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In this supplementary material, we provide additional information for CRCL. Specifically, we first
give detailed proofs of Equation (I) and Lemma|[I]in Appendix [A] To improve the reproducibility of
CRCL, in Appendix [B] we provide comprehensive implementation details of our CRCL for different
extended baselines (i.e., VSEoo[l1]], SAF[2], and SGR]2]) on three datasets. In addition, we present
richer additional experimental results and analysis in Appendix [C] including parameter analysis,
progressive analysis, and extra comparison results, to fully verify the effectiveness and superiority of
CRCL. Finally, we supplemented related work in Appendix [D]to further discuss the related research
background.

A Detailed Proofs

A.1 Proof for Equation (1)

C < Re, (fF) = Re, (fy) <0, )]

where C = 2n(AU-? — AUZ9) /(1 - 1) < 0. C increases as g increases and when ¢ = 1, C
takes the maximum value 0. A, and A, .« are the maximum and minimum values of Zf;l tan(p;;)
under the condition Zjvzl pij = 1, where 1 < Apin < Amax, and 0 < py; <1 (pi; = p;; or pfj).

f*and f are the global minimizers of R, (f) and R} (f), respectively.

Proof. Recall that for any f,

Re, (f) =Reo(f) + Ree (f)
=Er, 7)~p [Yi- L1, T, )l + Eqr 1y~ [y £7(T3, 1, )] -
=E1, m)~p (L7 (Ls, Ti, @)] + Eqr, 1y~ [£5(T3, 13, q)]
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For uniform noisy correspondence with noise rate 7, we consider the image-to-text direction and have

Rpo(f) =B, my~p, [ L7213, T, q)]

— o[ T _n o([. T
_E(Ii,T-)ND (1 - n)ﬁr(fuTuQ) + N—1 %:LZT(II7T]?Q)
VED)

=E, my~p |(1 =)L, T, q) + ﬁ ((N —1) A9 —Ei(fi,Ti,q)):|
N (e}
=E(.m)~p (1— Nin)ﬁ (Ii, Tiy ) + n A0 q} ,

N
where A = Z tan(pfj) > 1. Since A has the maximum and minimum values (A i, and A, We
j_
provide a solution in Remark.) under the condition Z —1p;; = 1,0 < pg; <1, forany p;;, we have

(1= ) R (1) + AL < R (F) < (1 57 ) Ry () + nAfL0).

Similarly, the above equation also holds for R (f) and RZg (f), e,

N N -
(1= =) Bee (N +nALL" < RE(f) < (1= =) R (f) + nAGLY.
Thus, for R}. (f)and R, (f), under < N, we have
N N
(1= ) Rer () + 204007 < RE(F) < (1= =) Rer(£) + 2AGSD.

or equivalently,

(R (1)~ 2mAG)/(1 = 500) < Rer () < (R, () — 204U ") /(1 = 50,
Thus, for f,
Re,(7") = Re, () 2 (RL(F%) = RL (/0 — 52) + 02 €, @
or equivalently,
R(F) = R, (1) < (1= ) (Re, (F%) = Re, (F) +C' < G)

where C' = 2p(A[L? — ARG /(1= %) < 0, O = (ALY — ALLY) > 0, f*isa
minimizer of R, (f). Since f, and f* are the minimizers of R}. (f) and R, (f), respectively, we
have R (f*) — R} (fy) > 0or Re, (f*) — Re, (f;) < 0. Besides, it can be seen from Figure
that C'/ C’ 1ncreases/decreases as q increases. In other words, under n < Y=L the larger q is,
the tighter the bound of Equation (3 '/Equatlon is. When g is 1, then R, (\} ) or

R} (f*) = R} (fy). This completes the proof.

Remark For the maximum value of ZN tan(p;;), For brevity, let y = ZN tan(p;;) =

Z 1 tan(z;) under the condition Z =1land 0 < z; < 1. For any z;,z; € [0,1], we

have
tan(z;) + tan(x;)

1 — tan(z;) tan(z;)

tan(z; + ;) =
Since 0 <1 — tan(x;)tan(z;) < 1, we have

tan(x; + ;) > (1 — tan(z;) tan(z;)) tan(z; + ;) = tan(z;) + tan(z;).
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Figure 1: The value of C'/C’ changes with ¢, wherein N is 100 and 7 is 0.2.

