
A Unified Generalization Analysis of Re-Weighting
and Logit-Adjustment for Imbalanced Learning

Zitai Wang1,2 Qianqian Xu3∗ Zhiyong Yang4

Yuan He5 Xiaochun Cao6 Qingming Huang4,3,7∗
1 SKLOIS, Institute of Information Engineering, CAS

2 School of Cyber Security, University of Chinese Academy of Sciences
3 Key Lab. of Intelligent Information Processing, Institute of Computing Tech., CAS

4 School of Computer Science and Tech., University of Chinese Academy of Sciences
5 Alibaba Group

6 School of Cyber Science and Tech., Shenzhen Campus of Sun Yat-sen University
7 BDKM, University of Chinese Academy of Sciences
wangzitai@iie.ac.cn xuqianqian@ict.ac.cn

yangzhiyong21@ucas.ac.cn heyuan.hy@alibaba-inc.com
caoxiaochun@mail.sysu.edu.cn qmhuang@ucas.ac.cn

Abstract

Real-world datasets are typically imbalanced in the sense that only a few classes
have numerous samples, while many classes are associated with only a few samples.
As a result, a naïve ERM learning process will be biased towards the majority
classes, making it difficult to generalize to the minority classes. To address this
issue, one simple but effective approach is to modify the loss function to emphasize
the learning on minority classes, such as re-weighting the losses or adjusting the
logits via class-dependent terms. However, existing generalization analysis of such
losses is still coarse-grained and fragmented, failing to explain some empirical
results. To bridge this gap, we propose a novel technique named data-dependent
contraction to capture how these modified losses handle different classes. On top
of this technique, a fine-grained generalization bound is established for imbalanced
learning, which helps reveal the mystery of re-weighting and logit-adjustment in a
unified manner. Furthermore, a principled learning algorithm is developed based
on the theoretical insights. Finally, the empirical results on benchmark datasets not
only validate the theoretical results but also demonstrate the effectiveness of the
proposed method.

1 Introduction

In recent years, machine learning has achieved great success with the help of well-collected datasets,
where the number of samples is artificially balanced among classes [1, 2]. However, the real-world
datasets are generally imbalanced in the sense that only a few classes have numerous samples (i.e.,
the majority ones), while the others are associated with only a few samples (i.e., the minority ones)
[3–5]. Owing to this issue, a naïve Empirical Risk Minimization (ERM) learning process will be
biased towards the majority classes, and the generalization on the minority ones becomes challenging.
Hence, the imbalanced learning problem has attracted increasing attention in recent years [6–9].

One simple yet effective approach for imbalanced learning is to modify the naïve loss function, such
that the learning process can pay more attention to the minority classes (Please refer to Appendix A for
more orthogonal approaches). In this direction, existing approaches generally fall into two categories:
re-weighting [10, 11] and logit-adjustment [12–16]. The former category assigns larger weights to
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the losses of the minority classes. Although intuitive, this approach might lead to difficulties and
instability in optimization [11, 12, 17]. To tackle this issue, Cao et al. [12] propose an effective
scheme named Deferred Re-Weighting (DRW), where the re-weighting approach is applied only
during the terminal phase of training. The latter category adjusts the logits by class-dependent
terms. For example, the Label Distribution Aware Margin (LDAM) loss enforces larger margins for
minority classes to achieve strong regularization [12]. The Logit-Adjustment (LA) loss [13] and the
Class-Dependent Temperatures (CDT) loss [14] utilize additive and multiplicative terms to adjust the
logits, respectively. Most recently, Kini et al. [16] combine the two types of terms and proposes a
unified loss named Vector-Scaling (VS) for imbalanced learning.

Although existing loss-modification methods have achieved promising performance, the theoretical
insights are still fragmented and coarse-grained. To be specific, Cao et al. [12] and Ren et al. [18]
utilize the classic margin theory to explain the necessity of the additive terms in the LDAM loss.
However, the theory fails to explain the significant improvement induced by the DRW scheme. Menon
et al. [13] analyzes the Fisher consistency property [19] of the additive terms in the LA loss, while
providing no further generalization analysis. Kini et al. [16] provides a generalization analysis of the
VS loss, but the results can only explain the role of the multiplicative terms under the assumption
that a linear model is trained on linearly separable data. Besides, we find that the VS loss is rather
incompatible with the DRW scheme, which is also out of the scope of existing theory. Hence, a gap
still exists between the theory and the practice of the loss-modification approaches.

To bridge this gap, this paper provides a systematical and fine-grained analysis of loss-modification
approaches. After revisiting prior arts, we find that the only property of the loss function utilized in
existing proofs is the classic Lipschitz continuity [19, 20]. However, this property is global in nature
such that the whole analysis provides no insight into how the losses handle different classes. Inspired
by this observation, we extend the classic Lipschitz continuity with a local technique. In this way,
the local Lipschitz constants on different classes exactly correspond to the class-dependent terms
of the modified loss functions. And a fine-grained generalization bound is established by a novel
technique named data-dependent contraction. By applying this bound to the VS loss, the mystery
of re-weighting and logit-adjustment is finally uncovered. Last but not least, a principled learning
algorithm is proposed based on our theoretical insights.

To sum up, the main contributions of this paper are listed as follows:

• New technique. We extend the classic Lipschitz continuity and propose a novel technique named
data-dependent contraction to obtain a fine-grained generalization bound for imbalanced learning.

• Theoretical insights. Based on the fine-grained bound, a systematical analysis succeeds in explain-
ing the role of re-weighting and logit-adjustment in a unified manner, as well as some empirical
results that are out of the scope of existing theories.

• Principled Algorithm. A principled algorithm is proposed based on the insights, where the re-
weighting term is aligned with the generalization bound, and the multiplicative logit-adjustment
term is removed during the DRW phase to avoid the incompatibility between terms.

• Empirical Validation. The empirical results on multiple benchmark datasets not only validate the
theoretical results, but also demonstrate the superiority of the proposed method.

2 Preliminary

We first introduce the basic notations and the imbalanced learning problem in Sec.2.1. Then, we
briefly review existing generalization analysis for imbalanced learning in Sec.2.2.

2.1 Notations and Problem Definition

We assume that the samples are drawn i.i.d. from a product space Z = X × Y , where X is the input
space and Y = {1, · · · , C} is the label space. Let S = {(x(n), y(n))}Nn=1 be the imbalanced training
set sampled from the imbalanced distribution D defined on Z , Sy = {x | (x, y) ∈ S} be the set
of samples from the class y, Ny := |Sy| denote the size of Sy, and πy := Ny/N . Without loss of
generality, we assume that N1 ≥ N2 ≥ · · · ≥ NC .

