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1 Introduction
In this supplementary material, additional details pertaining to
NRCH are furnished for further insight. Delving into greater detail,
Section 2 initially presents an exposition on the used datasets and
compared baselines. Moreover, Section 3 elaborates on the extensive
experimental outcomes, showcasing the Mean Average Precision
(MAP) values for both I2T and T2I retrieval tasks. This encompasses
a thorough comparison between our NRCH and the state-of-the-art
baselines.

2 Dataset and Baseline Description
2.1 Datasets
This section presents the benchmark cross-modal datasets em-
ployed in our experiments. Key statistics are summarized in Table 1,
and brief descriptions of each dataset are as follows:

MIRFlickr-25K [5] contains 25,000 image-text pairs instances
from the Flickr website,classified into 24 distinct semantic cate-
gories with multi-label annotations. Specifically, in each image-text
instance, images are paired with relevant text descriptions, with
the former represented by 4,096-dimensional vectors obtained from
a 19-layer VGGNet model [? ], and the latter by 1,386-dimensional
bag-of-words (BoW) vectors. Following the previous method [6], we
excluded instances lacking classification labels, yielding a refined
set of 20,015 pairs for our experiments.

IAPRTC-12 [2] encompasses a compilation of 20,000 image-text
pairs, each meticulously tagged with 255 varied semantic classes in
a multi-label format. Specifically, each image in the pair is encoded
as a 4,096-dimensional vector via the pre-trained CNN-F model [?
], while the corresponding text manifests as a 2,912-dimensional
BoW vector. Uniquely, our experiments utilize the entirety of the
dataset without exception.

NUS-WIDE [1] is a publicly accessible collection of web images
with their textual tags, comprising 269,648 visuals. Each image-text
pairs is precisely categorized within a framework of 81 multi-label
semantic classes. In detail, the visual data from each image is cap-
tured in a 4,096-dimensional vector, derived through the application
of the pre-trained, 19-layer VGGNet architecture. Concurrently,
each textual descriptor is encapsulated within a 1,000-dimensional
BoW vector space. Moreover, after eliminating entries lacking labels
∗Dezhong Peng is also with Sichuan Newstrong UHD Video Technology Co., Ltd.
†Corresponding author

Table 1: The statistics of four datasets.

Dataset Train Test Database
MIRFlickr-25k 10,000 2,000 18,015
IAPR TC-12 10,000 2,000 18,000
NUS-WIDE 10,500 2,100 188,321
MS-COCO 10,000 5,000 117,218

or textual content, we have selectively harvested 200,421 image-text
pairs that represent the 21 most prevalent categories.

MS-COCO [8] is a collection of 123,287 images, each accompa-
nied by five descriptive sentences, and organized into 80 distinct cat-
egories. Visual representations within this dataset are encoded into
4,096-dimensional vectors, extracted by the pre-trained 19-layer
VGGNet. Different from other datasets, the textual component of
each image-text pair is encapsulated into a 300-dimensional vector,
derived using the pre-trained Doc2Vec model [7]. Following the ex-
clusion of pairs lacking labels, our experimental dataset comprises
122,218 image-text pairs.

2.2 Baselines
To verify the effectiveness and robustness of our NRCH under label
noise, we provide the comparison results with 11 baselines that
have published code. An introduction to each referenced baseline
is provided in the subsequent text:

DJSRH [9] is an unsupervised cross-modal hash coding method
that excels in capturing intrinsic semantic affinities across distinct
modalities. DJSRH first introduces a joint-semantics affinity matrix
that merges neighborhood information from different modalities,
ensuring the preservation of the original data’s neighborhood struc-
ture in the binary hash space. Second, DJSRH adeptly optimizes
the batch-wise training on hash code generating by mirroring the
joint-semantics relationships. Thus, it can reconstruct the specific
similarity values and offer an advantage over traditional Laplacian
constraints that only preserve the similarity order.