Hence, Zjvzl tan(z;) < tan(zyzl xj) =tanl, i.e., Apmaz = Ymaz = tanl ~ 1.5574.

For the minimum value of y = Zjvzl tan(x;), when z; € (0,1), % = —5— > 0. Thus, the
J = J

minimum value does not appear on the hyperplane boundary (0 or 1). We use the Lagrange Multiplier
method [3]] to construct the objective as follows

N N

i .t =1 i - A i —1)).
miny, s z:lx] & glg(y (2:1 z; — 1))
j= j=

Let f(z,\) =y — )\(Zé\’:l z;—1) = Z;\f:l tan(x;) — /\(Z;V:1 xj — 1), for z;, A, we have

Let a% = g{ = 0, we have

A:ﬁa j:172a"'7N7
N O

Thus, when 1 =29 = - - =Ny = %, y has a minimum value, i.e., A,in = Ymin = N tan %>1.
O
A.2  Proof for Lemmal[ll

Lemma 1. In an instance-level cross-modal matching problem, under uniform NC with noise rate
n < % when q = 1, L, is noise tolerant.

Proof. Recall that for any f,

Re, (f) =Reo(f) + Reo (f)
=K1, 7y~p [Yi- L7 (L, T, @) + E(r myop [ L7(T5, 1, @)] -
=Er, )~ L7 (L3, T, @) + E1, 1y~ [£7(T5, 1is q)]



Under uniform noisy correspondence with noise rate 7 and ¢ = 1, for any f, R}, (f) is written as
Rpo(f) =B my~p, [5:L7(1, T, g = 1)]
(o) ,r] (e}
:E(Ii,T.)ND[(l - n)ﬂr(Ileh q= 1) T Zﬂr(IZ7T]7q = 1)]

>y tan(pf)
=E(,, 7)~D {(1 —mL)(L;, Ti,qg=1) + 1 (N—=1)—-Ly(Li, Tiyq = 1))}

N -1
Nn

=(1- ﬁ)RE,‘i(f) +n

=E(1,, 7)~D [(1 — Ly (1, Ti,q = 1) + % ((N -2)+ tan(pii)ﬂ — @

Note that the equation between R}}, (f) and R (f) can also be derived similarly as Equation (EI),
ie., Rz$ = (1— 2L)Reo(f) +n. Thus,

Nn
1 =(1-— 2
RL () = (1 = 55 Re, (f) + 21
Now, for any f, R} (f*) = R} (f) = (1 — g25)(Re, (f*) — Re, (f)) < 0, where n < 5 and
f* is a globalminimizer of R, (f). This proves f* is also the global minimizer of R}, (f). O

B Implementation Details

B.1 Model Settings

In this section, we mainly detail the model settings and the implementation of CRCL. To compre-
hensively verify the effectiveness of our framework, we apply our CRCL to VSEoo [1]], SAF [2],
and SGR [2] for further robustness against NC, i.e., CRCL-VSEoco, CRCL-SAF, and CRCL-SGR.
For the VSE model used in our CRCL-VSEco, we use the same encoder models as VSEoo [[1]] to
project the local region features and word embeddings into the shared common space and then utilize
GPO [[1] to aggregate local representations into global representations, wherein the dimensionality of
the common space is 1024. For the CRCL-SAF/SGR, like DECL [4]], we directly perform our CRCL
on the similarity output of these models without any changes to their models. In all experiments, we
use the same image region features and text backbone for fairness. More specifically, we utilize a
Faster R-CNN detection model [5] to extract local-level BUTD features of salient regions with top-36
confidence scores for each image, like [6, [2]. These features are encoded into a 2,048-dimensional
feature vector and then projected into 1,024-dimensional image representations in the common space.
For each text, the Bi-GRU language backbone encodes the word tokens into the same dimensional
semantic vector space as the image representation. Following [1], we employ the size augmentation
on the training data, which is then fed into the model. For all parameter settings, see Appendix [B.2]
The code of our CRCL will be released on GitHub.