Let Dbal be the balanced distribution defined on Z . Specifically, a class y is first uniformly sampled
from Y , and then the input x is sampled from the class-conditional distribution Dy := P [x | y].
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Then, our task is to learn a score function f : X → RC to minimize the risk defined on the balanced
distribution:

Rbal(f) :=
1

C

C∑
y=1

Ry(f) =
1

C

C∑
y=1

E
x∼Dy

[M(f(x), y)] , (1)

where Ry is the risk defined on the class y, and M : RC × Y → R+ is the measure that evaluates
the model performance at z ∈ Z . For example, one of the most popular choices is to check whether
the top-1 prediction is right: M(f(x), y) = 1 [y /∈ arg maxy′∈Y f(x)y′ ], where 1 [·] is the indicator
function. Since M is generally non-differential and thus hard to optimize, one has to select a
differential surrogate loss L : RC × Y → R+, which induces the following surrogate risk:

RLbal(f) :=
1

C

C∑
y=1

RLy (f) =
1

C

C∑
y=1

E
x∼Dy

[L(f(x), y)] . (2)

Let G := {L ◦ f : f ∈ F} denote the hypothesis set. Next, we consider a family of loss functions
named Vector-Scaling (VS) [16]:

LVS(f(x), y) = −αy log

(
eβyf(x)y+∆y∑
y′ e

βy′f(x)y′+∆y′

)
. (3)

The advantage behind this loss family is two-fold. On one hand, the VS loss generalizes popular
re-weighting and logit-adjustment methods. For example, when αy = 1, βy = 1,∆y = 0, it
becomes the traditional CE loss [19]. When βy = 1,∆y = 0, re-weighting terms αy = π−1

y and
αy = (1 − p)/(1 − pNy ), p ∈ (0, 1) recover the classic balanced loss [10] and Class-Balanced
(CB) loss [11], respectively. αy = 1, βy = 1,∆y = τ log πy, τ > 0 yield the LA loss [13]. When
α1 = 1, βy = (Ny/N1)γ ,∆y = 0, γ > 0, we can deduce the CDT loss [14]. On the other hand, an
ideal surrogate loss should be Fisher consistent such that minimizingRLbal(f) not only can put more
emphasis on minority classes, but also helps bound Rbal(f) [19, 21]. Fortunately, prior arts [13]
have shown that a subset of the VS loss family satisfies such a property:

LFisher(f(x), y) :=
δy
πy

log[1 +
∑
y′ 6=y

δy′

δy
ef(x)y′−f(x)y ], (4)

where δy is an arbitrary positive constant.

2.2 Existing Generalization Analysis for Imbalanced Learning

In balanced learning, we can directly minimize the empirical balanced risk defined on the balanced
datasets Sbal sampled from Dbal:

R̂Lbal(f) :=
1

N

∑
(x,y)∈Sbal

L(f(x), y). (5)

Then, the generalization guarantee is available by traditional concentration techniques [19]. However,
in imbalanced learning, we can only minimize the empirical risk on the imbalanced dataset S:

R̂L(f) :=
1

N

∑
(x,y)∈S

L(f(x), y). (6)

To handle this issue, Cao et al. [12] and Ren et al. [18] aggregate the class-wise generalization bound
directly with a union bound over class-wise results [19]:
Proposition 1 (Union bound for Imbalanced Learning [12]). Given the function set F and a loss
function L : RC × Y → [0,M ], then for any δ ∈ (0, 1), with probability at least 1 − δ over the
training set S, the following generalization bound holds for all g ∈ G:

RLbal(f) =
1

C

C∑
y=1

RLy (f) -
1

C

C∑
y=1

(
R̂Ly (f) + ĈSy (G) + 3M

√
log 2C/δ

2Ny

)
, (7)

where R̂Ly (f) is the empirical risk on Sy; ĈS(G) := Eξ[supg∈G
1
N

∑N
n=1 ξ

(n)g(z(n))] denotes
the empirical complexity of the function set G, and ξ := (ξ(1), ξ(2), · · · , ξ(N)) are sampled from
independent distributions such as the uniform distribution with {1,−1}; - denotes the asymptotic
notation that omits undominated terms, that is, f(t) - g(t)⇐⇒ ∃ a constant C > 0, f(t) ≤ C ·g(t).
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To further bound the complexity term ĈSy (G), Cao et al. [12] assume that the loss function L satisfies
the Lipschitz continuity and applies the traditional contraction lemma [20]:
Definition 1 (Lipschitz Continuity). Let ‖ · ‖ denote the 2-norm. Then, we say the loss function
L(f, y) is Lipschitz continuous with constant µ if for any f, f ′ ∈ F , x ∈ S,

|L(f, y)− L(f ′, y)| ≤ µ · ‖f(x)− f ′(x)‖. (8)

Lemma 1 (Contraction Lemma). Assume that the loss function L(f,x) is Lipschitz continuous with
a constant µ. Then, the following inequality holds:

ĈS(G) ≤ µ · ĈS(F). (9)

Finally, the standard margin-based generalization bound [22] is directly applied to obtain the upper
bound of ĈSy (F). However, this union bound has the following limitations:

• Theoretically, this generalization bound is coarse-grained and not sharp enough. To be specific, the
differences among different loss functions lie in the choice of αy, βy,∆y . However, the Lipschitz
continuity, which is the only property of L utilized in the proof, is global in nature and thus obscures
these differences. Although the margin theory can provide some theoretical insights into the role of
∆y , the roles of αy, βy are still a mystery. Besides, since

Bound(RLbal(f)) =
1

C
Bound(

∑
y

RLy (f)) ≤ 1

C

∑
y

Bound(RLy (f)), (10)

a sharper bound might be available if we can boundRLbal(f) directly.
• Empirically, although the induced LDAM loss outperforms the CE loss, the improvement is not so

significant. Fortunately, when combining the Deferred Re-Weighting (DRW) technique [12], where
αy = (1− p)/(1− pNy ), p ∈ (0, 1) [11] during the terminal phase of training, the improvement
becomes much more impressive. However, Eq.(7) fails to explain this phenomenon.

Recently, Kini et al. [16] provide a generalization analysis for the VS loss. However, the results,
which only hold for linear models with linearly separable data, can only explain the roles of βy . For
the role of ∆y, they resort to analyzing the gradient of the VS loss and provide a coarse-grained
analysis.

To sum up, existing generalization analysis for imbalanced learning is coarse-grained and fragmented.
Next, we aim to build a more fine-grained and systematical generalization bound that can unify the
roles of both re-weighting and logit-adjustment.

3 Fine-Grained Generalization Analysis for Imbalanced Learning

In Sec.3.1, we first establish a sharp generalization bound based on a novel technique named data-
dependent contraction. Then, in Sec.3.2, we apply this generalization bound to the VS loss to provide
a series of theoretical insights. Finally, in Sec.3.3, a principled algorithm is proposed based on the
theoretical insights.

