + 1\right) + \frac{n\mu}{4d^{2k}} \|u\|_{F}^{2} \cdot \left(\rho_{k=} - \rho_{k\neq}\right)^{2}, & \text{if } k \ge 2 \end{cases}$$

Substituting $\mathbb{E}\left[\|\tilde{A}_{i:}^{k}X\|_{F}^{2}\right]$ into Eq. (16), we have

$$\mathbb{E}\left[\left\|\frac{\partial\ell(\hat{y}_{i}, y_{i}; \Theta, W)}{\partial W}\right\|_{\ell_{1}}\right] = |\theta_{0}|\left(f \cdot \mathbb{E}\left[\|\hat{y}_{i} - y_{i}\|_{F}^{2}\right] + C\left(\frac{\mu}{n}\|u\|_{F}^{2} + 1\right)\right) \\ + |\theta_{1}|\left(f \cdot \mathbb{E}\left[\|\hat{y}_{i} - y_{i}\|_{F}^{2}\right] + C\frac{1}{d}\left(\frac{\mu}{n}\|u\|_{F}^{2} + 1\right)\right) \\ + \sum_{k=2}^{K} \frac{1}{d^{2k}}|\theta_{k}|\left(f \cdot \mathbb{E}\left[\|\hat{y}_{i} - y_{i}\|_{F}^{2}\right] + C\frac{1}{2d^{2k}}\zeta_{k}\left(\mu\|u\|_{F}^{2} + 1\right) + \frac{n\mu}{4d^{2k}}\|u\|_{F}^{2} \cdot (\rho_{k=} - \rho_{k\neq})^{2}\right)$$
(36)

Substitute Eq. (35), Eq. (36) into Eq. (12), we have

$$\mathbb{E}\left[\|\nabla\ell(\hat{y}_{i}, y_{i}; \Theta, W)\|_{F}\right] \leq \sum_{k=0}^{K} \mathbb{E}\left[\|\frac{\partial\ell(\hat{y}_{i}, y_{i}; \Theta, W)}{\partial\theta_{k}}\|_{\ell_{1}}\right] + \mathbb{E}\left[\|\frac{\partial\ell(\hat{y}_{i}, y_{i}; \Theta, W)}{\partialW}\|_{\ell_{1}}\right] \\
= \frac{1}{2}\left(\mathbb{E}\left[\|\hat{y}_{i} - y_{i}\|_{F}^{2}\right] + \left(\frac{\mu}{n}\|uW\|_{F}^{2} + \frac{\|W\|_{F}^{2}}{f}\right)\right) \\
+ \frac{1}{2}\left(\mathbb{E}\left[\|\hat{y}_{i} - y_{i}\|_{F}^{2}\right] + \frac{1}{d}\left(\frac{\mu}{n}\|uW\|_{F}^{2} + \frac{\|W\|_{F}^{2}}{f}\right)\right) \\
+ \sum_{k=2}^{K}\frac{1}{2}\left(\mathbb{E}\left[\|\hat{y}_{i} - y_{i}\|_{F}^{2}\right] + \frac{1}{2d^{2k}}\zeta_{k}\left(\mu\|uW\|_{F}^{2} + \frac{n\|W\|_{F}^{2}}{f}\right) + \frac{n\mu}{4d^{2k}}\|uW\|_{F}^{2} \cdot \tilde{\zeta}_{k}^{2}\right) \quad (37) \\
+ |\theta_{0}|\left(f \cdot \mathbb{E}\left[\|\hat{y}_{i} - y_{i}\|_{F}^{2}\right] + C\left(\frac{\mu}{n}\|u\|_{F}^{2} + 1\right)\right) \\
+ |\theta_{1}|\left(f \cdot \mathbb{E}\left[\|\hat{y}_{i} - y_{i}\|_{F}^{2}\right] + C\frac{1}{d}\left(\frac{\mu}{n}\|u\|_{F}^{2} + 1\right)\right) \\
+ \sum_{k=2}^{K}\frac{1}{d^{2k}}|\theta_{k}|\left(f \cdot \mathbb{E}\left[\|\hat{y}_{i} - y_{i}\|_{F}^{2}\right] + C\frac{1}{2d^{2k}}\zeta_{k}\left(\mu\|u\|_{F}^{2} + 1\right) + \frac{n\mu}{4d^{2k}}\|u\|_{F}^{2} \cdot \tilde{\zeta}_{k}^{2}\right)$$

where $\zeta_k = \rho_{k=}^2 + \rho_{k=} + \rho_{k\neq}^2 + \rho_{k\neq}$, $\tilde{\zeta}_k = \rho_{k=} - \rho_{k\neq}$. According to Lemma 33, when $n \to \infty$, we have