B.2 Parameter Settings

In this section, we fully provide the parameter settings of our experiments in Table |1| for easy
reproducibility on three benchmark datasets, i.e., Flickr30K, MS-COCO, and CC152K. We divide
the parameter settings into two groups, the first group includes the parameter settings for the training
without synthetic noise (=0%). The second group consists of the parameter settings for the training
under synthetic noise (> 0%). Simultaneously, each group details the training parameters of the three
extensions of the baselines, i.e., CRCL-VSEoo, CRCL-SAF, and CRCL-SGR. Note that the result
of CRCL-SGRAF in the paper is the ensemble results of CRCL-SAF and CRCL-SGR. Following
[2, 4, 7], the ensemble strategy is averaging the similarities computed by the two models and then
performing image-text matching. Next, we will describe these main parameters. ey represents the
number of epochs to freeze the correspondence label, avoiding insufficient model training in the early
stage from affecting the correction quality. e; in [eq, - - - , e,,] is the number of training epochs for the
i-th SR piece. During the last SR piece, CRCL decays the learning rate (Ir_rate) by 0.1 in Ir_update



epochs. 7 and ) are the temperature parameter and the scale factor in ACL loss, respectively. 5 and €
are the momentum coefficient and the similarity threshold in SCC, respectively. For the parametric
analysis of some hyper-parameters, see Appendix [C.2]for more details.

Table 1: The settings of some key parameters for training on three datasets.

Noise | Datasets | Methods | ef | [ers---,em] | Ir_update | Irrate | 8 | 7 | A| e
CRCL-VSEcc | 2 | [7,7,7.32] 17 0.0005 | 0.8 | 0.05 | 5 | 0.1

CC152K | CRCL-SAF 2 | 17,7742 20 0.0005 | 0.8 | 0.05 | 5| 0.1

CRCL-SGR 2 | 177,742 20 0.0005 | 0.8 | 0.05 | 5 | 0.1

Synthetic noise = 0% CRCL-VSEco | 2 | [7,7,732] 15 0.0005 | 0.8 | 0.05 | 5 | 0.1
ynthetic notse = U7 | gjickr30K | CRCL-SAF 2 | 17,7,7.32] 15 0.0005 | 0.8 | 0.05 | 5 | 0.1
CRCL-SGR 2 | 17,7732 15 0.0005 | 0.8 | 0.05 | 5| 0.1

CRCL-VSEco | 2 | [4,44.22] 12 0.0005 | 0.8 | 0.05 | 5 | 0.1

MS-COCO | CRCL-SAF 2 | [4,4,422] 12 0.0005 | 0.8 | 0.05 | 5 | 0.1

CRCL-SGR 2 | [44,422] 12 0.0005 | 0.8 | 0.05 | 5 | 0.1

CRCL-VSEco | 2 | [7,7,7.32] 15 0.0005 | 0.8 | 0.05 | 5 | 0.1

Flickr30K | CRCL-SAF 2 | 17,7,7.32] 15 0.0005 | 0.8 | 0.05 | 5 | 0.1

Synthetic noise > 0% CRCL-SGR 2 | 17,7,7.32] 15 0.0005 | 0.8 | 0.05 | 5 | 0.1
CRCL-VSEco | 2 | [4,4,4.22] 12 0.0005 | 0.8 | 0.05 | 5 | 0.1

