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ABSTRACT

Human motion driven control (HMDC) is an effective approach for generating nat-
ural and compelling robot motions while preserving high-level semantics. How-
ever, establishing the correspondence between humans and robots with different
body structures is not straightforward due to the mismatches in kinematics and
dynamics properties, which causes intrinsic ambiguity to the problem. Many
previous algorithms approach this motion retargeting problem with unsupervised
learning, which requires the prerequisite skill sets. However, it will be extremely
costly to learn all the skills without understanding the given human motions, par-
ticularly for high-dimensional robots. In this work, we introduce CrossLoco, a
guided unsupervised reinforcement learning framework that simultaneously learns
robot skills and their correspondence to human motions. Our key innovation is to
introduce a cycle-consistency-based reward term designed to maximize the mu-
tual information between human motions and robot states. We demonstrate that
the proposed framework can generate compelling robot motions by translating di-
verse human motions, such as running, hopping, and dancing. We quantitatively
compare our CrossLoco against the manually engineered and unsupervised base-
line algorithms along with the ablated versions of our framework and demonstrate
that our method translates human motions with better accuracy, diversity, and user
preference. We also showcase its utility in other applications, such as synthesizing
robot movements from language input and enabling interactive robot control.

1 INTRODUCTION

The concept of teleoperating robots through human movements, known as Human Motion Driven
Control (HMDC), has been illustrated in various forms of media, including animations, movies, and
science fiction, such as Madö King Granzört (Iuchi, 1989), Pacific Rim (del Toro, 2013), and Ready
Player One (Spielberg, 2018). In these media, HMDC technology allows operators to intuitively
control robots using their body movements. Compared to fully autonomous control, this teleop-
eration offers the essential dexterity and decision-making capabilities required for tasks demanding
precise motor skills and situational awareness. Consequently, this property makes HMDC promising
for various applications, including entertainment, medical surgery, and space exploration.

The key challenge of HMDC is how to establish the correspondence between robot states and hu-
man motions, which can also be referred to as motion retargeting. For certain types of robots,
such as humanoids or manipulators, this correspondence might be simple enough to be approached
by assuming the mapping of end-effectors in Cartesian space and solving the formulated inverse
kinematics problem (Gleicher, 1998; Tak & Ko, 2005). However, when we consider robots with
significantly different morphological structures, such as quadrupeds, hexapods, or quadrupeds with
mounted arms, the correspondence becomes nontrivial due to the intrinsic ambiguity of the prob-
lem. Therefore, researchers often have approached this motion retargeting problem by applying
supervised learning techniques to the paired datasets (Sermanet et al., 2018; Delhaisse et al., 2017;
Rhodin et al., 2014). Nonetheless, creating paired datasets can be a challenging and labor-intensive
task that requires significant engineering expertise. To address this issue, some researchers have
proposed using unsupervised learning techniques to learn the correlation from unpaired human and
robot motion datasets (Li et al., 2023b; Choi et al., 2020; Smith et al., 2019). In this case, the robot
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Figure 1: We introduce CrossLoco, a guided unsupervised reinforcement learning framework for
translating human motion to robot control.

dataset serves as prior knowledge indicating the motion pattern of the robot. However, obtaining
motion datasets can be expensive because we do not know the required skills for the given human
motion. In addition, control itself is challenging due to the complexity of the quadrupedal robot and
its underactuated dynamics. This leads to our research question: can we learn cross-morphology
HMDC without prior knowledge of the robot?

The research question presents three primary challenges. Firstly, the significant difference in kine-
matics and dynamics between the human and the target robot makes it difficult to establish cor-
respondence. Secondly, we cannot build a predefined motion database for the robot due to the
complexity of the problem. Finally, the problem itself is ambiguous. For instance, there exist
many different quadrupedal gaits that can capture the essence of human walking. To address these
challenges, we drew inspiration from the recent unsupervised skill discovery techniques, such as Ey-
senbach et al. (2018) and Peng et al. (2022), and aim to simultaneously learn robot skills and robot-
human motion correspondence by maximizing the mutual information between human and robot
motions.

In this work, we introduce CrossLoco, a guided unsupervised reinforcement learning framework
that enables simultaneous learning of human-robot motion correspondence and robot motion con-
trol (Figure 1). Our key approach is to introduce a cycle-consistency-based correspondence re-
ward term that maximizes the mutual information between human motions and the synthesized
robot movements. We implement this cycle consistency term by training both robot-to-human and
human-to-robot reconstruction networks. Our formulation also includes regularization terms and
a root-tracking reward to guide correspondence learning. Simultaneously, we train a robot control
policy that takes human motions and sensory information as input and generates robot actions for
interacting with the environment.