2257
2258
2259
2260
2261
2262
2263
2264
2265
2265
2266
2267

$$n\left(\tilde{\zeta}_k\right)^2 = n\left(\rho_{\pm} - \rho_{\neq}\right)^2$$

$$= n\left(O\left(\frac{k! \cdot d^k}{n \cdot 2^k}\right)\right)^2$$

$$= nO\left(\frac{\left(k! \cdot d^k\right)^2}{n^2 \cdot 2^{2k}}\right)$$

$$= O\left(\frac{\left(k! \cdot d^k\right)^2}{n \cdot 2^{2k}}\right)$$

$$\to 0$$

Thus, $n\left(\tilde{\zeta}_k\right)^2$ can be neglected. Thus, we rewrite Eq. (37) as $\mathbb{E}\left[\|\nabla \ell(\hat{y}_i, y_i; \Theta, W)\|_F\right] = \sum_{k=1}^{K} \mathbb{E}\left[\|\frac{\partial \ell(\hat{y}_i, y_i; \Theta, W)}{\partial \theta_k}\|_{\ell_1}\right] + \mathbb{E}\left[\|\frac{\partial \ell(\hat{y}_i, y_i; \Theta, W)}{\partial W}\|_{\ell_1}\right]$ $= \frac{1}{2} \left(\mathbb{E} \left[\| \hat{y}_i - y_i \|_F^2 \right] + \left(\frac{\mu}{n} \| u W \|_F^2 + \frac{\| W \|_F^2}{f} \right) \right)$ $+\frac{1}{2}\left(\mathbb{E}\left[\|\hat{y}_{i}-y_{i}\|_{F}^{2}\right]+\frac{1}{d}\left(\frac{\mu}{n}\|uW\|_{F}^{2}+\frac{\|W\|_{F}^{2}}{f}\right)\right)$ $+\sum_{k=1}^{K} \frac{1}{2} \left(\mathbb{E} \left[\|\hat{y}_{i} - y_{i}\|_{F}^{2} \right] + \frac{1}{2d^{2k}} \zeta_{k} \left(\mu \|uW\|_{F}^{2} + \frac{n\|W\|_{F}^{2}}{f} \right) \right)$ $+ |\theta_0| \left(f \cdot \mathbb{E} \left[\| \hat{y}_i - y_i \|_F^2 \right] + C \left(\frac{\mu}{2} \| u \|_F^2 + 1 \right) \right)$ $+ |\theta_1| \left(f \cdot \mathbb{E} \left[\| \hat{y}_i - y_i \|_F^2 \right] + C \frac{1}{d^{2k-1}} \left(\frac{\mu}{n} \| u \|_F^2 + 1 \right) \right)$ $+\sum_{k=1}^{K}\frac{1}{d^{2k}}|\theta_{k}|\left(f\cdot\mathbb{E}\left[\|\hat{y}_{i}-y_{i}\|_{F}^{2}\right]+C\frac{1}{2d^{2k}}\zeta_{k}\left(\mu\|u\|_{F}^{2}+1\right)\right)$ $\leq \frac{1}{2} \left(\mathbb{E} \left[\| \hat{y}_i - y_i \|_F^2 \right] + \left(\frac{\mu}{n} \| u \|_F^2 B_W^2 + \frac{B_W^2}{f} \right) \right)$ (38) $+\frac{1}{2}\left(\mathbb{E}\left[\|\hat{y}_{i}-y_{i}\|_{F}^{2}\right]+\frac{1}{d}\left(\frac{\mu}{n}\|u\|_{F}^{2}B_{W}^{2}+\frac{B_{W}^{2}}{f}\right)\right)$ $+\sum_{k=1}^{K}\frac{1}{2}\left(\mathbb{E}\left[\|\hat{y}_{i}-y_{i}\|_{F}^{2}\right]+\frac{1}{2d^{2k}}\zeta_{k}\left(\mu\|u\|_{F}^{2}B_{W}^{2}+\frac{nB_{W}^{2}}{f}\right)\right)$ $+ B_{\Theta} \left(f \cdot \mathbb{E} \left[\| \hat{y}_i - y_i \|_F^2 \right] + C \left(\frac{\mu}{n} \| u \|_F^2 + 1 \right) \right)$ $+ B_{\Theta} \left(f \cdot \mathbb{E} \left[\| \hat{y}_i - y_i \|_F^2 \right] + C \frac{1}{d} \left(\frac{\mu}{n} \| u \|_F^2 + 1 \right) \right)$ $+\sum_{i=1}^{K} \frac{1}{d^{2k}} B_{\Theta} \left(f \cdot \mathbb{E} \left[\| \hat{y}_{i} - y_{i} \|_{F}^{2} \right] + C \frac{1}{2d^{2k}} \zeta_{k} \left(\mu \| u \|_{F}^{2} + 1 \right) \right)$ $= \left(\frac{K+1}{2} + 2fB_{\Theta} + \sum_{i=1}^{K} \frac{f}{d^{2k}} B_{\Theta}\right) \mathbb{E}\left[\|\hat{y}_{i} - y_{i}\|_{F}^{2}\right]$ $+\left(1+\frac{1}{d}\right)\left(\left(\frac{B_W^2}{2}+CB_\Theta\right)\frac{\mu}{n}\|u\|_F^2+\frac{B_W^2}{2f}+CB_\Theta\right)$ $+\sum_{k=1}^{K}\frac{\zeta_{k}}{d^{2k}}\left(\left(\mu\|u\|_{F}^{2}+\frac{n}{f}\right)\frac{B_{W}^{2}}{4}+\left(\mu\|u\|_{F}^{2}+1\right)\frac{B_{\Theta}}{d^{2k}}\right)$ We express the result in big-O notation:

$$\mathbb{E}\left[\|\nabla \ell(\hat{y}_i, y_i; \Theta, W)\|_F\right] = O\left(\mathbb{E}\left[\|\hat{y}_i - y_i\|_F^2\right]\right) + O\left(\sum_{k=2}^K \zeta_k\right)$$

where $\zeta_k = \mathbb{E}\left[\left(A_{ij}^k \mid y_i = y_j\right)^2\right] + \mathbb{E}\left[\left(A_{ij}^k \mid y_i \neq y_j\right)^2\right]$

After obtaining the upper bound of the gradient norm, and applying Theorem 6, we derive the uniform transductive stability of spectral GNNs on graphs $G \sim cSBM(n, f, \mu, u, \lambda, d)$ with two classes (C = 2) in big-O notation as: $\gamma = r\beta; \beta = \frac{1}{\epsilon} \left[O\left(\mathbb{E}\left[\|\hat{y}_i - y_i\|_F^2 \right] \right) + O\left(\sum_{k=2}^K \left(\mathbb{E}\left[\left(A_{ij}^k \mid y_i = y_j \right)^2 \right] + \mathbb{E}\left[\left(A_{ij}^k \mid y_i \neq y_j \right)^2 \right] \right) \right) \right]$

where r is the same as that in Theorem 6.

E ANALYSIS OF PROPERTIES

In this section, we first derive the relationship between the parameter λ in cSBM and the edge homophilic ratio of the graph. We then analyze how the expected prediction error, $\mathbb{E}[\|\hat{y}_i - y_i\|_F^2]$, and ζ_k vary with λ and K. Finally, we examine the impact of λ and K on the uniform transductive stability and generalization performance of spectral GNNs.

2338 E.1 PROOF OF PROPOSITION 12

Proposition 12. For a graph $G \sim cSBM(n, \mu, u, \lambda, d)$, the expected edge homophily ratio is:

$$\mathbb{E}[H_{edge}] = \frac{d + \lambda \sqrt{d}}{2d}; \quad \mathbb{E}[H_{edge}] = \frac{c_{in}}{c_{in} + c_{out}}.$$
(4)

Proof. Graphs generated with cSBM contain two clusters of equal size. Thus, there are $\frac{n}{2}$ nodes in each cluster belonging to the same class. The expected number of edges between nodes of the same class is given by:

$$\mathbb{E}[E_{\text{same}}] = {\binom{\frac{n}{2}}{2}} \cdot \frac{c_{in}}{n} = \frac{c_{in}(n-2)}{8}$$

where $\left(\frac{\pi}{2}\right)$ represents the number of possible edges between nodes within the same cluster, and $\frac{c_{in}}{n}$ is the probability of an edge existing between two nodes of the same class.

The expected number of edges between nodes of different classes is given by:

$$\mathbb{E}[E_{\text{diff}}] = \frac{n}{2} \cdot \frac{n}{2} \cdot \frac{c_{out}}{n} \cdot \frac{1}{2} = \frac{c_{out}n}{8},$$

where $\frac{n}{2} \cdot \frac{n}{2}$ represents the total number of possible edges between nodes in different clusters, $\frac{c_{out}}{n}$ is the probability of an edge existing between nodes of different classes, and the factor $\frac{1}{2}$ accounts for double-counting edges.

The expected value of H_{edge} , the ratio of the expected number of edges between nodes of the same class to the total expected number of edges, is given by:

$$\mathbb{E}[H_{edge}] = \frac{\mathbb{E}[E_{\text{same}}]}{\mathbb{E}[E_{\text{same}}] + \mathbb{E}[E_{\text{diff}}]}$$
$$= \frac{\frac{c_{in}(n-2)}{8}}{\frac{c_{in}(n-2)}{8} + \frac{c_{out}n}{8}}$$
$$= \frac{(d+\lambda\sqrt{d})(n-2)}{(d+\lambda\sqrt{d})(n-2) + (d-\lambda\sqrt{d})n}$$

2371
2372

$$(a + \lambda \sqrt{a})(n - 2) + (a - \lambda \sqrt{a})$$

 $d + \lambda \sqrt{d}$

 $=\frac{\alpha+n\sqrt{\alpha}}{2d}, \quad \text{as } n \to \infty.$

Here, d represents the average degree, and λ measures the level of separation between clusters. As $n \to \infty$, the terms involving (n-2) and n simplify, yielding the final expression for $\mathbb{E}[H_{edge}]$. 2376 We also derive the relationship between the expectation of H_{edge} and the parameters c_{in} and c_{out} as follows:

 $\mathbb{E}[H_{edge}] = \frac{\mathbb{E}[E_{same}]}{\mathbb{E}[E_{same}] + \mathbb{E}[E_{diff}]}$

 $=\frac{\frac{c_{in}(n-2)}{8}}{\frac{c_{in}(n-2)}{8}+\frac{c_{out}n}{8}}$

 $= \frac{c_{in}(n-2)}{c_{in}(n-2) + c_{out}n}$ $= \frac{c_{in}}{c_{in} + c_{out}}, \quad \text{as } n \to \infty.$

E.2 PROOF OF THEOREM 14

Theorem 14 ($\mathbb{E}\left[\|\hat{y}_i - y_i\|_F^2\right]$ and λ, K). Given a graph $G \sim cSBM(n, \mu, u, \lambda, d)$ and a spectral GNN of order K, $\mathbb{E}[\|\hat{y}_i - y_i\|_F^2]$ for any node v_i satisfies the following: it increases with $\lambda \in [-\sqrt{d}, 0]$, decreases with $\lambda \in [0, \sqrt{d}]$, and reaches its maximum at $\lambda = 0$; it increases with K if $\sum_{k=2}^{K} \theta_k \frac{(k-1)!}{2^{k-1}}$ grows more slowly than $\sum_{k=2}^{K} \theta_k^2 \frac{(k-1)!}{2^k}$ as K increases.