MS-COCO | CRCL-SAF 2 | 44422 12 0.0005 | 0.8 | 0.05 | 5 | 0.1

CRCL-SGR 2 | [44,422] 12 0.0005 | 0.8 | 0.05 | 5 | 0.1

C Additional Experiments and Analysis

C.1 Parametric Analysis

The proposed CRCL has three sensitive key hyper-parameters, i.e., the temperature parameter 7,
the momentum coefficient 3, and the similarity threshold e. Thus, we conduct detailed parameter
experiments (shown in Figure [2) on the Flickr30K dataset to evaluate the impact of different hyper-
parameter settings and obtain better parameter settings for CRCL. Note that all parametric experiments
are performed by CRCL-VSEoo under 60% noise. As can be seen from Figure [2a] too large or too
small 7 both cause a performance drop. Thus, in all experiments, we recommend the range of 7 is
0.03 ~ 0.07. From Figure |2b, when the value of [ is set to two extreme values, i.e., 0 and 1, the
performance drops remarkably. Moreover, in the range of (0, 1), as 3 increases, the performance
gradually improves. We think that with the increase of 3, each correction performed by MC will
retain more historical information to reduce perturbation. Thus providing more stable corrected
correspondences for training. In all our experiments, 3 is 0.8. From Figure 2c| we can see that proper
filtering is beneficial for mitigating NC. We think this filtering strategy can prevent the active loss
from exploiting these confident noisy pairs to produce more misleading gradients. Thus, we set € as
0.1 in all our experiments.
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(a) The temperature parameter 7 (b) The momentum coefficient 3 (c) The similarity threshold e

Figure 2: Parametric analysis on Flickr30K with 60% noise.

C.2 Progressive Analysis

To comprehensively investigate the effectiveness of our CRCL, we carry out some progressive
processes to further analyze the advantages of CRCL. Specifically, we recorded the performance



of VSEco with different loss functions, including CRCL-VSEco, L4, £,(q = 1), L,.(¢ = 0),
Complementary Contrastive Loss (CCL) [8], the hinge-based Triplet Ranking loss (TR) [9], the
Triplet Tanking loss with Hard Negatives (TR-HN) [[10], on Flickr30K under 80% noise. We visualize
the performance of bidirectional retrieval in Figure [3] From the results, although £,.(¢ = 1) is
noise-tolerant, which is consistent with the theoretical analysis (lemma EI), there would be some
underfitting. Our CRCL with ACL loss fully explores the advantages of £, and L, showing
remarkable robustness.
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Figure 3: The performance of VSEco with different loss functions.

C.3 More Results under Synthetic Noisy Correspondences

To fully demonstrate the superiority and generalization of the proposed CRCL, we provide more
comparison results under different robustness frameworks, including DECI_E] [4]] and BiCrdﬂ [18l].
In Table @ except for the results of BiCro under 20%, 40%, and 60%, all other results are reproduced
by us. From the results, our CRCL can significantly improve the robustness of existing methods (e.g.,
VSEoo, SAF, and SGR) and outperform other advanced robust frameworks. It is worth noting that
CRCL is also stable and superior in high noise, which shows the effectiveness of our CRCL.

C.4 More Results under Well-annotated Correspondences

In this section, we supplement the experimental results under well-annotated correspondences for
a comprehensive and faithful comparison, including 17 state-of-the-art baselines, namely VSRN
(ICCV’19) [11], CVSE (ECCV’20) [12], VSEco (CVPR’21) [1l], MV-VSE (IICAI’22) [13]; SCAN
(ECCV’18) [6]], CAMP (ICCV’19) [14], IMRAM (CVPR’20) [15], GSMN (CVPR’20) [16], SGRAF
(AAAT21) [2], NCR (NeurIPS’21) [17], DECL (ACM MM*22) [4], CGMN (TOMM’22) [18]], URDA
(TMM’22) [19], CMCAN (AAAI’22) [20], NAAF (CVPR’22) [21], CCR&CCS (WACV’23) [22],
RCL (TPAMI’23) [8]], and BiCro (CVPR’23) [7]. From the experimental results in TableE], our
CRCL achieves competitive results, which demonstrates the ability and potential of CRCL to handle
well-correspondence scenarios.

D Related works

D.1 Image-Text Matching

Image-text matching methods mainly focus on learning latent visual-semantic relevance/similarities
as the evidence for cross-modal retrieval [I10, 6, [2, [1, 20} 23| 24} 25| 126} 27]]. These approaches
could be roughly classified into global- and local-level methods. To be specific, most global-level
methods [[10} (11} [1} 27] project images and texts into a shared global space, wherein cross-modal
similarities could be computed [10, [I]. For example, Faghri et al. [10] proposed a triplet ranking

“https://github.com/QinYang79/DECL
*https://github.com/xubzhao/BiCro
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Table 2: Performance comparison (R@K(%) and rSum) of image-text retrieval on Flickr30K and
MS-COCO 1K. The highest scores are shown in bold.