DGCPN [13] is an unsupervised cross-modal hashing framework
that leverages deep graph-based techniques to enhance the accuracy
of data similarity measures. DGCPN introduces a unique graph-
neighbor coherence approach, integrating three distinct similarity
types(i.e., graph-neighbor coherence, coexistent similarity, intra-
and inter-modality consistency) to preserve comprehensive data
relationships. By employing a half-real and half-binary optimization
strategy, DGCPN effectively minimizes quantization errors.
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Table 2: The performance comparison in terms of MAP scores on the NUS-WIDE dataset. The highest and the second-highest
scores are in bold and underlined, respectively. Methods above the dotted line are unsupervised, while those below are
supervised.

Task Method 20% 50% 80%
16bit 32bit 64bit 128bit 16bit 32bit 64bit 128bit 16bit 32bit 64bit 128bit

I2T

DJSRH (ICCV’19) 0.418 0.455 0.472 0.500 0.418 0.455 0.472 0.500 0.418 0.455 0.472 0.500
DGCPN (AAAI’21) 0.569 0.593 0.620 0.633 0.569 0.593 0.620 0.633 0.569 0.593 0.620 0.633
UCCH (TAPMI’23) 0.571 0.594 0.621 0.637 0.571 0.594 0.621 0.637 0.571 0.594 0.621 0.637
DCMH (CVPR’17) 0.479 0.483 0.478 0.449 0.407 0.405 0.405 0.405 0.381 0.392 0.397 0.392
ADAH (ECCV’18) 0.527 0.495 0.516 0.536 0.479 0.493 0.487 0.493 0.450 0.463 0.470 0.474
CPAH (TIP’20) 0.552 0.566 0.560 0.579 0.479 0.500 0.514 0.516 0.466 0.464 0.456 0.468
PIP (SIGIR’21) 0.554 0.595 0.594 0.597 0.562 0.585 0.589 0.588 0.570 0.591 0.590 0.596
CMMQ (CVPR’22) 0.632 0.638 0.643 0.654 0.572 0.595 0.611 0.614 0.536 0.581 0.588 0.611
DCHUC (TKDE’22) 0.601 0.596 0.583 0.570 0.602 0.584 0.586 0.576 0.570 0.589 0.583 0.574
MIAN (TKDE’23) 0.570 0.579 0.582 0.582 0.433 0.442 0.442 0.435 0.386 0.381 0.394 0.384
LtCMH (AAAI’23) 0.513 0.521 0.553 0.572 0.491 0.515 0.543 0.561 0.487 0.513 0.561 0.571
Our NRCH 0.657 0.679 0.683 0.685 0.628 0.653 0.661 0.668 0.604 0.610 0.623 0.640

T2I

DJSRH (ICCV’19) 0.418 0.460 0.480 0.511 0.418 0.460 0.480 0.511 0.418 0.460 0.480 0.511
DGCPN (AAAI’21) 0.581 0.601 0.628 0.635 0.581 0.601 0.628 0.635 0.581 0.601 0.628 0.635
UCCH (TAPMI’23) 0.582 0.602 0.629 0.637 0.582 0.602 0.629 0.637 0.582 0.602 0.629 0.637
DCMH (CVPR’17) 0.506 0.494 0.486 0.460 0.438 0.444 0.447 0.446 0.419 0.441 0.443 0.439
ADAH (ECCV’18) 0.520 0.488 0.520 0.527 0.449 0.469 0.465 0.461 0.419 0.435 0.439 0.447
CPAH (TIP’20) 0.561 0.571 0.559 0.578 0.478 0.492 0.509 0.508 0.472 0.474 0.469 0.472
PIP (SIGIR’21) 0.557 0.610 0.604 0.596 0.570 0.603 0.594 0.600 0.581 0.601 0.600 0.608
CMMQ (CVPR’22) 0.633 0.637 0.649 0.656 0.595 0.605 0.608 0.611 0.558 0.583 0.610 0.613
DCHUC (TKDE’22) 0.605 0.605 0.593 0.590 0.590 0.591 0.593 0.585 0.581 0.589 0.594 0.591
MIAN (TKDE’23) 0.609 0.618 0.625 0.631 0.457 0.471 0.470 0.468 0.396 0.411 0.414 0.406
LtCMH (AAAI’23) 0.471 0.490 0.535 0.561 0.453 0.486 0.532 0.548 0.527 0.561 0.548 0.558
Our NRCH 0.659 0.679 0.682 0.684 0.650 0.660 0.673 0.686 0.606 0.611 0.632 0.643