We demonstrate that CrossLoco can translate a large set of human motions for robots, including
walking, running, and dancing. Even for locomotion, the robot exhibits two distinct strategies, trot-
ting and galloping, inspired by human walking motions with different styles. We quantitatively
compare our method against the baseline, DeepMimic (Peng et al., 2018a), along with the ablated
versions of our CrossLoco framework and show that our method can achieve better quantitative
results in terms of accuracy, diversity, and user preference. We further showcase the potential appli-
cations of our framework: language2text motion synthesis and interactive motion control.

2 RELATED WORKS

Learning Locomotion Skills. There are various methods for robots to learn locomotion skills. One
approach involves maximizing a reward function designed by experts using reinforcement learning,
as demonstrated in several studies such as Tan et al. (2018); Haarnoja et al. (2018); Xie et al. (2018);
Li et al. (2019); Rudin et al. (2022). Another method is motion imitation, where the control policy
is trained with an imitation reward, as shown in Peng et al. (2018a;b); Li et al. (2023a); Bergamin
et al. (2019); Won & Lee (2019); Ling et al. (2020); Peng et al. (2020). This reward is calculated
based on the distance between the robot’s current pose and a reference pose from the demonstration
trajectory. The closer the distance, the larger the reward. Generative adversarial imitation learning
(GAIL) (Ho & Ermon, 2016) is another approach that trains the policy to deceive a discriminator
that distinguishes real and fake demonstration data. Finally, without the need for engineering reward
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functions or demonstration data, some studies such as Eysenbach et al. (2018); Sharma et al. (2019)
focus on unsupervised skill discovery from interaction data through information-theoretic methods.

Motion Retargeting. Transferring motions between different morphologies has been an important
topic in both robotics and computer graphics communities to produce natural motions for various
robots and characters. Researchers have investigated various approaches, such as designing man-
ual correspondences (Gleicher, 1998; Tak & Ko, 2005; Grandia et al., 2023), learning from paired
datasets (Sermanet et al., 2018; Delhaisse et al., 2017; Jang et al., 2018), or developing modu-
lar/hierarchical policies (Won & Lee, 2019; Hejna et al., 2020; Sharma et al., 2019). More recent
works (Zhang et al., 2020; Aberman et al., 2020; Villegas et al., 2018; Li et al., 2023b; Smith et al.,
2019; Kim et al., 2020; Shankar et al., 2022) aim to learn the state and action correspondence from
unpaired datasets via unsupervised learning. However, these methods often require a pre-collected
dataset of both domains, which is not available for robots in our problem.

Cycle-Consistency. Our work is inspired by previous research on cycle-consistency (Zhou et al.,
2016; Zhu et al., 2017; Liu et al., 2017; Rao et al., 2020; Bousmalis et al., 2018). For instance,
CycleGAN (Zhu et al., 2017) combines cycle-consistency loss with Generative Adversarial Net-
works (Goodfellow et al., 2014) for unpaired image-to-image translation. By adding domain knowl-
edge, CycleGAN can be extended to video retargeting (Bansal et al., 2018) and domain adapta-
tion (Hoffman et al., 2018). In robotics, a similar approach has been investigated for sim-to-real
transfer (Stein & Roy, 2018; James et al., 2019). Besides alignment in image space, a few re-
searchers (Zhang et al., 2020; Shankar et al., 2022) adopt cycle-consistency to align agents in dif-
ferent dynamics and structures, while the others (Aberman et al., 2020; Villegas et al., 2018) apply
cycle-consistency for motion retargeting between similar human-like robots or characters. Inspired
by these works, we aim to co-train a control policy for the diverse motor skills of a quadrupedal
robot while establishing cycle consistency between the robot and human motions.

3 PRELIMINARIES

Skill-Conditioned Reinforcement Learning. We formulate our framework as a skill-conditioned
reinforcement learning problem, where an agent interacts with an environment to maximize an ob-
jective function by following a policy π. At the beginning of each learning episode, a condition
term is sampled from the dataset z ∼ p(z). At each time step, the agent observes the state of the
system st, then takes an action sampled from the policy at ∼ π(at|st, z) to interacts with the envi-
ronment. After executing the actions, the environment takes the agent to a new state sampled from
the dynamics transition probability st+1 ∼ p(st+1|st,at). A scalar reward can be measured using a
reward function rt = r(st,at, st+1, z). The agent’s objective is to learn a policy that maximizes its
expected cumulative reward J(π),

J(π) = Ez∼p(z),τ∼p(τ |π,z)[
T−1∑
t=0

γtrt]. (1)

Here, τ is a state and action trajectory with the length T , where its distribution can be computed as
p(τ |π, z) = p(s0)

∏T−1
t=0 p(st+1|st,at)π(at|st, z) is the likelihood of the trajectory under policy π.