3.1 Generalization Bound Induced By Data-Dependent Contraction

Different from Eq.(7), we hope to build a direct bound betweenRLbal(f) and R̂L(f). To this end, our
analysis is based on the following lemma, whose proof can be found in Appendix B:
Lemma 2. Given the function set F and a loss function L : RC × Y → [0,M ], then for any
δ ∈ (0, 1), with probability at least 1− δ over the training set S , the following generalization bound
holds for all g ∈ G:

RLbal(f) - Φ(L, δ) +
1

CπC
· ĈS(G), (11)

where Φ(L, δ) := 1
CπC

[R̂L(f) + 3M
√

log 2/δ
2N ] contains the empirical risk on S and the δ term.

Remark 1. Recall that πC := NC/N,N1 ≥ N2 ≥ · · · ≥ NC . Hence, this lemma reveals how the
model performance depends on the imbalance degree of the data.
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As shown in Sec.2.2, the fine-grained analysis is unavailable due to the global nature of the classic
Lipschitz continuous property. In view of this, we extend this traditional definition with a local
technique [23]:
Definition 2 (Local Lipschitz Continuity). We say the loss function L(f, y) is local Lipschitz contin-
uous with constants {µy}Cy=1 if for any f, f ′ ∈ F , y ∈ Y , x ∈ Sy ,

|L(f, y)− L(f ′, y)| ≤ µy · ‖f(x)− f ′(x)‖. (12)

Then, the following data-dependent contraction inequality helps us obtain a sharper bound, whose
proof is given in Appendix C.

Assumption 1. Next, we assume that ĈS(F) ∼ O(1/
√
N). Note that this result holds for kernel-

based models with traditional techniques [19] and neural networks with the latest techniques [24, 25].
And the prior arts also adopt this assumption [12].

Lemma 3 (Data-Dependent Contraction). Assume that the loss function L(f,x) is local Lipschitz
continuous with constants {µy}Cy=1. Then, the following inequality holds under Asm.1:

ĈS(G) - ĈS(F)

C∑
y=1

µy
√
πy, (13)

Combining Lem.2 and Lem.3, we have the following theorem:
Theorem 1 (Data-Dependent Bound for Imbalanced Learning). Given the function set F and a loss
function L : RC × Y → [0,M ], for any δ ∈ (0, 1), with probability at least 1− δ over the training
set S, the following generalization bound holds for all f ∈ F:

RLbal(f) - Φ(L, δ) +
ĈS(F)

CπC

C∑
y=1

µy
√
πy. (14)

At the first glance, Eq.(14) seems a little loose since
∑C
y=1

√
πy > 1. In fact, this intuition holds

when local Lipschitz continuity degenerates to Def.1. However, when µy is decreasing w.r.t. πy,
a shaper bound might be available. To build an intuitive understanding, we present the following
proposition, whose proof can be found in Appendix D.
Proposition 2. Assume that µy ∝ N−κy , κ > 0. Then, when κ > 1, the data-dependent bound
presented in Thm.1 is sharper than the union bound defined in Prop.1.

3.2 Application to the VS Loss

Next, we apply Thm.1 to the VS loss to reveal the role of both re-weighting and logit-adjustment.
To this end, it is necessary to analyze the local Lipschitz property of the VS loss, whose proof is
presented in Appendix E.
Lemma 4. Assume that the score function is bounded. Then, the VS loss is local Lipschitz continuous
with constants {µy}Cy=1, where

µy = αyβ̃y [1− softmax (βyBy(f) + ∆y)] , (15)

β̃y :=

√
β2
y +

(∑
y′ 6=y βy′

)2

; softmax (·) denotes the softmax function; By(f) denotes the minimal

prediction on the ground-truth class y, i.e., By(f) := minx∈Sy f(x)y .

Remark 2. By(f) is closely related to the minimal margin defined by margin↓y := minx∈Sy
(f(x)y−

maxj 6=y f(x)j). It is not difficult to check that By(f)− margin↓y ≤ maxx∈Sy,j 6=y f(x)j . Hence, as
we improve the model performance on class y, the RHS of the above inequality, i.e., the gap between
By(f) and margin↓y will decrease, and both the minimal margin and By(f) will increase.

Then, combining Thm.1 and Lem.4, we have the following proposition, which reveals how the
existing loss-oriented methods improve generalization performance by exploiting the data priors.
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Proposition 3 (Data-Dependent Bound for the VS Loss). Given the function set F and the VS
loss LVS, for any δ ∈ (0, 1), with probability at least 1 − δ over the training set S, the following
generalization bound holds for all f ∈ F:

RLbal(f) - Φ(LVS, δ) +
ĈS(F)

CπC

C∑
y=1

αyβ̃y
√
πy [1− softmax (βyBy(f) + ∆y)] . (16)

From Eq.(16), we have the following insights, whose empirical validation can be found in Sec.4.2.

(In1) Why re-weighting and logit-adjustment are necessary? Due to the term √πy and By(f),
the generalization bound is also imbalanced among classes. Both re-weighting and logit-adjustment
can obtain a sharper generalization bound by assigning different weights to the classes with different√
πy andBy(f). In this process, αy mainly rebalances the generalization performance among classes,

i.e.,√πy , while βy and ∆y focus on adjusting the imbalance of the terms By(f) among classes.

(In2) Why the deferred scheme is necessary? As pointed out in [11, 17], weighting up the minority
classes will cause difficulties and instability in optimization, especially when the distribution is
extremely imbalanced. To fix this issue, Cao et al. [12] develops a deferred scheme, where αy = 1
and (1 − p)/(1 − pNy ), p ∈ (0, 1) during the initial and terminal phase of training, respectively.
Although this scheme shows significant improvement, there is still a lack of theoretical explanation.

Fortunately, Prop.3 can give us some inspiration. Specifically, although a weighted loss can boost
the optimization on the minority classes, it is harmful to the further improvement on the majority
classes, as shown in Fig.3. Hence, the majority/minority classes will have relatively small/large
By(f) respectively, and the generalization bound becomes even looser. By contrast, in the DRW
scheme, we have αy = 1 during the initial phase of training. Such a warm-up phase will encourage
the model to focus on the majority classes and induce a small By(f) for both majority and minority
classes after weighting up the minority classes. On top of this, the generalization bound can become
sharper, which explains the effectiveness of the deferred scheme.