UCCH [4] is an advanced framework for unsupervised cross-
modal hashing (CMH) that integrates contrastive learning (CL).
It overcomes binary optimization issues through a novel momen-
tum optimizer that makes hashing operations learnable within CL,
thereby enhancing retrieval performancewithout binary-continuous
relaxation. Additionally, it introduces the Cross-modal Ranking
Learning (CRL) loss to mitigate the impact of false-negative pairs
(FNPs) by leveraging global discrimination, thus avoiding the overem-
phasis on FNPs and neglect of true negatives, positioning it as a
pioneering method in contrastive hashing.

DCMH [6] is a deep supervised cross-modal hashing method
designed to enhance multimedia retrieval through an integrated
approach that combines feature and hash-code learning within
a unified framework. Utilizing deep neural networks tailored for
each modality, DCMH performs end-to-end feature learning from
scratch, eschewing the need for hand-crafted features. This integra-
tion ensures that the learned features are highly compatible with the
hash-code learning procedure, leading to improved performance in
similarity search tasks across different media types.

ADAH [15] is an adversarial supervised hashing network de-
signed to pinpoint content similarities across multi-modal data by
leveraging an attention mechanism for enhanced focus on perti-
nent data segments. It features a tripartite architecture: a feature
learning module for extracting foundational representations, an
attention module that discerns key features via attention masks,
and a hashing module dedicated to crafting hash functions that
encapsulate cross-modal similarities. ADAH employs an adversarial
training strategy where the attention component seeks to challenge
the hashing module’s ability to recognize similarities pertaining

to the unattended features, thereby ensuring the hashing process
captures the essence of both attended and unattended data aspects.

CPAH [11] is a supervised deep hashing approach engineered
to bridge the modality gap and harness semantic consistency across
different modalities for enhanced cross-modal retrieval. It features
a consistency refined module (CR) that segregates multi-modal
representations into modality-common and modality-private com-
ponents. Complementing this, a multi-task adversarial learning
module (MA) aligns the modality-common representations in terms
of feature distribution and semantic consistency, paving the way for
generating compact and semantically potent hash codes conducive
to efficient retrieval.

PIP [14] is a supervised privacy protection framework designed
to safeguard sensitive information in large-scale multi-modal re-
trieval systems. It disrupts malicious retrieval attempts by infusing
original data with subtle adversarial perturbations, rendering sen-
sitive content untraceable by unauthorized parties. Simultaneously,
PIP maintains a robust multi-modal retrieval model for legitimate
applications, demonstrating resilience to these perturbations. This
pioneering work orchestrates a strategic two-player game that
aligns domain distributions and graphs both within and across
modalities, while leveraging a high-level similarity matrix for re-
fined learning guidance.

CMMQ [12] is a robust cross-modal hashing framework tailored
to effectively handle multimodal search in the presence of noisy
labels. It introduces a proxy-based contrastive (PC) loss that acts to
bridge the gap between different modalities, fostering joint network
training. The framework also features a novel small-loss sample
selection mechanism driven by the PC loss in conjunction with a
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Table 3: The performance comparison in terms of MAP scores on the MS-COCO dataset. The highest and the second-highest
scores are in bold and underlined, respectively. Methods above the dotted line are unsupervised, while those below are
supervised.