Flickr30K MS-COCO 1K
Image — Text |  Text — Image | Image — Text |  Text — Image |
Noise ‘ Methods ‘ R@l R@5 R@10 ‘ R@l R@5 R@10 ‘ rSum ‘ R@l R@5 R@10 ‘ R@l R@5 R@10 ‘ rSum
SAF 51.8 795 883 | 38.1 668 76.6 |401.1| 41.0 784 894 | 382 740 855 |406.5
SGR 612 843 915 | 445 721 80.2 |433.8]49.1 838 927 | 425 777 882 |434.0
VSEcxo 69.0 892 948 | 488 763 83.8 |4619| 735 933 97.0 | 574 865 92.8 |500.5
DECL-SAF 73.1 93.0 962 |57.0 820 884 |489.7| 772 959 984 | 61.6 89.0 953 |5174
20% DECL—SGR 754 932 962 | 56.8 81.7 884 [491.7| 769 953 982 | 613 89.0 951 |5158
BiCro-SAF 77.0 933 975 | 572 823 89.1 4964|745 950 982 | 60.7 89.0 950 |512.4
BiCro-SGR 765 93.1 974 | 58.1 824 885 [496.0| 757 95.1 98.1 | 60.5 88.6 94.7 |512.7
CRCL-VSEco | 74.8 928 96.5 | 55.1 81.8 88.7 |489.7| 76.2 955 98.6 | 61.3 89.7 956 |5169
CRCL-SAF 747 937 977 | 579 828 89.2 [496.0| 785 957 985 | 63.1 89.9 955 |521.2
CRCL-SGR 758 94.6 97.6 | 59.1 84.0 90.1 |501.2| 789 957 983 | 63.6 90.3 957 |5225
SAF 343 656 784 | 30.1 58.0 685 |3349] 360 744 870 | 337 694 825 |383.0
SGR 472 764 832 | 345 603 705 |372.1|439 783 893 |37.0 728 85.1 |4064
VSEcxo 30.2 583 70.2 | 223 496 627 |2933| 533 843 9211 | 314 638 750 |399.9
DECL-SAF 722 914 956 | 540 794 864 |479.0| 758 950 98.1 | 603 88.7 949 |512.8
40% DECL—SGR 724 922 965 | 545 80.1 87.1 4828|759 953 982 | 60.2 883 948 |512.7
BiCro-SAF 725 917 953 | 53.6 79.0 864 4785|752 950 979 | 594 879 943 |509.7
BiCro-SGR 728 915 946 | 547 79.0 863 |4789| 746 948 977 | 594 875 94.0 |508.0
CRCL-VSEco | 71.2 92,6 963 | 532 804 874 |481.1| 744 951 984 | 595 89.1 952 |511.7
CRCL-SAF 742 938 97.1 | 57.0 81.8 88.6 [4925| 764 957 98.1 | 621 893 953 |5169
CRCL-SGR 755 94.0 978 | 575 826 892 [496.6| 76.8 953 982 | 619 89.6 954 |517.2
SAF 283 545 675 | 221 473 59.0 |278.7]282 639 794 | 31.1 656 80.5 |348.7
SGR 28.7 580 71.0 | 23.8 495 60.7 |291.7| 376 733 863 | 338 686 81.7 |381.3
VSEcxo 180 440 557 | 151 385 51.8 [223.1| 334 648 79.1 | 260 60.1 763 |339.7
DECL-SAF 664 88.1 93.6 | 49.8 76.1 844 |4584| 71.1 93.6 973 | 579 86.8 93.8 |500.5
60% DECL—SGR 68.5 899 948 | 503 76.7 84.1 4643|732 944 979 | 582 86.8 939 |504.4
BiCro-SAF 67.1 883 93.8 | 48.8 752 83.8 |457.0| 725 943 979 | 57.7 869 93.8 |503.1
BiCro-SGR 68.5 89.1 93.1 | 482 747 827 |4563| 734 940 975 | 58.0 86.8 93.6 |503.3
CRCL-VSEco | 68.3 89.8 959 | 50.5 77.8 853 [467.6| 72.6 94.1 98.0 | 57.8 87.7 945 |504.7
CRCL-SAF 70.1 90.8 957 |53.0 794 869 4759|746 945 976 |59.5 883 94.7 |509.2
CRCL-SGR 70.5 913 956 | 525 794 86.8 [476.1| 746 94.6 979 | 59.2 88.0 94.6 |508.9
SAF 122 328 484 | 11.8 305 415 |1772|242 575 741 | 247 57.1 73.0 |310.6
SGR 13.7 351 47.6 | 12.1 309 419 |181.3| 26.7 60.7 756 | 253 582 726 |319.1
VSEoo 8.1 231 347 74 226 31.8 |127.7] 254 551 706 | 19.2 505 68.0 |288.8
DECL-SAF 56.3 82.1 893 | 38.7 647 73.8 |4049| 659 920 96.6 | 529 836 91.7 |482.7
80% DECL-SGR 55.1 79.8 872 | 374 634 729 |3958]| 656 91.6 96.6 | 52.0 830 91.3 |480.1
BiCro-SAF 24 9.1 15.8 2.4 8.3 13.7 | 51.7 | 39.6 72.6 84.7 | 224 528 67.1 |3689
BiCro-SGR 1.7 8.7 13.7 1.3 5.1 8.9 394 | 314 620 752 | 300 60.7 732 |3325
CRCL-VSEco | 553 82.1 89.1 | 39.7 682 77.8 4122|679 928 97.1 | 53.1 84.7 92.5 |488.1
CRCL-SAF 584 839 905 | 441 707 79.8 42741709 928 97.1 | 552 853 929 |4942
CRCL-SGR 59.2 851 911 |43.6 709 80.1 [430.0| 70.7 929 971 | 56.0 85.6 93.1 |4954