(In3) How does our result explain the design of existing losses? On one hand, for re-weighting
losses, αy should decrease as πy increases, which is consistent with the balanced loss with αy = π−1

y

[10] and αy = (1−p)/(1−pNy ), p ∈ (0, 1) [11]. On the other hand, from the insight (In2), we know
that when αy = 1, By(f) will be increasing w.r.t. πy . Hence, for logit-adjustment losses, both βy and
∆y should increase as πy increases. This insight is consistent with the LDAM loss (∆y ∝ −N−1/4

y )
[12], the logit-adjusted loss (∆y = τ log πy) [13], and the CDT loss (βy = (Ny/N1)γ) [14].

(In4) Are re-weigting and logit-adjustment fully compatible? (a) Unfortunately, the answer is
negative. To be specific, the re-weighting term αy is decreasing w.r.t. πy , whereas the multiplicative
logit-adjustment term βy is increasing w.r.t. πy. As a result, β̃y will weaken the effect of αy. (b)
Fortunately, αy is compatible with the additive logit-adjustment term ∆y since both terms can induce
a sharper generalization bound.

3.3 Principled Learning Algorithm induced by the Theoretical Insights

In this part, we present a principled learning algorithm induced by the theoretical insights in Sec.3.2.
First, according to (In1)-(In3), it is crucial to comprehensively utilize re-weighting, logit-adjustment,
and the DRW scheme, as they all contribute to improving the generalization bound. Second, according
to (In4), we propose a Truncated Logit-Adjustment (TLA) scheme to avoid the conflict between αy
and βy . In this scheme, βy still increases w.r.t. πy during the initial phase of training but is truncated
to 1 during the terminal phase of training. Third, we set αy ∝ π−νy , ν > 0 to align αy with √πy,
which we name Aligned DRW (ADRW). Note that such a re-weighting scheme also follows the
Fisher consistency property presented in [13]. Finally, the overall algorithm is summarized in Alg.1,
where the logit-adjustment methods mentioned in Sec.2.1 are all reasonable options for βy,∆y in the
line 5 and ∆y in the line 7.
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Algorithm 1: Principled Learning Algorithm induced by the Theoretical Insights

Require: Training set S = {(xi, yi)}Ni=1 and a model f parameterized by Θ.
1: Initialize the model parameters Θ randomly.
2: for t = 1, 2, · · · , T do
3: B ← SampleMiniBatch(S,m) . A mini-batch of m samples
4: if t < T0 then
5: Set α = 1, βy,∆y . Adjust logits during the initial phase
6: else
7: Set αy ∝ π−νy , βy = 1,∆y, ν > 0 . TLA and ADRW
8: end if
9: L(f,B)← 1

m

∑
(x,y)∈B LVS(f(x), y) . Calculate the loss

10: Θ← Θ− η∇ΘL(f,B) . One SGD step
11: Optional: anneal the learning rate η. . Required when t = T0

12: end for

(a) CIFAR-10 LT (b) CIFAR-10 Step (c) CIFAR-100 LT (d) CIFAR-100 Step

Figure 1: The balanced accuracy of the CE loss and the LDAM loss w.r.t. αy ∝ π−νy on the CIFAR
datasets, where the imbalance ratio ρ = 100. Both re-weighting and logit-adjustment boost the model
performance, which is consistent with the theoretical insight (In1) and (In4-b).

(a) CIFAR-10 LT (b) CIFAR-10 Step

Figure 2: Sensitivity analysis of VS+ADRW w.r.t. αy ∝ π−νy and ∆y = τ log πy on the CIFAR-10
dataset, where the imbalance ratio ρ = 100. Both re-weighting and logit-adjustment boost the model
performance, which is consistent with the theoretical insights (In1) and (In4-b).

4 Experiments

4.1 Experiment Protocols

Here, we briefly introduce the experiment protocols, and more details can be found in Appendix F.

Datasets. We conduct the experiments on four popular benchmark datasets for imbalanced learning.
(a) CIFAR-10 and CIFAR-100: Following the protocol in [26, 11, 12], we consider two types of
imbalance: long-tailed imbalance (LT) and step imbalance (Step). For both imbalance types, we
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(a) CIFAR-100 LT (ρ = 100) (b) CIFAR-100 LT (ρ = 100) (c) CIFAR-100 LT (ρ = 100)

Figure 3: (a) Training accuracy of CE+DRW (T0 = 160) and the CB loss w.r.t. training epoch. (b)
Âccmin/Âccmaj w.r.t. the DRW epoch T0, where Âccmin and Âccmaj denote the training accuracy of
the best model on the minority/majority classes, respectively. (c) The test accuracy of the best model
w.r.t. the DRW epoch T0. We can find that the DRW scheme balances the training accuracy between
the majority classes and the minority classes and thus improves the model performance on the test
set, which is consistent with the theoretical insight (In2).

(a) CIFAR-10 LT (b) CIFAR-10 Step (c) CIFAR-100 LT (d) CIFAR-100 Step

Figure 4: The balanced accuracy of the VS loss w.r.t. βy = (Ny/N1)γ on the CIFAR datasets, where
the imbalance ratio ρ = 10. We can find that VS+DRW performs inferior to VS+None, especially
when γ is large, which is consistent with the theoretical insight (In4-a).

report the balanced accuracy averaged over 5 random seeds with an imbalance ratio ρ := N1/NC ∈
{10, 100}. (b) ImageNet-LT and iNaturalist: We use the long-tailed version of the ImageNet
dataset2 [2] proposed by [27], and iNaturalist3 [5] is a real-world long-tailed dataset.

Baselines and Competitors. For the CIFAR datasets, we aim to validate the theoretical results and
the performance gain induced by the proposed method. Hence, we select the following baselines:
the CE loss (CE) [19], the LDAM loss (LDAM) [12], LDAM+DRW [12], and the VS loss (VS) [16]
that generalizes the LA loss [13] and the CDT loss [14]. We tune all the hyperparameters according
to the suggestions in the original papers. For the ImageNet-LT and iNaturalist datasets, we select
state-of-the-art methods, listed in Tab.2, as the competitors to validate the effectiveness of the method.

Implementation Details. We implement three instances of the proposed learning algorithm: the
CE loss equipped with the ADRW scheme (CE+ADRW), the LDAM loss equipped with the
ADRW scheme (LDAM+ADRW), and the VS loss equipped with the TLA and the ADRW scheme
(VS+TLA+ADRW). We tune the hyperparameter ν, and the other hyperparameters follow those used
in the baselines. In addition, we incorporate the Sharpness-Aware Minimization (SAM) technique
[28] to facilitate the optimization of the minority classes, allowing them to escape saddle points and
converge to flat minima [29].

4.2 Theory Validation

In this part, we aim to validate our theoretical insights presented in Sec.3.2 on the CIFAR datasets.
Some more empirical results can be found in Appendix G.