Proof. Denote

For any node v_i with true class y_i , its prediction is denoted as:

 $\hat{y}_i = \operatorname{softmax}(Z_{i:}).$

 $Z = \sum_{k=0}^{K} \theta_k \tilde{A}^k X W, \qquad \hat{Y} = \operatorname{softmax}(Z).$

In the case of binary classification (C = 2), for a node with true class $y_i = [1, 0]$, the predicted class is:

$$\hat{y}_i = [\hat{y}_1, \hat{y}_2] = \text{softmax}([Z_{i1}, Z_{i2}]) = [\sigma(Z_{i1} - Z_{i2}), 1 - \sigma(Z_{i1} - Z_{i2})],$$

where $\sigma(x) = \frac{1}{1+e^{-x}}$ is the sigmoid function.

Let $z_i = Z_{i1} - Z_{i2}$, then:

$$\hat{y}_i = [\sigma(z_i), 1 - \sigma(z_i)].$$

Thus, the squared Frobenius norm of the difference between \hat{y}_i and y_i is:

$$\|\hat{y}_i - y_i\|_F^2 = (\sigma(z_i) - 1)^2 + (1 - \sigma(z_i))^2 = 2(1 - \sigma(z_i))^2.$$

Taking the expectation, we have:

$$\mathbb{E}[\|\hat{y}_i - y_i\|_F^2] = 2\mathbb{E}[(1 - \sigma(z_i))^2]$$

As the node feature $x_i \sim \mathcal{N}(y_i \sqrt{\mu/n}u, I_f/f)$, any linear combination of Gaussian variables is still Gaussian. Therefore, we have:

 $z_i \sim \mathcal{N}(\mu_{z_i}, \omega_{z_i}^2),$

2425 where:

$$\mu_{z_i} = \mathbb{E}[z_i] = \mathbb{E}[Z_{i1} - Z_{i2}] = \mathbb{E}[Z_{i1}] - \mathbb{E}[Z_{i2}].$$

Given that $c_{in} = d + \lambda \sqrt{d}$, $c_{out} = d - \lambda \sqrt{d}$, and $\lambda \in [-\sqrt{d}, \sqrt{d}]$, we observe:

 $c_{in}^{k} - c_{out}^{k} = O(d^{k}), \quad c_{in}^{k} = O(d^{k}), \quad c_{out}^{k} = O(d^{k}).$ (39)

 $\mu_{z_i} = \mathbb{E}[Z_{i1}] - \mathbb{E}[Z_{i2}] = \theta_0 \sqrt{\frac{\mu}{n}} y_i u(W_{:1} - W_{:2})$

2430 Assuming $u \sim \mathcal{N}(0, I_f)$, $d \ll f$, and that Θ, W are bounded (as per Assumption 4), we analyze the dominant terms in μ_{z_i} and $\omega_{z_i}^2$. From Theorem 32, we derive the expectation of $(\tilde{A}^k X W)_{ij}$. Consequently, we obtain:

Since \tilde{A}^k and X are independent, and the columns of X are also independent, it follows that $\begin{pmatrix} \sum_{k=0}^{K} \theta_k \tilde{A}^k X \end{pmatrix}_{ij}$ and $\begin{pmatrix} \sum_{k=0}^{K} \theta_k \tilde{A}^k X \end{pmatrix}_{it}$ are independent. According to Theorem 32, we compute the variance of $(\tilde{A}^k X W)_{ij}$. Then, we have: $\omega^2 = \operatorname{Var}(Z_{i1} - Z_{i2})$

 $= O\left(\sum_{k=2}^{K} \theta_k \frac{(k-1)!}{2^{k-1}}\right) \quad \text{(from Eq. (39))}.$

 $+ \theta_1 \frac{1}{2d} \sqrt{\frac{\mu}{n}} (c_{in} - c_{out}) y_i u (W_{:1} - W_{:2})$

 $+\sum_{k=1}^{K}\theta_{k}\frac{(k-1)!}{d^{k}\cdot 2^{k-1}}O(c_{in}^{k}-c_{out}^{k})\sqrt{\frac{\mu}{n}}y_{i}u(W_{:1}-W_{:2})$

(40)

(42)

$$\begin{aligned} & = \operatorname{Var}\left(\left(\sum_{k=0}^{K} \theta_{k} \tilde{A}^{k} X\right)_{i:} (W_{:1} - W_{:2})\right) \\ &= \operatorname{Var}\left(\sum_{j=1}^{f} \left(\sum_{k=0}^{K} \theta_{k} \tilde{A}^{k} X\right)_{ij} (W_{j1} - W_{j2})\right) \\ &= \sum_{j=1}^{f} (W_{j1} - W_{j2})^{2} \sum_{k=0}^{K} \theta_{k}^{2} \operatorname{Var}\left(\left(\tilde{A}^{k} X\right)_{ij}\right) \quad (\text{independence}) \\ &= \sum_{j=1}^{f} (W_{j1} - W_{j2})^{2} \sum_{k=0}^{K} \theta_{k}^{2} \left[\frac{1}{2 \cdot d^{2}} \left(d - \frac{c_{in}^{2} + c_{out}^{2}}{n}\right) \cdot \left(\frac{\mu}{n} (uW_{:j})^{2} + \frac{\|W_{:j}\|_{2}^{2}}{f}\right) \quad (41) \\ &+ \frac{(k-1)!}{d^{2k} \cdot 2^{k}} \left(\sum_{a=2}^{k-1} O\left(\sum_{s=\min(2,2(a-2),2(k+1-a))}^{\min(2(a-1),2(k+1-a))} c_{in}^{k-s} \cdot c_{out}^{s}\right)\right) \\ &+ \sum_{a=1}^{k} O\left(\sum_{s=1}^{\min(2a-1,2(k-a)+1)} c_{in}^{k-s} \cdot c_{out}^{s}\right) \right) \cdot \left(\frac{\mu}{n} (uW_{:j})^{2} + \frac{\|W_{:j}\|_{2}^{2}}{f}\right) \right] \\ &= O\left(\sum_{k=2}^{K} \theta_{k}^{2} \frac{(k-1)!}{2^{k}}\right) \quad (\text{from Eq. (39)}). \end{aligned}$$

- μ_{z_i} achieves its minimum value, and $\omega_{z_i}^2$ achieves its maximum value when $\lambda = 0$. The expectation of $(1 - \sigma(z_i))^2$ is given by:

 $\mathbb{E}[(1 - \sigma(z_i))^2] = \int_{-\infty}^{\infty} (1 - \sigma(z_i))^2 \cdot \frac{1}{\sqrt{2\pi\omega_{z_i}}} e^{-\frac{(z - \mu_{z_i})^2}{2\omega_{z_i}^2}} dz_i.$

Since the integral decreases with μ_{z_i} and increases with $\omega_{z_i}^2$, we conclude:

(1) $\mathbb{E}[\|\hat{y}_i - y_i\|_F^2]$ and λ : According to Lemma 29 and Lemma 30, we know that:

- μ_{z_i} monotonically decreases, and $\omega_{z_i}^2$ monotonically increases on $\lambda \in [-\sqrt{d}, 0]$;

- μ_{z_i} monotonically increases, and $\omega_{z_i}^2$ monotonically decreases on $\lambda \in [0, \sqrt{d}]$;

$$\begin{aligned} & = \mathbb{E}[(1 - \sigma(z_i))^2] \text{ increases on } \lambda \in [-\sqrt{d}, 0]; \\ & = \mathbb{E}[(1 - \sigma(z_i))^2] \text{ decreases on } \lambda \in [0, \sqrt{d}]; \\ & = \mathbb{E}[(1 - \sigma(z_i))^2] \text{ achieves its maximum value when } \lambda = 0. \\ & \text{Since } \mathbb{E}[\|\hat{y}_i - y_i\|_{L^2}^2] \text{ has the same trend as } \mathbb{E}[(1 - \sigma(z_i))^2], \text{ we observe the same behavior for } \mathbb{E}[\|\hat{y}_i - y_i\|_{L^2}^2] \text{ and } K: \text{ We rewrite } z \text{ as:} \\ & z = \mu_{z_1} + \omega_{z_1}y, \\ & \text{where } y \sim \mathcal{N}(0, 1). \text{ Substituting into Eq. (42), we have:} \\ & \mathbb{E}[(1 - \sigma(z_i))^2] = \int_{-\infty}^{\infty} (1 - \sigma(\mu_{z_1} + \omega_{z_1}y))^2 \frac{1}{\sqrt{2\pi}}e^{-\frac{y^2}{2}} dy. \\ & \text{ (a) If } \mu_{z_1} \text{ increases faster than } \omega_{z_1}^2 \text{ as } K \text{ increases: In this case, z is dominated by } \mu_{z_1}, \text{ and we have:} \\ & \mathbb{E}[(1 - \sigma(z))^2] = \int_{-\infty}^{\infty} (1 - \sigma(\mu_{z_1}))^2 \frac{1}{\sqrt{2\pi}}e^{-\frac{y^2}{2}} dy \\ & = (1 - \sigma(\mu_{z_1}))^2 \\ & \leq 0.25. \\ & \text{ (b) If } \mu_{z_1} \text{ increases slower than } \omega_{z_1}^2 \text{ as } K \text{ increases: In this case, z is dominated by } \omega_{z_1}y, \\ & \text{ and we have:} \\ & \mathbb{E}[(1 - \sigma(z))^2] = \int_{-\infty}^{\infty} (1 - \sigma(\mu_{z_1}))^2 \frac{1}{\sqrt{2\pi}}e^{-\frac{y^2}{2}} dy \\ & = (1 - \sigma(\mu_{z_1}))^2 \\ & = 0.5. \\ & \mathbb{E}[(1 - \sigma(z))^2] = \int_{-\infty}^{\infty} (1 - 0) \cdot \frac{1}{\sqrt{2\pi}}e^{-\frac{y^2}{2}} dy + \int_{0}^{\infty} (1 - 1)^2 \cdot \frac{1}{\sqrt{2\pi}}e^{-\frac{y^2}{2}} dy \\ & = 0.5. \\ & \text{ From this analysis, we conclude:} \\ & - \text{ If } \mu_{z_1} \text{ increases slower than } \omega_{z_1}^2 \text{ as } K \text{ increases, } \mathbb{E}[(1 - \sigma(z))^2] \text{ approaches } 0.5. \\ & \text{ If } m_{z_1} \text{ increases slower than } \omega_{z_1}^2 \text{ as } K \text{ increases, } \mathbb{E}[(1 - \sigma(z))^2] \text{ approaches } 0.5. \\ & \text{ From this analysis, we conclude:} \\ & - \text{ If } \mu_{z_1} \text{ increases slower than } \omega_{z_1}^2 \text{ as } K \text{ increases, } \mathbb{E}[(1 - \sigma(z))^2] \text{ approaches } 0.5. \\ & \text{ From Eq. (40) and Eq. (41), we observe that the dominant terr of $\mu_{z_1} \text{ is } \sum_{k=2}^{k} \theta_k^k \frac{(k_{2}-1)^2}{(k_{2}-1)}, \\ & \text{ while the dominant terr of } \omega_{z_1} \text{ is } \sum_{k=2}^{k} \theta_k^k \frac{(k_{2}-1)^2}{(k_{2}-1)}, \\ & \text{ while the dominant terr of } \omega_{z_1} \text{ is } \sum_{k=2}^{k} \theta_k^k \frac{(k_{2}-1)^2}{(k_{2}-1)}.$$$

2536
2536
$$\zeta_{k} = \mathbb{E}[(A_{ij}^{k}|y_{i} = y_{j})^{2}] + \mathbb{E}[(A_{ij}^{k}|y_{i} \neq y_{j})^{2}]$$

$$= \left(\mathbb{E}[A_{ij}^{k}|y_{i} = y_{j}]\right)^{2} + \mathbb{V}\left[A_{ij}^{k}|y_{i} = y_{j}\right] + \left(\mathbb{E}[A_{ij}^{k}|y_{i} \neq y_{j}]\right)^{2} + \mathbb{V}\left[A_{ij}^{k}|y_{i} \neq y_{j}\right].$$
(43)

According to Theorem 31, we have explicit forms of $\mathbb{E}[A_{ij}^k]$ and $\operatorname{Var}(A_{ij}^k)$ for the cases $y_i = y_j$ and $y_i \neq y_j$. Substituting these into Eq. (43), we get:

$$\zeta_k = \rho_{=}^2 + \rho_{=} + \rho_{\neq}^2 + \rho_{=}^2$$

$$\varsigma_k - \rho_{\pm} + \rho_{\pm} + \rho_{\neq} + \rho_{\neq}$$

 $\int (k-1)! \frac{k+1}{2} \int \min(2(a-1),2(k+1-a))$

$$= \left(\frac{(k-1)!}{n \cdot 2^{k-1}} \sum_{a=2}^{k+1} O\left(\sum_{s=\min(2,2(a-2),2(k+1-a))}^{\min(2(a-1),2(k+1-a))} c_{in}^{k-s} \cdot c_{out}^{s}\right)\right)^{\frac{1}{2}}$$

$$+\frac{(k-1)!}{n\cdot 2^{k-1}}\sum_{a=2}^{k+1}O\left(\sum_{s=\min(2,2(a-2),2(k+1-a))}^{\min(2(a-2),2(k+1-a))}c_{in}^{k-s}\cdot c_{out}^{s}\right)$$

2548
2549
2550
2551
2552

$$a=2$$
 $(s=\min(2,2(a-2),2(k+1-a)))$
 $+\left(\frac{(k-1)!}{n\cdot 2^{k-1}}\sum_{a=1}^{k}O\left(\sum_{s=1}^{\min(2a-1,2(k-a)+1)}c_{in}^{k-s}\cdot c_{out}^{s}\right)\right)$

2552
2553 +
$$\frac{(k-1)!}{\sum} \sum_{k=0}^{k} O\left(\sum_{k=1}^{min(2a-1,2(k-a)+1)} c^{k-s} \cdot c^{k-s}\right)$$

$$+ \frac{(k-1)!}{n \cdot 2^{k-1}} \sum_{a=1}^{k-1} O\left(\sum_{s=1}^{k-s} \cdots c_{in}^{k-s} \cdot c_{out}^{s}\right)$$

Given $c_{in} = d + \lambda \sqrt{d}$ and $c_{out} = d - \lambda \sqrt{d}$, all terms $\rho_{=}^{2} + \rho_{=} + \rho_{\neq}^{2} + \rho_{\neq}$ in ζ_{k} are in the form:

$$g(\lambda) = \sum_{s=1}^{k} (d + \lambda \sqrt{d})^{k-s} \cdot (d - \lambda \sqrt{d})^{s}.$$

According to Lemma 30, functions in this form $q(\lambda)$ strictly increase on $\lambda \in [-\sqrt{d}, 0]$ and strictly decrease on $\lambda \in [0, \sqrt{d}]$. Therefore, ζ_k strictly increases on $\lambda \in [-\sqrt{d}, 0]$ and strictly decreases on $\lambda \in [0, \sqrt{d}]$. When k increases, ζ_k contains more terms, causing it to increase with k in the order of K.