loss with hard negatives to learn holistic visual-semantic embeddings for cross-modal retrieval. A
Generalized Pooling Operator (GPO) [[1]] was proposed to adaptively aggregate different features (e.g.,
region-based and grid-based ones) for better common representations. For the local-level methods,
most of them desire to learn the latent fine-grained alignments across modalities for more accurate
inference of visual-semantic relevance [0, [2, 20]. Representatively, Lee et al.[6] proposed a Stacked
Cross Attention Network model (SCAN) to excavate the full latent alignments by contextualizing
the image regions and word tokens for visual-semantic similarity inference. Diao et al. [2] proposed
a Similarity Graph Reasoning and Attention Filtration model (SGRAF) for accurate cross-modal
similarity inference by using a graph convolutional neural network for fine-grained alignments and
an attention mechanism for representative alignments. Moreover, Zhang et al. [20] proposed a
novel Cross-Modal Confidence-Aware Network to combine the confidence of matched region-word
pairs with local semantic similarities for a more accurate visual-semantic relevance measurement.
HREM [27] could explicitly capture both fragment-level relations within modality and instance-level
relations across different modalities, leading to better retrieval performance. Pan et.al [26] propose a
Cross-modal Hard Aligning Network (CHAN) to comprehensively exploit the most relevant region-
word pairs and eliminate all other alignments, achieving better retrieval accuracy and efficiency.
However, the aforementioned methods rely heavily on well-aligned image-text pairs while ignoring
the inevitable noisy correspondences in data [[17} 4], which will mislead the cross-modal learning and
lead to performance corruption.



Table 3: Performance comparison (R@K(%) and rSum) of image-text retrieval on Flickr30K and
MS-COCO 1K. The highest scores are shown in bold. * means global-level method.