1https://www.cs.toronto.edu/~kriz/cifar.html. Licensed MIT.
2https://image-net.org/index.php. Licensed MIT.
3https://github.com/visipedia/inat_comp/tree/master/2017. Licensed MIT.
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Table 1: The balanced accuracy averaged over 5 random seeds on the CIFAR datasets. The best and
the runner-up method for each protocol are marked with red and blue, respectively. The best baseline
model is marked with underline.

Dataset CIFAR-10 CIFAR-100

Imbalance Type LT Step LT Step

Imbalance Ratio 100 10 100 10 100 10 100 10

w/o SAM

CE 71.5±0.4 87.0±0.2 64.8±0.9 85.1±0.3 38.3±0.4 56.7±0.4 38.6±0.2 54.4±0.3

LDAM 73.8±0.4 86.4±0.4 65.8±0.6 85.0±0.3 39.9±0.7 55.7±0.5 39.2±0.0 50.5±0.2

VS 78.8±0.2 88.7±0.1 76.1±0.7 88.3±0.1 41.8±0.7 58.4±0.2 46.2±0.3 59.9±0.2

CE+DRW 75.8±0.3 87.9±0.3 72.2±0.8 88.0±0.3 40.8±0.6 58.1±0.3 45.4±0.4 59.1±0.3

LDAM+DRW 77.7±0.4 87.5±0.2 77.8±0.5 87.8±0.3 42.7±0.5 57.5±0.3 45.3±0.6 56.9±0.2

VS+DRW 80.1±0.1 88.6±0.1 78.2±0.2 88.1±0.1 41.3±0.4 57.6±0.3 44.0±0.3 58.0±0.3

CE+ADRW 78.6±0.5 88.2±0.3 75.5±0.6 88.5±0.2 41.8±0.6 58.3±0.4 46.5±0.3 59.2±0.3

LDAM+ADRW 79.1±0.2 87.6±0.2 78.5±0.4 88.1±0.2 43.0±0.2 58.0±0.1 45.8±0.2 57.6±0.3

VS+TLA+DRW 80.8±0.2 88.8±0.1 80.0±0.1 89.2±0.1 43.0±0.4 58.9±0.1 46.8±0.1 60.0±0.3

VS+TLA+ADRW 81.1±0.2 89.0±0.2 80.9±0.2 89.3±0.1 43.4±0.6 59.2±0.2 47.8±0.1 60.5±0.3

w/ SAM

CE+DRW 80.5±0.2 89.8±0.2 79.5±0.3 90.2±0.2 44.7±0.6 60.7±0.4 48.5±0.3 61.7±0.2

LDAM+DRW 81.6±0.2 89.4±0.2 81.2±0.7 89.4±0.1 45.2±0.3 59.9±0.2 49.1±0.2 59.3±0.2

VS 82.6±0.2 90.0±0.1 83.2±0.4 90.5±0.1 45.9±0.3 61.0±0.3 47.4±0.3 61.6±0.3

CE+ADRW 82.6±0.2 90.1±0.1 82.8±0.9 90.2±0.3 44.9±0.6 61.0±0.4 48.9±0.2 62.1±0.2

LDAM+ADRW 83.0±0.1 89.7±0.1 82.4±0.3 90.0±0.2 46.3±0.4 60.3±0.3 49.3±0.4 60.3±0.2

VS+TLA+ADRW 83.6±0.2 90.3±0.2 83.8±0.1 90.8±0.1 46.4±0.6 61.9±0.3 49.1±0.2 62.3±0.3

Validation of (In1) and (In4-b). We report the model performance of the baselines w.r.t. the
hyperparameters in Fig.1 and Fig.2. From these results, we can find that (1) Both CE+ADRW and
LDAM perform better than CE. In other words, either re-weighting or logit-adjustment can boost
the model performance. (2) LDAM+ADRW outperforms both CE+ADRW and LDAM, and for
VS+ADRW, increasing the hyperparameters ν and τ appropriately can also bring performance gains.
All these results validate the compatibility between re-weighting and the additive logit-adjustment.

Validation of (In2). We present a series of results in Fig.3, where the training accuracy of different
classes represents the correspondingBf (y). To be specific, Fig.3(a) demonstrates the trend of training
accuracy on the majority classes and the minority classes. For the CB loss, the learning process only
focuses on the minority classes and hinders the performance improvement on the majority classes
(CB Major v.s. CB Minor). Hence, an extremely imbalanced By(f) induces a poor generalization
performance. By contrast, the DRW scheme first focuses on the majority classes (CE+DRW Major
v.s. CE+DRW Minor with the training epoch t ≤ T0 = 160) and then pays more attention to the
minority classes during the terminal phase of training (CE+DRW Major v.s. CE+DRW Minor with
the training epoch t > T0 = 160). Benefiting from the DRW scheme, both the majority classes and
the minority classes are well-trained and thus have a balanced term By(f) (Fig.3(b)), leading to a
corresponding improvement on the test accuracy (Fig.3(c)). Even if we remove the re-weighting term
(CE+None), the imbalance degree of By(f) is still consistent with the test performance. Note that
the learning rate of CE+None is also decreased at the corresponding epoch T0, making the line in
Figure 3(b) and 3(c) not constant.

Validation of (In4-a). In Fig.4, we present the model performance of the VS loss w.r.t. the hyperpa-
rameter of the multiplicative logit-adjustment γ. We can find that VS+DRW performs inferior to VS,
especially when γ is large. This phenomenon validates the incompatibility between re-weighting and
multiplicative logit-adjustment.

4.3 Performance Comparison

We report the empirical results on the CIFAR datasets in Tab.1, where the imbalance ratio ρ ∈
{10, 100}. From these results, we have the following observations: (1) The proposed learning
algorithm consistently outperforms the baselines, especially when the dataset is more imbalanced.
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Table 2: The balanced accuracy on the ImageNet-LT and iNaturalist datasets.

Method One stage
ImageNet-LT iNaturalist

Many Med. Few All Many Med. Few All

OLTR [27] × 43.2 35.1 18.5 35.6 59.0 64.1 64.9 63.9
LFMR [30] × 47.1 35.0 17.5 37.2 - - - -
BBN [31] × - - - - 49.4 70.8 65.3 66.3
cRT [32] × 61.8 46.2 27.3 49.6 69.0 66.0 63.2 65.2
τ -norm [32] × 59.1 46.9 30.7 49.4 65.6 65.3 65.5 65.6
DiVE [33] × 64.1 50.4 31.5 53.1 70.6 70.0 67.6 69.1
DisAlign [34] × 61.3 52.2 31.4 52.9 69.0 71.1 70.2 70.6
WB [35] × 62.5 50.4 41.5 53.9 71.2 70.4 69.7 70.2