Task Method 20% 50% 80%
16bit 32bit 64bit 128bit 16bit 32bit 64bit 128bit 16bit 32bit 64bit 128bit

I2T

DJSRH (ICCV’19) 0.480 0.521 0.549 0.573 0.480 0.521 0.549 0.573 0.480 0.521 0.549 0.573
DGCPN (AAAI’21) 0.580 0.612 0.624 0.633 0.580 0.612 0.624 0.633 0.580 0.612 0.624 0.633
UCCH (TAPMI’23) 0.570 0.582 0.597 0.624 0.570 0.582 0.597 0.624 0.570 0.582 0.597 0.624
DCMH (CVPR’17) 0.536 0.573 0.577 0.582 0.473 0.467 0.477 0.458 0.391 0.373 0.350 0.341
ADAH (ECCV’18) 0.476 0.490 0.485 0.499 0.479 0.484 0.489 0.498 0.480 0.479 0.488 0.495
CPAH (TIP’20) 0.551 0.594 0.601 0.603 0.555 0.548 0.549 0.550 0.511 0.515 0.509 0.510
PIP (SIGIR’21) 0.535 0.581 0.585 0.601 0.512 0.561 0.584 0.592 0.501 0.525 0.563 0.601
CMMQ (CVPR’22) 0.620 0.637 0.642 0.640 0.582 0.630 0.625 0.635 0.597 0.615 0.626 0.634
DCHUC (TKDE’22) 0.571 0.504 0.546 0.509 0.558 0.515 0.522 0.503 0.551 0.541 0.519 0.545
MIAN (TKDE’23) 0.559 0.569 0.596 0.573 0.489 0.490 0.511 0.526 0.438 0.451 0.477 0.455
LtCMH (AAAI’23) 0.527 0.554 0.607 0.619 0.531 0.538 0.598 0.627 0.530 0.576 0.594 0.604
Our NRCH 0.639 0.647 0.675 0.677 0.645 0.651 0.682 0.685 0.643 0.660 0.672 0.691

T2I

DJSRH (ICCV’19) 0.491 0.533 0.557 0.586 0.491 0.533 0.557 0.586 0.491 0.533 0.557 0.586
DGCPN (AAAI’21) 0.603 0.615 0.623 0.628 0.603 0.615 0.623 0.628 0.603 0.615 0.623 0.628
UCCH (TAPMI’23) 0.569 0.581 0.591 0.622 0.569 0.581 0.591 0.622 0.569 0.581 0.591 0.622
DCMH (CVPR’17) 0.553 0.590 0.594 0.616 0.483 0.476 0.473 0.457 0.397 0.396 0.365 0.360
ADAH (ECCV’18) 0.451 0.466 0.468 0.466 0.458 0.456 0.456 0.475 0.445 0.465 0.457 0.460
CPAH (TIP’20) 0.543 0.602 0.610 0.622 0.531 0.551 0.562 0.595 0.519 0.521 0.522 0.524
PIP (SIGIR’21) 0.541 0.569 0.591 0.592 0.514 0.547 0.613 0.614 0.499 0.519 0.566 0.581
CMMQ (CVPR’22) 0.605 0.640 0.641 0.642 0.609 0.616 0.624 0.629 0.605 0.621 0.625 0.636
DCHUC (TKDE’22) 0.545 0.482 0.558 0.459 0.546 0.480 0.453 0.468 0.548 0.429 0.463 0.567
MIAN (TKDE’23) 0.582 0.578 0.611 0.600 0.507 0.509 0.535 0.564 0.452 0.467 0.481 0.485
LtCMH (AAAI’23) 0.580 0.624 0.624 0.640 0.564 0.606 0.622 0.628 0.588 0.619 0.624 0.627
Our NRCH 0.635 0.651 0.662 0.670 0.649 0.674 0.679 0.688 0.649 0.656 0.679 0.689

mutual quantization loss, which together enhance the selection of
reliable samples for model training. This mutual quantization loss
further aligns modalities, optimizing the sample selection process
to ensure that only the most consistent examples contribute to the
learning, thereby improving the robustness of cross-modal retrieval
against label noise.