Flickr30K MS-COCO 1K
Image — Text |  Text— Image | Image — Text |  Text— Image |
Methods ‘ R@1 R@5 R@I10 ‘ R@1 R@5 R@I10 ‘ rSum ‘ R@1 R@5 R@10 ‘ R@1 R@5 R@10 ‘ rSum
VSRN* 713 90.6 960 | 547 81.8 882 4826|762 948 982 | 628 89.7 951 |516.8
CVSE* 70.5 88.0 927 | 547 822 88.6 |476.7| 69.2 933 975 | 557 86.9 93.8 |496.4

VSEoo* 76.5 942 977 | 564 834 899 4981|785 96.0 98.7 |61.7 903 956 |520.8
MV-VSE* | 79.0 949 97.7 | 59.1 84.6 90.6 |5059| 78.7 95.7 98.7 | 62.7 904 957 |521.9

SCAN 67.4 903 958 | 48.6 7777 852 |465.0| 727 948 984 | 588 884 948 |5079
CAMP 68.1 89.7 952 | 515 771 853 4669|723 948 983 | 585 879 950 |506.8
IMRAM 74.1 93.0 96.6 | 539 794 872 |4842| 76,7 956 985 | 61.7 89.1 950 |516.6
GSMN 76.4 943 973 | 574 823 89.0 |496.7| 784 964 98.6 | 633 90.1 957 |5225
SGRAF 778 941 974 | 585 830 888 [499.6|79.6 962 985 | 632 90.7 96.1 |524.3
NCR 713 940 975 | 59.6 844 899 |502.7| 787 958 985 | 633 904 958 |5225
DECL 798 949 974 | 595 839 895 |505.0]79.1 963 987 | 633 90.1 956 |523.1

CGMN 779 938 96.8 | 599 851 90.6 |504.1|76.8 954 983 | 638 90.7 957 |520.7
UARDA 71.8 950 976 | 57.8 829 892 |5003| 77.8 950 97.6 | 57.8 829 89.2 |500.3
CMCAN 79.5 956 976 | 609 843 899 |507.8| 78.6 96.5 98.9 | 639 90.7 962 |524.8

NAAF 783 941 977 | 589 833 89.0 (5013|789 960 987 |63.1 914 965 |524.6
CCR&CCS | 793 952 980 | 59.8 83.6 888 |504.7|802 968 987 | 643 90.6 958 |526.4
RCL 799 961 978 | 61.1 854 903 [5106|80.4 964 987 | 643 908 960 |526.6
BiCro 807 943 97.6 | 59.8 838 897 5059|783 958 985 | 627 90.0 957 |521.0
CRCL | 785 955 980 | 623 865 917 |512.5]80.7 965 986 |65.1 912 96.1 |528.2

D.2 Learning with Noisy Labels

Since the lack of well-annotated data in many real-world applications [28 |29} 30} 3111321331 [34} [17]],
learning with incomplete/noisy supervision information is becoming more and more popular in recent
years. In this section, we briefly review a few families of these methods against noisy labels: 1)
Robust losses aims to improve the robustness of loss functions to prevent models from overfitting on
noisy labels [28 135,136,137, 138, 30]]. 2) Sample selection [3940] mainly exploits the memorization
effect of DNNs [41] to divide/select the corrupted samples from datasets, and then conduct different
training strategies for clean and noisy data. 3) Correction Approaches[42] 43| 44] attempt to correct
the wrong supervision information (e.g., labels or losses) for robust training through some ingenious
mechanisms. Different from the aforementioned unimodal category-based methods, learning with
noisy correspondence focuses on the noisy annotations existing across different modalities instead of
classes [17,4]. That is to say, noisy correspondences are instance-level noise instead of class-level
noise, which is more challenging [17, 4]. To tackle this challenge, Huang et al. [[17] first proposed a
novel Noisy Correspondence Rectifier (NCR) to rectify the noisy correspondences with co-teaching.
By introducing evidential deep learning into image-text matching, Qin et al. [4] proposed a general
Deep Evidential Cross-modal Learning framework (DECL) to improve the robustness against noisy
correspondences. Some recent works [8, [7] try to predict correspondence labels to recast the margin
of triplet ranking loss [[10] as a soft margin to further improve robustness like NCR, e.g., cross-modal
mete learning [8] and similarity-based consistency learning [7]. In addition to image-text matching,
other fields are also troubled by NC, such as partially view-aligned clustering [45] 46,47, 48], video-
text retrieval [49], visible-infrared person re-identification [50]. In this paper, we mainly focus on
the NC problem in image-text matching and try to address this from both robust loss function and
correspondence correction.
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