E.4 PROOF OF PROPOSITION 16

Proposition 16. For a fixed K, γ -uniform transductive stability and generalization error bound strictly increase as λ moves from $-\sqrt{d}$ to 0, and decreases as λ moves from 0 to \sqrt{d} . For a fixed λ , if $\sum_{k=2}^{K} \theta_k \frac{(k-1)!}{2^{k-1}} \text{ grows more slowly than } \sum_{k=2}^{K} \theta_k^2 \frac{(k-1)!}{2^k} \text{ as } K \text{ increases, then } \gamma \text{-uniform transductive stability and generalization error bound increase with } K.$

Proof. According to Theorem 6 and Theorem 13, the uniform stability of spectral GNNs depends on the upper bound of the gradient norm β , and

$$\beta = \left(\frac{K+1}{2} + 2fB_{\Theta} + \sum_{k=2}^{K} \frac{f}{d^{2k}} B_{\Theta}\right) \mathbb{E}\left[\|\hat{y}_i - y_i\|_F^2\right]$$
$$+ \left(1 + \frac{1}{d}\right) \left(\left(\frac{B_W^2}{2} + CB_{\Theta}\right) \frac{\mu}{n} \|u\|_F^2 + \frac{B_W^2}{2f} + CB_{\Theta}\right)$$
$$\sum_{k=2}^{K} \left(h_k \left(\left(x_k - x_k^2 - n_k\right) - \frac{B_W^2}{2k} + CB_{\Theta}\right) - \frac{B_W^2}{k}\right)$$

$$+\sum_{k=2}\frac{\zeta_k}{d^{2k}}\left(\left(\mu\|u\|_F^2+\frac{n}{f}\right)\frac{B_W^2}{4}+\left(\mu\|u\|_F^2+1\right)\frac{B_\Theta}{d^{2k}}\right)$$

where $\zeta_k = \rho_{\pm}^2 + \rho_{\pm} + \rho_{\neq}^2 + \rho_{\neq}$, and ρ_{\pm} are the parameters of distribution in Theorem 31. Denote

$$\psi_y = \left(\frac{K+1}{2} + 2fB_\Theta + \sum_{k=2}^K \frac{f}{d^{2k}}B_\Theta\right);$$

$$\psi_1 = \sum_{k=2}^{K} \frac{\zeta_k}{d^{2k}} \left(\left(\mu \|u\|_F^2 + \frac{n}{f} \right) \frac{B_W^2}{4} + \left(\mu \|u\|_F^2 + 1 \right) \frac{B_\Theta}{d^{2k}} \right)$$

We show that the terms $\mathbb{E}\left[\|\hat{y}_i - y_i\|_F^2\right], \psi_y$, and ψ_1 can all be affected by λ, K .

2592	(1)	Term $\mathbb{E}\left[\ \hat{y}_i - y_i\ _F^2\right]$
2595		According to Theorem 14, the expected prediction error $\mathbb{E}\left[\ \hat{u}_i - u_i\ _F^2\right]$ strictly increases
2594		with $\lambda \in [-\sqrt{d}, 0]$ and decreases with $\lambda \in [0, \sqrt{d}]$. In addition, it increases with K when
2595		$\sum_{k=1}^{K} \theta_{k} \frac{(k-1)!}{(k-1)!}$ grows slower than $\sum_{k=1}^{K} \theta_{k} \frac{(k-1)!}{(k-1)!}$
2590		$\sum_{k=2} v_k \frac{1}{2^{k-1}}$ grows slower than $\sum_{k=2} v_k \frac{1}{2^k}$.
2598	(2)	Term ψ_y
2599		As $\psi_{k} = \left(\frac{K+1}{2} + \sum_{i=1}^{K} \theta_{k} f\right)$ which does not contain λ the class distribution has no
2600		effect on ψ It also increases with order K
2601		enert on ψ_y . It also increases with order X .
2602	(3)	Terms ψ_1
2603		According to Theorem 15, ζ_k strictly increases on $\lambda \in [-\sqrt{d}, 0]$, decreases on $\lambda \in [0, \sqrt{d}]$
2604		and it increases with order K .
2605		Since all the other elements in ψ_1 except ζ_k are positive, ψ_1 and ζ_k has same trend when λ
2606		and K changes.
2607		
2608	Acc	ording to Proposition 12, we have
2609		$\lambda \in [0, \sqrt{d}] \Leftrightarrow H$, $\in [0, 5, 1]$ and $\lambda \in [-\sqrt{d}, 0] \Leftrightarrow H$, $\in [0, 0, 5]$
2610		$\Lambda \subset [0, \forall u] \Leftrightarrow \Pi_{edge} \subset [0.0, 1] \text{ and } \Lambda \subset [-\forall u, 0] \Leftrightarrow \Pi_{edge} \subset [0, 0.0].$
2611	Acc	ording to Theorem 9, any factors affecting γ affect the generalization error bound. Thus, we
2612	conclud	le the following cases:
2613		
2614	(a)	uniform transductive stability γ , generalization error bound and λ
2615		From the above analysis, we know that ϕ_y is not affected by λ , and terms $\mathbb{E}\left[\ \hat{y}_i - y_i\ _F^2\right]$,
2616		ψ_1 strictly increase on $\lambda \in [-\sqrt{d}, 0]$ and decrease on $\lambda \in [0, \sqrt{d}]$. According to Theorem 6
2017		and Theorem 9, this shows that the stability decreases and the generalization error bound
2010		increases when $H_{edge} \in (0, 0.5]$. The stability increases and the generalization error bound
2019		decreases when $H_{edge} \in [0, 5, 1)$. Spectral GNNs are stable and generalize well on strong
2621		homophilic and heterophilic graphs.
2622	(b)	uniform transductive stability γ , generalization error bound, and K
2623		From the above analysis, we know that terms ϕ_y, ψ_1 increase with K. According to Theo-
2624		rem 14, when the condition $\sum_{k=2}^{K} \theta_k \frac{(k-1)!}{2^{k-1}}$ grows slower than $\sum_{k=2}^{K} \theta_k^2 \frac{(k-1)!}{2^k}$ is satisfied,
2625		the expected prediction error $\mathbb{E}\left[\ \hat{y}_i - y_i\ _F^2\right]$ increases with K.
2626		Therefore, when above condition is satisfied, the gradient norm bound β increase with K.
2627		According to Theorem 6 and Theorem 9, this indicates that the uniform transductive stability
2628		γ and generalization error bound also increases with K.
2629		_
2630		
2631		
2632	E D	etali s de Evdediments
2633		ETAILS OF EXPERIMENTS
2634	F.1 D	ATASETS
2636	The sto	tistical properties of real-world datasets, including the number of nodes, edges, feature
2637	dimens	ions, node classes, and edge homophily ratios, are summarized in Table 2 and Table 3. We
2638	use the	directed and cleaned versions of the Chameleon and Squirrel datasets provided by (Platonov
2639	et al., 2	023), where repeated nodes have been removed.
2640		
2641	F.2 S	pectral GNNs

²⁶⁴² In the literature, there are generally two kinds of architectures for spectral GNNs:

• Early spectral GNNs architecture: It is given by $Y = X_L$, $X_l = \alpha \left(\sum_{k=1}^{K} M^k X_{l-1} H_{lk} \right)$, where M is a graph matrix, X_l is the feature at the *l*-th layer, $H_{lk} \in \mathbb{R}^{f_l \times f_{l-1}}$, f_l is

-	Statistics	Texas	Wisconsin	Cornell	Actor	Chameleon	Squirrel	Citeseer	Pubmed	Cora
	# Nodes	183	251	183	7,600	890	2,223	3,327	19,717	2,708
	# Edges # Features	295	466	295	26,752	27,168	131,436	4,676	44,327	5,278
	# Classes	5	5	5	5	5	6	5	500 7	1,455
	Edge Homophily	0.11	0.21	0.22	0.24	0.22	0.74	0.8	0.81	
			Table	2: Statis	stics of re	al-world da	itasets.			
			Stat	tistics	OGBN-Ar	xiv OGBN-	Products			
			# N	lodes	169,343	2,44	9,029			
			# E # Fe	dges atures	2,315,598	3 61,85 1	9,140 00			
			# C	lasses	40	4	7			
			Edge H	omophily	0.65	0.	81			
			Tab	le 3. Stat	tistics of (OGBN data	isets			
			iuo	10 51 514		o o bi v dud				
	the feat	ture dir	nension of	the <i>l</i> -th	layer, an	d α is an a	activation	function	. This de	escribes
	the arc	hitectur	e of earlier	r spectra	l GNNs,	such as G	$CN (M^k)$	$= D^{-1/2}$	$^{2}(I + A)$	$D^{-1/2}$)
	and Ch	lebNet	(where M^{μ}	^k represe	ents the C	Chebyshev	polynom	ial basis	expanded	l on the
	normal	ized gra	iph Laplaci	an matrix	x).					
	 Modern 	n spectr	al GNNs a	rchitectu	re: Recer	nt advances	in spectr	al GNNs	do not a	dhere to
	this mu	lti-laye	r architectu	re. Inste	ad, state-o	of-the-art s	pectral Gl	NNs emp	loy a sing	le-layer
	structur	re as de	scribed in E	Eq. (1) of	our pape	r:				
				$\Psi(M$	$(X) = \sigma$	$(a_{O}(M)f_{M})$	(X)			
				+ (1)1	,,=0	(98(11))/	(21))			
	where	$M \in \mathbb{I}$	$\mathbb{R}^{n imes n}$ is a g	graph ma	atrix (e.g.	, Laplacia	n or adja	cency ma	ttrix), g_{Θ}	(M) =
	$\sum_{k=0}^{K} \ell$	$\theta_k T_k(N)$	() perform	s graph o	convoluti	on using th	he k -th po	olynomia	l basis T_{l}	$_{k}(\cdot)$ and
	learnab	le para	meters $\Theta =$	$= \{\theta_k\}_{k=1}^K$	$f_{W}(X)$) is a featu	re transfo	rmation J	parameter	rized by
	W, and	σ is a i	non-linear a	ctivation	function	(e.g., softn	nax). Reco	ent spectr	al GNNs,	such as
	GPRG	NN, Jac	obiConv, B	ernNet, (ChebBase	, and Cheb	NetII, add	opt this ar	chitecture	e (Chien
	et al., 2	2021; W	ang & Zha	ing, 2022	2; He et a	1., 2021; 2	022b), an	d it serve	s as the b	asis for
	theoret	icai ana	iysis of spe	ctrai GN	uns (wan	$g \propto znang$, 2022; Ba	aichar et a	u., 2021).	

We study spectral GNNs with modern architecture. We detail the spectral GNNs used in our experiments below. For a graph with adjacency matrix A, degree matrix D, and identity matrix I, we define the following matrices: the normalized Laplacian matrix $\hat{L} = I - D^{-1/2}AD^{-1/2}$, the shifted normalized Laplacian matrix $\tilde{L} = -D^{-1/2}AD^{-1/2}$, the normalized adjacency matrix $\tilde{A} = D^{-1/2}AD^{-1/2}$, and the normalized adjacency matrix with self-loops $\tilde{A}' = (D + I)^{-1/2}(A + I)(D + I)^{-1/2}$.

ChebNet (Defferrard et al., 2016): This model uses the Chebyshev basis to approximate a spectral filter:

$$\hat{Y} = \sum_{k=0}^{K} \theta_k T_k(\tilde{L}) f_W(X)$$

where X is the raw feature matrix, $\Theta = [\theta_0, \theta_1, \dots, \theta_K]$ is the graph convolution parameter, W is the feature transformation parameter and $f_W(X)$ is usually a 2-layer MLP. $T_k(\tilde{L})$ is the k-th Chebyshev basis expanded on the shifted normalized graph Laplacian matrix \tilde{L} and is recursively calculated:

2695 $T_0(\tilde{L}) = I$ 2696 $T_1(\tilde{L}) = \tilde{L}$

2685 2686

2687

- 2698 $T_k(\tilde{L}) = 2\tilde{L}T_{k-1}(\tilde{L}) T_{k-2}(\tilde{L})$ 2699
 - 50

ChebNetII (He et al., 2022a): The model is formulated as

where X is the input feature matrix, W is the feature transformation parameter, $f_W(X)$ is usually a 2-layer MLP, $T_k(\cdot)$ is the k-th Chebyshev basis expanded on $\cdot, x_i = \cos\left((j+1/2)\pi/(K+1)\right)$ is the *j*-th Chebyshev node, which is the root of the Chebyshev polynomials of the first kind with degree K + 1, and θ_i is a learnable parameter. Graph convolution parameter in ChebNet is reparameterized with Chebyshev nodes and learnable parameters θ_i .

 $\hat{Y} = \frac{2}{K+2} \sum_{k=0}^{K} \sum_{j=0}^{K} \theta_j T_k(x_j) T_k(\tilde{L}) f_W(X),$

JacobiConv (Wang & Zhang, 2022): This model uses the Jacobi basis to approximate a filter as:

$$\hat{Y} = \sum_{k=0}^{K} \theta_k T_k^{a,b}(\tilde{A}) f_W(X)$$

where X is the input feature matrix, $\Theta = [\theta_0, \theta_1, \dots, \theta_K]$ is the graph convolution parameter, W is the feature transformation parameter and $f_W(X)$ is usually a 2-layer MLP. $T_k^{a,b}(\tilde{A})$ is the Jacobi basis on normalized graph adjacency matrix \tilde{A} and is recursively calculated as

$$T_k^{a,b}(\tilde{A}) =$$

$$T_k^{a,b}(\tilde{A}) = \frac{1-b}{2}I + \frac{a+b+2}{2}\tilde{A}$$

$$T_{k}^{a,b}(\tilde{A}) = \gamma_{k}\tilde{A}T_{k-1}^{a,b}(\tilde{A}) + \gamma_{k}'T_{k-1}^{a,b}(\tilde{A}) + \gamma_{k}''T_{k-2}^{a,b}(\tilde{A})$$

where $\gamma_k = \frac{(2k+a+b)(2k+a+b-1)}{2k(k+a+b)}, \gamma'_k = \frac{(2k+a+b-1)(a^2-b^2)}{2k(k+a+b)(2k+a+b-2)}, \gamma''_k = \frac{(k+1-1)(k+b-1)(2k+a+b)}{k(k+a+b)(2k+a+b-2)}.$ and b are hyper-parameters. Usually, grid search is used to find the optimal a and b values.

GPRGNN (Chien et al., 2021): This model uses the monomial basis to approximate a filter:

$$\hat{Y} = \sum_{k=0}^{K} \theta_k \tilde{A}'^k f_W(X)$$

where X is the input feature matrix, $\Theta = [\theta_0, \theta_1, \dots, \theta_K]$ is the graph convolution parameter, W is the feature transformation parameter and $f_W(X)$ is usually a 2-layer MLP. \tilde{A}' is the normalized adjacency matrix with self-loops.