DCHUC [10] is a supervised deep cross-modal hashing frame-
work that excels in learning unified hash codes and optimizing
hashing functions simultaneously. It utilizes an iterative optimiza-
tion algorithm to master the cross-modal retrieval process, ensuring
that image-text pairs are hashed cohesively across different modal-
ities. This process not only refines the hash code learning with
feedback from function optimization but also enhances retrieval
precision, setting a new benchmark in the field.

MIAN [16] is a supervised modality-invariant asymmetric archi-
tecture designed for cross-modal hashing, which adeptly navigates
the semantic and heterogeneity gaps across different modalities. It
employs an intra-modal asymmetric network to probabilistically
learn query-vs-all pairwise similarities within each modality, while
an inter-modal asymmetric network captures the cross-modal se-
mantic correlations via maximum inner product search. This archi-
tecture not only integrates pairwise, piecewise, and transformed
semantics into a cohesive semantic-preserving hashing code frame-
work but also features a modality alignment network. MIAN refines
visual features and maximizes the conditional information bottle-
neck, effectively bridging modality discrepancies and fostering the
generation of discriminative, modality-invariant hash codes.

LtCMH [3] is a supervised Cross Modal Hashing technique
specifically formulated to address the challenges of imbalanced

multi-modal datawith long-tail distribution. It utilizes auto-encoders
to effectively segregate and enhance the individuality and common-
ality of different modalities. By minimizing the dependency on
the individuality of each modality and boosting their commonali-
ties, LtCMH dynamically integrates these aspects with direct fea-
tures from respective modalities to construct meta features. These
enriched meta features better represent tail labels and are sub-
sequently binarized to generate effective hash codes, optimizing
retrieval performance across diverse data distributions.

3 More Comparison
To further demonstrate the effectiveness and robustness of our
method, comprehensive MAP score outcomes for the I2T (text-to-
image retrieval) and T2I (text-to-image retrieval) tasks are detailed
and can be reviewed in Tables 2 to 5. To maintain consistency
with the experiments reported in the main text, we conducted our
experiments on the same datasets, with identical parameter con-
figurations and against the same baselines. Deriving insights from
the additional experimental result in Tables 2 to 5, the subsequent
observations can be formulated:

• As the noise rate increases, the performance of these super-
vised methods [3, 6, 10–12, 14–16] degrades severely on both
I2T and T2I tasks. In comparison, the unsupervised meth-
ods [4, 9, 13] above the dotted line in the tables seem to have
a certain degree of robustness. However, it is still difficult to
achieve further performance improvement due to the lack
of corresponding measures against noisy labels.

• Among all these baseline methods, CMMQ [12] still stands
out for its resistance to noisy labels on the NUS-WIDE and
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Table 4: The performance comparison in terms of MAP scores on the IAPR TC-12 dataset. The highest and the second-highest
scores are in bold and underlined, respectively. Methods above the dotted line are unsupervised, while those below are
supervised.

Task Method 20% 50% 80%
16bit 32bit 64bit 128bit 16bit 32bit 64bit 128bit 16bit 32bit 64bit 128bit