CE [32] X 65.9 37.5 7.7 44.4 72.2 63.0 57.2 61.7
CE+CB [11] X 39.6 32.7 16.8 33.2 53.4 54.8 53.2 54.0
Focal [11] X 36.4 29.9 16.0 30.5 - - - 61.1
De-confound [36] X 62.7 48.8 31.6 51.8 - - - -
DRO-LT [37] X 64.0 49.8 33.1 53.5 - - - 69.7
SAM [29] X 62.0 52.1 34.8 53.1 64.1 70.5 71.2 70.1

Ours X 62.9 52.6 37.1 54.1 64.7 70.7 72.1 70.7

Such performance gains validate the effectiveness of the proposed methods (2) Both re-weighting and
logit-adjustment can improve the model performance, which is consistent with the theoretical insight
(In1) and (In4-b). (3) When ρ = 10 or on the CIFAR-100 dataset, VS+DRW performs inferior to
VS. Fortunately, when equipped with the proposed TLA scheme, VS+TLA+DRW outperforms both
VS and VS+DRW. These results again validate our theoretical insight (In4-a). (4) When ρ = 10,
CE+ADRW outperforms LDAM+ADRW, and similar counter-intuitive phenomena are also observed
in [29]. We conjecture that in this case, re-weighting is enough to rebalance the generalization bound,
and the additional LDAM loss might induce other issues such as inconsistency.

We present the overall balanced accuracy on the ImageNet-LT and iNaturalist datasets in Tab.2, where
SAM and Ours denotes LDAM+DRW+SAM and VS+TLA+ADRW+SAM, respectively. These
results demonstrate that the proposed learning algorithm outperforms the competitors, especially the
one-stage ones, which again confirms the effectiveness of the proposed learning algorithm.

5 Conclusion and Future Work

In this work, with the proposed local Lipschitz property and the data-dependent contraction technique,
we present a unified generalization analysis of the loss-modification approaches for imbalanced
learning. Benefiting from this fine-grained analysis, we not only reveal the role of both re-weighting
and logit-adjustment approaches but also explain some empirical phenomena that are out of the scope
of existing theories. Moreover, a principled learning algorithm is proposed based on the theoretical
insights. Finally, extensive experimental results on benchmark datasets validate our theoretical
analysis and the effectiveness of the proposed method.

Theoretically, one important future work is to provide a systematical Fisher consistency analysis for
the VS loss, providing more insights to design re-weighting and logit-adjustment terms. Method-
ologically, it might be a promising direction to design an adaptive scheme that can automatically
determine the hyperparameters of the learning algorithm.
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Appendix

A Related Work

In the main text, we have discussed loss-oriented methods for imbalanced learning. Next, we will
briefly review the other orthogonal directions in this field, and more details can be found in the latest
survey [38].

Data-oriented methods aim to resample the training set to achieve a more balanced data distribution.
For example, Kubat and Matwin [39] and Chawla et al. [40] over-sample the minority classes, and
Mani and Zhang [41] and Drummond et al. [42] under-sample the majority classes. Although being
intuitive, over-sampling might suffer from over-fiiting, and under-sampling reduces the total amount
of information that the model can learn from [43].

Post-hoc methods follow a naïve training process but make adjustments during the test phase. For
example, Collell et al. [44] calibrate the decision-making condition via data priors. Kang et al. [32]
propose to balance the the classifier weights via τ -normalization. Menon et al. [13] adjust the logits
such that the predictions can align with the balanced accuracy.

Decoupling methods follow a two-stage learning paradigm. The first stage aims to learning features
based on a naïve learning process. At the second stage, Kang et al. [32] retrain the classifier under
a balanced label distribution; Alshammari et al. [35] exploit L2-normalization, weight decay, and
maxNorm constraint to achieve balanced classifier weights.

Ensemble methods aggregate multiple expert models trained on different data regimes. For example,
Cai et al. [45] distribute diverse but overlapping class splits for experts and encourage each expert
to learn complementary knowledge. Wang et al. [46] propose a dynamic routing framework that
reduces model variance and model bias to mitigate the performance degeneration on majority classes.
Besides, Zhou et al. [31] propose a cumulative learning strategy that first learns the universal patterns
and then pays attention to the minority classes gradually.

Besides, Tang et al. [36] propose a causal inference framework to remove unfavorable GSD momen-
tum. Cui et al. [47] exploit contrastive learning to make full use of aggressive data augmentation
techniques. Rangwani et al. [29] utilize Sharpness-Aware Minimization (SAM) technique to boost
the optimization of the minority classes, allowing them to escape saddle points and converge to flat
minima.

B Proof of the Basic Lemma (Lem.2)

Lemma 2. Given the function set F and a loss function L : RC × Y → [0,M ], then for any
δ ∈ (0, 1), with probability at least 1− δ over the training set S , the following generalization bound
holds for all g ∈ G:

RLbal(f) - Φ(L, δ) +
1

CπC
· ĈS(G), (11)

where Φ(L, δ) := 1
CπC

[R̂L(f) + 3M
√

log 2/δ
2N ] contains the empirical risk on S and the δ term.

Proof. On one hand,

RL(f) = E
(x,y)∼D

[L(f(x), y)] =

C∑
y=1

πy E
x∼Dy

[L(f(x), y)] =

C∑
j=1

πyRLy (f). (17)

On the other hand,

RLbal(f) =
1

C

C∑
j=1

RLy (f) =
1

C

C∑
j=1

1

πy
· πyRLy (f) ≤ 1

CπC

C∑
j=1

πyRLy (f) =
1

CπC
RL(f), (18)

where the inequality comes from the fact that ∀a, b ∈ RC , | 〈a, b〉 | ≤ ‖a‖∞‖b‖1. Then, combining
the traditional results in [19], for any δ ∈ (0, 1), with probability at least 1− δ over the training set
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S, the following generalization bound holds for all the g ∈ G:

RLbal(f) -
1

CπC

[
R̂L(f) + ĈS(G) + 3M

√
log 2/δ

2N

]
. (19)

C Proof of the Data-Dependent Contraction Lemma (Lem.3)

Lemma 3 (Data-Dependent Contraction). Assume that the loss function L(f,x) is local Lipschitz
continuous with constants {µy}Cy=1. Then, the following inequality holds under Asm.1:

ĈS(G) - ĈS(F)

C∑
y=1

µy
√
πy, (13)

Proof. According to the definition of complexity, we have

ĈS(G) = E
ξ

[
sup
g∈G

1

N

N∑
n=1

ξ(n)g(z(n))

]
= E
ξ

sup
g∈G

1

N

C∑
y=1

Ny∑
n=1

ξ(n)
y g(z(n)

y )


≤

C∑
y=1

E
ξy

 1

N
sup
g∈G

Ny∑
n=1

ξ(n)
y g(z(n)

y )

 =

C∑
y=1

Ny
N

E
ξy

 1

Ny
sup
g∈G

Ny∑
n=1

ξ(n)
y g(z(n)

y )


=

C∑
y=1

πyĈSy (G) -
C∑
y=1

√
πyµyĈS(F),

(20)

where the last inequality comes from Asm.1.