BernNet (He et al., 2021): This model uses the Bernstein basis for approximation:

$$\hat{Y} = \sum_{k=0}^{K} \theta_k \frac{1}{2^K} {K \choose k} (2I - \hat{L})^{K-k} \hat{L}^k f_W(X)$$

where X is the input feature matrix, $\Theta = [\theta_0, \theta_1, \dots, \theta_K]$ is the graph convolution parameter, W is the feature transformation parameter and $f_W(X)$ is usually a 2-layer MLP. \hat{L} is the normalized Laplacian matrix.

F.3 HYPER-PARAMETER SETTINGS

All experiments were conducted on an NVIDIA RTX A6000 GPU with 48GB of memory.

We employ a two-layer Multi-Layer Perceptron (MLP) with a hidden layer size of 64 for the feature transformation function f_W , using ReLU as the activation function across all spectral GNN models.

Following (Tang & Liu, 2023a; Cong et al., 2021), the dropout rate and weight decay are set to 0.0. The Adam optimizer is used for optimization. Each experiment runs for a maximum of 300 iterations and is repeated 10 times to report the mean and variance of the results. A grid search is conducted to determine the best learning rate from $\{0.05, 0.01, 0.001\}$.

F.4 DETAILED EXPERIMENTAL RESULTS

2757										
2758	H_{edge}	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
2759	ChebNet	94.92±0.24	86.08±0.43	81.09±0.63	75.11±0.73	72.69±0.66	74.66±0.65	79.62±0.78	86.03±0.6	94.64±0.39
2760 2761	Acc Gap Loss Gap	5.08±0.24 0.64±0.07	13.92±0.41 3.15±0.14	18.91±0.57 3.72±0.2	24.89±0.72 5.42±0.24	27.3±0.62 5.88±0.5	25.34±0.68 6.01±0.27	20.38±0.74 4.62±0.3	13.97±0.61 3.04±0.18	5.36±0.41 0.98±0.06
2762	ChebNetII	92.19±0.51	85.03±0.58	79.83±0.43	77.55±0.64	77.34±0.54	77.7±0.57	78.22±0.73	83.68±0.41	91.43±0.48
2763 2764	Acc Gap Loss Gap	7.81±0.47 0.66±0.07	14.97±0.58 1.84±0.11	20.17±0.41 3.55±0.21	22.45±0.66 4.77±0.26	22.66±0.49 4.86±0.13	22.3±0.57 4.64±0.21	21.77±0.71 4.23±0.33	16.32±0.44 2.14±0.17	8.57±0.47 0.72±0.05
2765	JacobiConv	89.25±3.35	77.23±4.51	77.19±0.66	77.0±0.55	79.06±0.61	80.2±0.57	84.64±0.39	90.48±0.24	96.91±0.24
2766 2767	Acc Gap Loss Gap	10.71±2.86 0.69±0.26	22.73±4.36 1.58±0.45	22.8±0.67 4.08±0.21	23.0±0.54 4.33±0.14	20.94±0.61 5.36±0.33	19.8±0.6 1.95±0.13	15.36±0.41 1.58±0.13	9.51±0.24 0.99±0.06	3.09±0.25 0.16±0.01
2768	GPRGNN	90.33±0.57	87.06±0.64	81.71±0.41	77.03±0.47	77.23±0.65	79.52±0.59	82.72±0.52	89.25±0.5	96.45±0.18
2769 2770	Acc Gap Loss Gap	9.66±0.54 1.42±0.08	12.94±0.67 2.21±0.14	18.29±0.42 3.27±0.2	22.96±0.49 4.72±0.19	22.77±0.64 5.17±0.13	20.48±0.6 4.7±0.25	17.27±0.52 3.7±0.47	10.75±0.54 2.4±0.32	3.55±0.2 1.05±0.11
2771	BernNet	87.44±0.5	82.92±0.67	79.3±0.44	77.69±0.53	77.97±0.54	77.49±0.72	76.58±0.79	79.73±1.3	85.68±1.05
2772 2773	Acc Gap Loss Gap	12.55±0.5 1.2±0.06	17.08±0.76 2.45±0.21	20.7±0.44 3.69±0.16	22.31±0.54 4.77±0.24	22.03±0.55 4.72±0.15	22.51±0.64 4.7±0.17	23.41±0.8 4.35±0.35	20.27±1.39 2.92±0.31	14.32±1.06 1.36±0.14

Table 4: Testing accuracy, accuracy gap, loss gap of spectral GNNs on synthetic datasets with edge homophilic ratio $H_{edge} \in [0.1, 0.9]$. Small accuracy and loss gaps imply good generalization capability.

2785										
2786	Datasets	Texas	Wisconsin	Actor	Squirrel	Chameleon	Cornell	Citeseer	Pubmed	Cora
2787	ChebNet	40.82±7.25	52.23±3.77	26.63±0.53	30.08±1.14	33.94±1.58	44.88±6.19	64.16±0.82	84.74±0.37	74.95±0.96
2788 2789	Acc Gap Loss Gap	59.18±6.94 5.91±0.66	47.77±3.92 5.77±0.87	73.26±0.54 21.64±0.8	69.92±1.28 35.68±2.33	66.06±1.52 36.17±3.04	55.12±5.95 6.57±0.82	35.82±0.75 4.68±0.22	15.25±0.37 1.44±0.06	25.05±0.92 3.9±0.29
2790	ChebNetII	77.55±5.71	74.38±3.08	27.94±0.36	28.1±1.82	38.45±1.63	73.69±5.12	65.85±0.52	84.7±0.3	74.0±0.8
2791	Acc Gap Loss Gap	22.45±5.2 1.1±0.27	25.62±3.31 1.39±0.32	71.94±0.33 20.16±0.76	71.83±1.77 27.56±2.88	61.47±1.53 19.33±1.68	26.31±5.0 1.7±0.3	34.12±0.48 2.66±0.09	15.16±0.28 1.13±0.09	26.0±0.75 2.14±0.09
2792	JacobiConv	78.06±5.31	77.62±2.92	27.89±0.63	26.78±1.28	32.2±2.08	80.41±3.98	73.56±0.64	86.33±0.47	84.31±0.49
2793 2794	Acc Gap Loss Gap	21.94±5.41 0.94±0.26	22.38±2.85 1.19±0.22	71.97±0.66 31.67±0.86	50.85±11.88 32.75±11.57	63.82±9.46 38.77±7.16	19.59±4.18 0.91±0.16	26.41±0.65 2.16±0.06	10.87±1.45 0.51±0.14	15.69±0.5 1.28±0.09
2795	GPRGNN	46.84±6.22	72.08±3.23	26.29±0.65	29.91±1.19	34.28±1.58	61.33±6.12	72.89±0.62	85.42±0.4	84.37±0.51
2796 2797	Acc Gap Loss Gap	53.16±6.12 3.35±0.83	27.92±2.92 1.6±0.31	71.52±4.82 29.22±2.69	70.09±1.09 35.34±5.58	65.72±1.69 29.88±2.22	38.67±6.43 2.2±0.53	27.08±0.67 3.32±0.16	14.58±0.37 1.24±0.09	15.63±0.54 1.54±0.1
2798	BernNet	75.92±5.31	81.85±2.23	27.28±0.76	33.42±1.14	33.72±1.38	81.43±3.46	67.17±0.59	84.82±0.25	73.39±0.87
2799 2800	Acc Gap Loss Gap	24.08±5.41 1.24±0.31	18.15±2.16 0.87±0.26	72.61±0.71 24.68±0.71	66.58±1.11 28.17±1.47	66.28±1.33 27.83±1.75	18.57±3.57 1.06±0.18	32.8±0.57 2.66±0.09	14.95±0.45 1.13±0.13	26.61±0.87 2.18±0.08

Table 5: Testing accuracy, accuracy gap, loss gap of spectral GNNs on real world datasets with edge homophilic ratio $H_{edge} \in [0.11, 0.81]$. Small accuracy and loss gaps imply good generalization capability.