I2T

DJSRH (ICCV’19) 0.366 0.394 0.417 0.431 0.366 0.394 0.417 0.431 0.366 0.394 0.417 0.431
DGCPN (AAAI’21) 0.416 0.447 0.466 0.467 0.416 0.447 0.466 0.467 0.416 0.447 0.466 0.467
UCCH (TAPMI’23) 0.410 0.449 0.464 0.467 0.410 0.449 0.464 0.467 0.410 0.449 0.464 0.467
DCMH (CVPR’17) 0.422 0.421 0.420 0.412 0.401 0.405 0.397 0.388 0.349 0.356 0.348 0.341
ADAH (ECCV’18) 0.423 0.437 0.440 0.438 0.414 0.411 0.434 0.436 0.414 0.415 0.420 0.425
CPAH (TIP’20) 0.457 0.463 0.465 0.471 0.440 0.455 0.461 0.462 0.418 0.448 0.452 0.455
PIP (SIGIR’21) 0.433 0.450 0.457 0.475 0.412 0.451 0.462 0.474 0.424 0.444 0.454 0.470
CMMQ (CVPR’22) 0.409 0.445 0.468 0.473 0.410 0.445 0.456 0.470 0.422 0.434 0.455 0.456
DCHUC (TKDE’22) 0.461 0.444 0.449 0.447 0.451 0.456 0.457 0.440 0.423 0.432 0.436 0.434
MIAN (TKDE’23) 0.444 0.447 0.462 0.472 0.424 0.429 0.430 0.452 0.403 0.421 0.434 0.439
LtCMH (AAAI’23) 0.412 0.428 0.440 0.449 0.416 0.427 0.441 0.450 0.411 0.432 0.437 0.448
Our NRCH 0.498 0.526 0.544 0.549 0.495 0.525 0.541 0.543 0.490 0.518 0.532 0.540

T2I

DJSRH (ICCV’19) 0.371 0.399 0.425 0.438 0.371 0.399 0.425 0.438 0.371 0.399 0.425 0.438
DGCPN (AAAI’21) 0.427 0.449 0.462 0.467 0.427 0.449 0.462 0.467 0.427 0.449 0.462 0.467
UCCH (TAPMI’23) 0.426 0.450 0.467 0.470 0.426 0.450 0.467 0.470 0.426 0.450 0.467 0.470
DCMH (CVPR’17) 0.427 0.436 0.412 0.421 0.427 0.417 0.412 0.400 0.390 0.384 0.383 0.376
ADAH (ECCV’18) 0.420 0.427 0.458 0.457 0.402 0.423 0.452 0.451 0.414 0.406 0.438 0.441
CPAH (TIP’20) 0.443 0.469 0.467 0.475 0.441 0.451 0.452 0.462 0.427 0.450 0.459 0.460
PIP (SIGIR’21) 0.444 0.453 0.468 0.483 0.417 0.454 0.469 0.480 0.428 0.451 0.468 0.477
CMMQ (CVPR’22) 0.427 0.446 0.466 0.464 0.417 0.445 0.467 0.472 0.426 0.442 0.457 0.464
DCHUC (TKDE’22) 0.437 0.457 0.449 0.448 0.443 0.444 0.437 0.456 0.426 0.445 0.465 0.459
MIAN (TKDE’23) 0.435 0.442 0.448 0.398 0.420 0.429 0.444 0.438 0.402 0.417 0.423 0.423
LtCMH (AAAI’23) 0.429 0.443 0.457 0.464 0.422 0.445 0.454 0.464 0.417 0.445 0.451 0.462
Our NRCH 0.498 0.528 0.549 0.555 0.494 0.526 0.543 0.551 0.487 0.518 0.535 0.547

Table 5: The performance comparison in terms of MAP scores on the MIRFlickr-25K dataset. The highest and the second-
highest scores are in bold and underlined, respectively. Methods above the dotted line are unsupervised, while those below are
supervised.

Task Method 20% 50% 80%
16bit 32bit 64bit 128bit 16bit 32bit 64bit 128bit 16bit 32bit 64bit 128bit