D Proof of Prop.2

Proposition 2. Assume that µy ∝ N−κy , κ > 0. Then, when κ > 1, the data-dependent bound
presented in Thm.1 is sharper than the union bound defined in Prop.1.

Proof. According to Def.1, it is not difficult to obtain µ = maxy µy ∝ N−κC . Then, for the union
bound, we have

µ

C

C∑
y=1

ĈSy (F) ∝ µ · ĈS(F)

C

C∑
y=1

π−0.5
y ∝ ĈS(F)

CNκ
C

C∑
y=1

π−0.5
y =

ĈS(F)

CNκπκC

C∑
y=1

π−0.5
y , (21)

where the first equality comes from Asm.1. For the data-dependent bound, we have

ĈS(F)

CπC

C∑
y=1

µy
√
πy ∝

ĈS(F)

CπC

C∑
y=1

N−κy
√
πy =

ĈS(F)

CNκπC

C∑
y=1

π0.5−κ
y . (22)

Let

h1(κ) :=
1

πκC

C∑
y=1

π−0.5
y − 1

πC

C∑
y=1

π0.5−κ
y . (23)

Then, we have

h′1(κ) = − lnπC ·
1

πκC

C∑
y=1

π−0.5
y +

1

πC

C∑
y=1

π0.5−κ
y lnπy

= − lnπC ·
1

πκC

C∑
y=1

π−0.5
y +

1

πC

C∑
y=1

π−0.5
y π1−κ

y lnπy︸ ︷︷ ︸
h2(πy)

.

(24)
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Then, let h2(t) = t1−κ ln t, t ∈ (0, 1). When κ > 1, we have

h′2(t) = (1− κ)t−κ ln t+ t1−κ · 1

t
= [(1− κ) ln t+ 1] t−κ > 0. (25)

Thus, ∀y ∈ Y, h2(πy) ≥ h2(πC). Then, we have

h′1(κ) ≥ − lnπC ·
1

πκC

C∑
y=1

π−0.5
y +

1

πC

C∑
y=1

π−0.5
y h2(πC) = 0. (26)

Finally, the proof ends by the fact that h1(1) = 0.

E Proof of the Local Lipschitz Property of the VS Loss (Prop.4)

Lemma 5. Given {ai}Ci=1, {bi}Ci=1, if ai, bi ≥ 0, we have
∑C
i=1 a

2
i b

2
i ≤

(∑C
i=1 ai

)2 (∑C
i=1 bi

)2

.

Proof. According to the definition, we have(
C∑
i=1

ai

)2( C∑
i=1

bi

)2

=

 C∑
i=1

a2
i + 2

∑
i 6=j

aiaj

 C∑
i=1

b2i + 2
∑
i 6=j

bibj


≥

C∑
i=1

a2
i ·

C∑
i=1

b2i =

C∑
i=1

a2
i b

2
i +

∑
i6=j

a2
jb

2
j ≥

C∑
i=1

a2
i b

2
i .

(27)

Lemma 4. Assume that the score function is bounded. Then, the VS loss is local Lipschitz continuous
with constants {µy}Cy=1, where

µy = αyβ̃y [1− softmax (βyBy(f) + ∆y)] , (15)

β̃y :=

√
β2
y +

(∑
y′ 6=y βy′

)2

; softmax (·) denotes the softmax function; By(f) denotes the minimal

prediction on the ground-truth class y, i.e., By(f) := minx∈Sy f(x)y .

Proof. According to the definition of the VS loss, we have

LVS(f(x), y) = −αy log

(
eβyf(x)y+∆y∑
y′ e

βy′f(x)y′+∆y′

)
= αy log[1 +

∑
y′ 6=y

eβy′f(x)y′−βyf(x)y+∆y′−∆y ],

(28)

Let s := f(x), and define

`y(s) :=
∑
y′ 6=y

eβy′sy′+∆y′ . (29)

In other words, LVS(f, y) = αy log
[
1 + e−(βysy+∆y)`y(s)

]
. Then,

∂LVS(f, y)

∂sy
= −αyβy

e−(βysy+∆y)`y(s)

1 + e−(βysy+∆y)`y(s)
,

∂LVS(f, y)

∂sy′
= αyβy′

e−(βysy+∆y)

1 + e−(βysy+∆y)`y(s)
· eβy′sy′+∆y′ , y′ 6= y.

(30)
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Hence,

‖∇sLVS(f, y)‖2 =

β2
y`y(s)2 +

∑
y′ 6=y

(
βy′e

βy′sy′+∆y′
)2 · [ αye

−(βysy+∆y)

1 + e−(βysy+∆y)`y(s)

]2

≤

β2
y`y(s)2 +

∑
y′ 6=y

βy′

2∑
y′ 6=y

eβy′sy′+∆y′

2
 · [ αye

−(βysy+∆y)

1 + e−(βysy+∆y)`y(s)

]2

=

β2
y +

∑
y′ 6=y

βy′

2
 · [ αye−(βysy+∆y)`y(s)

1 + e−(βysy+∆y)`y(s)

]2

,

(31)

where the inequality comes from Lem.5. Thus,

‖∇sLVS(f, y)‖ ≤ αy

√√√√√β2
y +

∑
y′ 6=y

βy′

2

e−(βysy+∆y)`y(s)

1 + e−(βysy+∆y)`y(s)

= αy

√√√√√β2
y +

∑
y′ 6=y

βy′

2

`y(s)

eβysy+∆y + `y(s)

= αy

√√√√√β2
y +

∑
y′ 6=y

βy′

2 [
1− eβysy+∆y∑

y′ e
βy′sy′+∆y′

]

= αy

√√√√√β2
y +

∑
y′ 6=y

βy′

2

[1− softmax (βysy + ∆y)]

(32)

Since the score function is bounded, for any y ∈ Y , there exists a constant By(f) such that
By(f) = infx∈Sy sy , which completes the proof.

F More Experiment Protocols

Datasets. We conduct experiments on four popular benchmark datasets for imbalanced learning.
(a) CIFAR-10 LT and CIFAR-100 LT: The original version of CIFAR-101 and CIFAR-1001 [1]
consists of 50,000 training images and 10,000 validation images, uniformly sampled from 10 and
100 classes, respectively. Following the protocol in [26, 11, 12], we consider two types of imbalance:
long-tailed imbalance, where the number of training samples for each class decreases exponentially,
and step imbalance, which reduces the sample size of half of the classes to a fixed ratio. Then, let
ρ := N1/NC denote the imbalance ratio. For both imbalance types, we report the balanced accuracy
averaged over 5 random seeds with ρ ∈ {10, 100}. (b) ImageNet-LT and iNaturalist: We use the
long-tailed version of the ImageNet dataset2 [2] proposed by [27], which contains 115.8K images
from 1K classes with N1 = 1280, NC = 5. iNaturalist3 [5] is a real-world long-tailed dataset with
437.5K images from 8,142 classes. Following the protocol in [48], the classes are split into three
subsets under long-tailed imbalance: Head, Medium, and Tail. We report the balanced accuracy on
all the classes and each subset.