2810											
2811											
2812											
2813	Order K	1	2	3	4	5	6	7	8	9	10
2814	ChebNet	87.31±0.3	89.11±0.31	88.48±0.49	84.19±0.9	71.3±3.0	$79.58{\scriptstyle \pm 0.52}$	80.77±0.62	76.21±0.51	$82.94{\scriptstyle\pm0.48}$	86.08±0.41
2815	Acc Gap Loss Gap	12.7±0.32 2.2±0.09	10.89±0.31 1.76±0.07	11.52±0.5 1.9±0.14	15.8±0.92 2.84±0.27	28.7±3.54 7.2±1.45	20.42±0.51 3.88±0.2	19.23±0.57 3.08±0.21	23.79±0.47 3.79±0.26	17.06±0.45 3.8±0.11	13.92±0.42 3.15±0.14
2816	ChebNetII	85.92±0.56	80.1±0.99	82.65±0.7	85.56±0.45	84.64±0.8	84.62±0.59	85.27±0.51	86.2±0.64	86.39±0.5	85.03±0.57
2817 2818	Acc Gap Loss Gap	14.07±0.53 1.94±0.08	19.9±1.02 3.23±0.31	17.35±0.73 2.62±0.14	14.44±0.45 2.06±0.14	15.36±0.87 1.94±0.21	15.38±0.6 1.95±0.17	14.73±0.5 1.99±0.15	13.79±0.6 1.75±0.14	13.61±0.49 1.83±0.11	14.97±0.58 1.84±0.11
2819	JacobiConv	77.44±0.67	80.51±0.48	49.44±1.12	39.85±1.91	48.81±2.65	47.73±7.63	60.29±7.48	67.53±7.95	68.03±9.15	77.23±4.79
2820	Acc Gap Loss Gap	22.55±0.62 5.72±0.19	19.49±0.46 5.8±0.26	50.56±1.18 8.81±0.79	60.13±1.98 12.63±1.22	51.19±2.63 7.3±1.01	52.25±7.08 8.23±1.77	39.7±7.32 4.98±1.23	32.45±7.76 3.42±1.39	31.96±9.19 3.33±1.32	22.73±4.82 1.58±0.48
2021	GPRGNN	83.61±0.66	86.14±0.29	79.44±1.05	88.36±0.28	87.25±0.5	88.0±0.39	87.57±0.47	87.5±0.3	87.17±0.3	87.06±0.59
2823	Acc Gap Loss Gap	16.39±0.69 2.37±0.11	13.86±0.29 2.21±0.1	20.56±1.06 3.18±0.19	11.63±0.29 1.83±0.1	12.76±0.49 2.14±0.2	12.01±0.32 1.93±0.09	12.43±0.48 2.06±0.13	12.49±0.33 2.12±0.09	12.84±0.29 2.19±0.13	12.94±0.68 2.21±0.14
2824	BernNet	82.76±0.72	81.14±0.41	81.21±0.57	81.47±0.6	81.77±0.66	82.11±0.75	82.32±0.88	82.55±0.84	82.8±0.81	82.92±0.79
2825 2826	Acc Gap Loss Gap	17.24±0.71 2.45±0.17	18.86±0.39 3.02±0.11	18.79±0.56 2.95±0.21	18.53±0.7 2.84±0.2	18.23±0.62 2.75±0.21	17.89±0.85 2.65±0.21	17.68±0.84 2.59±0.22	17.45±0.79 2.54±0.2	17.2±0.79 2.49±0.21	17.08±0.7 2.45±0.21

Table 6: Testing accuracy, accuracy gap, loss gap of spectral GNNs on synthetic dataset of edge homophilic ratio $H_{edge} = 0.2$ when $K \in [1, 10]$. Small accuracy and loss gaps imply good generalization capability.

0											
	Order K	1	2	3	4	5	6	7	8	9	10
	ChebNet	83.78±2.45	80.61±4.59	80.51±3.47	61.73±5.0	63.37±8.57	36.33±5.72	44.18±5.0	24.39±2.14	30.2±4.8	40.82±7.35
	Acc Gap	16.22±2.45	19.39±4.8	19.49±3.78	38.27±5.0	36.63±7.86	63.67±6.12	55.82±5.0	75.61±2.24	69.8±5.0	59.18±7.15
	Loss Gap	1.49±0.44	1.26±0.44	1.48±0.31	2.77±0.53	3.08±0.59	8.98±0.68	6.09±0.72	7.99±0.93	9.0±1.03	5.91±0.69
	ChebNetII	80.41±3.98	75.41±5.72	76.53±4.29	76.53±4.59	76.94±5.0	78.78±5.61	78.88±5.2	77.45±4.9	76.94±5.72	77.55±5.51
	Acc Gap	19.59±3.78	24.59±5.2	23.47±4.59	23.47±4.49	23.06±4.8	21.22±5.61	21.12±5.82	22.55±4.49	23.06±5.61	22.45±5.31
	Loss Gap	0.74±0.14	1.2±0.44	1.15±0.29	1.28±0.3	1.23±0.33	1.11±0.29	1.16±0.26	1.21±0.29	1.24±0.27	1.1±0.27
	JacobiConv	52.24±5.41	80.92±3.78	75.31±5.31	74.39±3.78	79.08±3.67	78.67 ± 4.08	80.0±3.06	73.67±6.33	77.65±5.41	78.06±5.61
	Acc Gap	47.76±5.31	19.08±3.98	24.69±5.0	25.61±3.67	20.92±3.47	21.33±3.67	20.0±3.06	26.33±6.84	22.35±5.1	21.94±5.41
	Loss Gap	2.54±0.42	0.89±0.2	1.1±0.25	1.18±0.27	0.9±0.17	0.97±0.16	0.93±0.13	1.22±0.39	0.97±0.26	0.94±0.24
	GPRGNN	53.88±4.8	49.18±5.1	46.73±5.82	45.82±6.64	46.12±5.41	45.61±5.2	46.43±4.59	46.12±5.0	47.55±4.8	46.84±6.22
	Acc Gap	46.12±4.9	50.82±5.31	53.27±5.61	54.18±6.63	53.88±5.72	54.39±5.2	53.57±4.9	53.88±4.9	52.45±5.1	53.16±6.43
	Loss Gap	2.6±0.44	3.21±0.53	3.5±0.67	3.6±0.63	3.58±0.63	3.51±0.64	3.47±0.48	3.44±0.61	3.22±0.73	3.35±0.83
	BernNet	76.73±3.67	75.92±2.45	75.61±3.67	77.04±3.88	77.14±4.39	75.2±4.7	74.9±5.72	75.2±5.2	74.8±5.92	75.71±5.71
	Acc Gap	23.27±3.67	24.08±2.65	24.39±3.57	22.96±3.98	22.86±4.29	24.8±4.69	25.1±5.2	24.8±5.61	25.2±6.02	24.29±5.61
	Loss Gap	0.96±0.22	0.95±0.18	1.01±0.17	1.02 ± 0.21	1.06±0.21	1.13±0.25	1.19±0.31	1.18±0.26	1.27±0.34	1.25±0.31

Table 7: Testing accuracy, accuracy gap, loss gap of spectral GNNs on Texas dataset of edge homophilic ratio $H_{edge} = 0.11$ when $K \in [1, 10]$. Small accuracy and loss gaps imply good generalization capability.