I2T

DJSRH (ICCV’19) 0.603 0.621 0.636 0.650 0.603 0.621 0.636 0.650 0.603 0.621 0.636 0.650
DGCPN (AAAI’21) 0.698 0.699 0.711 0.723 0.698 0.699 0.711 0.723 0.698 0.699 0.711 0.723
UCCH (TAPMI’23) 0.698 0.721 0.724 0.728 0.698 0.721 0.724 0.728 0.698 0.721 0.724 0.728
DCMH (CVPR’17) 0.695 0.691 0.695 0.702 0.634 0.623 0.619 0.606 0.628 0.600 0.589 0.588
ADAH (ECCV’18) 0.724 0.729 0.735 0.733 0.713 0.718 0.717 0.714 0.602 0.607 0.610 0.603
CPAH (TIP’20) 0.697 0.694 0.691 0.689 0.660 0.660 0.666 0.647 0.619 0.654 0.642 0.627
PIP (SIGIR’21) 0.685 0.692 0.694 0.710 0.667 0.697 0.700 0.710 0.684 0.676 0.704 0.709
CMMQ (CVPR’22) 0.724 0.727 0.735 0.736 0.692 0.720 0.719 0.722 0.691 0.715 0.720 0.723
DCHUC (TKDE’22) 0.742 0.737 0.736 0.730 0.737 0.740 0.732 0.729 0.727 0.722 0.735 0.734
MIAN (TKDE’23) 0.748 0.749 0.756 0.760 0.676 0.684 0.685 0.685 0.648 0.657 0.649 0.633
LtCMH (AAAI’23) 0.712 0.728 0.734 0.741 0.697 0.718 0.726 0.728 0.687 0.707 0.711 0.721
Our NRCH 0.754 0.768 0.770 0.778 0.747 0.762 0.770 0.772 0.740 0.748 0.761 0.762

T2I

DJSRH (ICCV’19) 0.613 0.618 0.638 0.641 0.613 0.618 0.638 0.641 0.613 0.618 0.638 0.641
DGCPN (AAAI’21) 0.684 0.690 0.704 0.712 0.684 0.690 0.704 0.712 0.684 0.690 0.704 0.712
UCCH (TAPMI’23) 0.682 0.704 0.706 0.709 0.682 0.704 0.706 0.709 0.682 0.704 0.706 0.709
DCMH (CVPR’17) 0.711 0.711 0.711 0.695 0.669 0.667 0.658 0.654 0.629 0.644 0.646 0.644
ADAH (ECCV’18) 0.723 0.725 0.737 0.733 0.700 0.705 0.720 0.710 0.602 0.621 0.602 0.612
CPAH (TIP’20) 0.711 0.709 0.712 0.714 0.682 0.685 0.690 0.683 0.648 0.685 0.673 0.668
PIP (SIGIR’21) 0.680 0.691 0.695 0.698 0.658 0.697 0.691 0.694 0.686 0.689 0.700 0.696
CMMQ (CVPR’22) 0.728 0.732 0.738 0.741 0.704 0.716 0.722 0.725 0.698 0.707 0.712 0.716
DCHUC (TKDE’22) 0.738 0.736 0.739 0.738 0.732 0.741 0.737 0.732 0.719 0.720 0.734 0.731
MIAN (TKDE’23) 0.727 0.733 0.743 0.746 0.679 0.694 0.695 0.700 0.669 0.669 0.668 0.678
LtCMH (AAAI’23) 0.700 0.708 0.716 0.721 0.679 0.672 0.709 0.720 0.655 0.708 0.717 0.722
Our NRCH 0.741 0.756 0.759 0.758 0.734 0.747 0.754 0.759 0.722 0.727 0.746 0.746
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MS-COCO datasets for both I2T and T2I tasks, sharing simi-
larities with our NRCH in terms of noise segregation com-
ponents. But unlike this, our NRCH achieves even more
promising performance by improving the robustness of the
loss and performing reliable dynamic sample selection.

• All in all, our NRCH surpasses all baselines on four datasets
and outperforms the best baselines by 3.3%/2.4%, 4.6%/4.4%,
6.6%/5.9%, and 1.3%/0.3%, respectively, in the most challeng-
ing scenarios (i.e., the noise rate is 80% noise and code length
is 16 bits) for I2T and T2I tasks. This is enough to prove
the effectiveness and superiority of our NRCH against noisy
labels.
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