Backbones and Optimization Methods. For the CIFAR datasets, we follow the implementation in
[12]. Specifically, we train the ResNet-32 model [49] for 200 epochs by SGD with a momentum of
0.9, a weight decay of 2e-4, and a bath size of 128 [50]. A multistep learning rate schedule is used
with an initial learning rate of 0.1, divided by 10 at the 160th and 180th epoch by default. For the

1https://www.cs.toronto.edu/~kriz/cifar.html. Licensed MIT.
2https://image-net.org/index.php. Licensed MIT.
3https://github.com/visipedia/inat_comp/tree/master/2017. Licensed MIT.
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(a) CIFAR-100 LT (b) CIFAR-100 Step

Figure 5: Sensitivity analysis of VS+ADRW w.r.t. αy ∝ π−νy and ∆y = τ log πy on the CIFAR
datasets, where the imbalance ratio ρ = 100. Both re-weighting and logit-adjustment boost the model
performance, which is consistent with the theoretical insights (In1) and (In4-b).

(a) CIFAR-10 LT (ρ = 100) (b) CIFAR-10 LT (ρ = 100) (c) CIFAR-10 LT (ρ = 100)

Figure 6: (a) Training accuracy of CE+DRW (T0 = 160) and the CB loss (αy = (1− p)/(1− pNy )).
(b) The ratio of the training accuracy between the minority classes and the majority classes of the
best model w.r.t. the DRW epoch T0. (c) The test accuracy of the best model w.r.t. the DRW epoch
T0. We can find that the DRW scheme balances the training accuracy between the majority classes
and the minority classes and thus improves the model performance on the test set, which is consistent
with the theoretical insight (In2).

ImageNet-LT and iNaturalist datasets, we follow the implementation in [48, 29], where the ResNet-50
model [49] is trained for 90 epochs by SGD with a momentum of 0.9, a weight decay of 2e-4, and
a batch size of 256. A cosine learning rate schedule is used with an initial learning rate of 0.1 and
0.2 for ImageNet-LT and iNaturalist, respectively. In addition, we incorporate the Sharpness-Aware
Minimization (SAM) technique [28, 29] to facilitate the optimization of the minority classes, allowing
them to escape saddle points and converge to flat minima. And the hyperparameter of SAM is tuned
as suggested in [29].

Infrastructure. The experiments on the CIFAR datasets are carried out on an Ubuntu server
equipped with Nvidia(R) RTX 3090 GPUs, whereas the experiments on ImageNet-LT and iNaturalist
are conducted on NVIDIA(R) A100 GPUs. We implement the codes via python (v-3.8.10), and the
main third-party packages include pytorch (v-1.8.0) [51], numpy (v-1.20.2) [52], scikit-learn
(v-1.0.2) [53] and torchvision (v-0.9.0) [54].

Parameter search. We first tune the parameters via grid search according to the results in prior
arts [13, 16]. To be specific, αy ∝ π−νy , and ν is searched in {0.15, 0.25, 0.75, 1.0, 2.0, 3.0};
∆y = τ log πy , and τ is searched in {0.5, 0.75, 1.0, 1.25, 2.0}; βy = (Ny/N1)γ , and γ is searched in
{0.05, 0.1, 0.15, 0.2, 0.25}. At first glance, the search space is relatively large. However, benefiting
from the theoretical validation presented in Sec.4.2, the time complexity can be significantly decreased
later. For example, according to Fig.4, we will choose a small γ when ν is large to avoid the
incompatibility issue.
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G More Empirical Results

G.1 More Empirical Results for Theory Validation

We present the sensitivity analysis of VS+ADRW on the CIFAR-100 dataset in Fig.5, where the
imbalance ratio ρ = 100. Similar to the results on the CIFAR-10 dataset, appropriately increasing ν
and τ can improve the model performance, which again validates the theoretical insights (In1) and
(In4-b).

Similar to Fig.3, Fig.6 provides a series of results on the CIFAR-10 dataset to validate the theoretical
insight (In2). Once again, the imbalance of By(f) is highly correlated with the model performance
on the test set, not only for CE+DRW but also for CE+None. It is worth mentioning that the optimal
DRW epoch T0 is 60, which is different from the commonly chosen value of 160. This might be
because the CIFAR-10 dataset only has 10 classes, and a small DRW epoch T0 may lead to overfitting
on the majority classes.

In Fig.7-Fig.9, we provide the results under the imbalance ratio ρ = 10. The results are similar to
those with ρ = 100, which again validates our theoretical results.

(a) CIFAR-10 LT (b) CIFAR-10 Step (c) CIFAR-100 LT (d) CIFAR-100 Step

Figure 7: The balanced accuracy of the CE loss and the LDAM loss w.r.t. αy ∝ π−νy on the CIFAR
datasets, where the imbalance ratio ρ = 10. Both re-weighting and logit-adjustment boost the model
performance, which is consistent with the theoretical insight (In1) and (In4-b).

(a) CIFAR-100 LT (b) CIFAR-10 LT

Figure 8: Sensitivity analysis of VS+ADRW w.r.t. αy ∝ π−νy and ∆y = τ log πy on the CIFAR
datasets, where the imbalance ratio ρ = 10. Both re-weighting and logit-adjustment boost the model
performance, which is consistent with the theoretical insights (In1) and (In4-b).
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(a) CIFAR-100 LT (ρ = 10) (b) CIFAR-100 LT (ρ = 10) (c) CIFAR-100 LT (ρ = 10)

(d) CIFAR-10 LT (ρ = 10) (e) CIFAR-10 LT (ρ = 10) (f) CIFAR-10 LT (ρ = 10)

Figure 9: (a, d) Training accuracy of CE+DRW (T0 = 160) and the CB loss w.r.t. training epoch. (b,
e) Âccmin/Âccmaj w.r.t. the DRW epoch T0, where Âccmin and Âccmaj denote the training accuracy
of the best model on the minority/majority classes, respectively. (c, f) The test accuracy of the best
model w.r.t. the DRW epoch T0. We can find that the DRW scheme balances the training accuracy
between the majority classes and the minority classes and thus improves the model performance on
the test set, which is consistent with the theoretical insight (In2).
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