The initial state s0 is sampled from the distribution p(s0) and γ ∈ [0, 1) is a discount factor.

Skill Discovery By Maximizing Mutual Information. Eysenbach et al. (2018) and Peng et al.
(2022) formulate the skill discovery problem as an unsupervised reinforcement learning problem,
where the objective is to maximize the mutual information between the robot state and a latent vector
sampled from a distribution z ∼ p(z): I(S;Z) = H(S)−H(S,Z). This equation can be interpreted
as the policy π is to learn to produce diverse behaviors while each latent vector z should correspond
to distinct robot states.

However, this equation is intractable in most scenarios where the state marginal distribution is un-
known, and two tricks are commonly implemented to tackle this. The first trick is to take advantage
of the symmetry of mutual information:

I(S;Z) = I(Z;S) = H(Z)−H(Z|S). (2)

This trick removes the need for measuring the marginal entropy of robot state H(S) by instead
measuring the entropy of the latent vector H(Z) which remains constant in fixed skill prior p(z).
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Figure 2: Method Overview. A robot control policy utilizes human motions and sensory information
to generate robot actions for interacting with the environment. The Robot2Human-Mapper is then
used to reconstruct the input human motion pose from the robot’s pose. Lastly, the Human2Robot-
Mapper is used to reconstruct the robot pose from the reconstructed human pose. Both mappers
are trained via supervised learning using the difference between the real and reconstructed poses.
These differences are also utilized for constructing a correspondence reward function, which is used
to update the policy (see Equation 8).

The second trick is to use a variational lower bound as proposed by Eysenbach et al. (2018) and
Gregor et al. (2016) to approximate the mutual information as follows:

I(Z;S) = H(Z)−H(Z|S) ≥ max
q

H(z) + Ez∼p(z),s∼p(s|πz)[log(q(z|s)], (3)

where q(z|s) is a variational approximation of the conditional distribution p(z|s) and the lower
bound is tight if q = p. This skill discovery objective encourages a policy to produce distinct
behaviors for different skill vectors z by designing a reward based on the measurement of q(z|s).

4 CROSSLOCO

CrossLoco is a guided unsupervised reinforcement learning framework designed to learn robot lo-
comotion control policy driven by human motion. The framework establishes a correspondence
between human and robot motions, enabling the robot to acquire locomotion skills from human mo-
tions. The method overview is shown in Fig 2. In this section, we first introduce how we formulate
the problem. Then, we present our cycle-consistency-based method for learning locomotion and
human-robot correspondence. Lastly, we provide additional implementation details.

4.1 PROBLEM FORMULATION

Our goal is to train a robot control policy, denoted as π, that can produce various robot motions
based on different human motion inputs. Therefore, we can view our problem as a Markov De-
cision Process conditioned on the given human motion. Let us define ph

t and pr
t as the human

and robot kinematic poses. Then the human motion is defined as a sequence of pose vectors:
mh = [ph

0 ,p
h
1 , · · · ,ph

T−1]. The robot state srt represents both the kinematic and dynamic status
of the robot, hence we can view srt as the superset of the pose pr

t . The robot action at corresponds
to motor commands, such as target joint angles. At each time step, the policy takes the robot state
vector srt and the augmented human motion feature xh

t = x(ph
t ) as input to generate an action

at ∼ π(at|srt ,xh
t ). Then our goal is to maximize the given reward function r:

J(π) = Emh∼p(mh),τr∼p(τr|π,xh
t )
[

T−1∑
t=0

γtr(srt ,x
h
t ,at)], (4)

where the robot trajectory is defined as a sequence of the robot states τ r = [sr0, s
r
1, · · · , srT−1].

This formulation leads to the question of designing an effective reward function r that builds the
relationship between the human and robot poses, ph

t and pr
t . In addition, the reward function should
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Algorithm 1 CrossLoco pseudocode

Require: Human DatasetM.
1: Initialize: Policy π, Value function V , R2H-Mapper qr2h, H2R-Mapper qh2r , Data Buffer D.
2: repeat
3: for trajectory i = 1, ..., m do
4: D ← {(xh

t , s
r
t , at, rt)

T−1
t=0 } collect trajectory by rolling out π.

5: update π and V using PPO with data from D.
6: update qr2h and qh2r using data from D by minimizing Lr2r (Equation 7).
7: Reinitialize Data Buffer D.
8: until Done

include some regularization terms, such as minimizing the energy, avoiding self-collisions, or pre-
serving the predefined semantic features. We will discuss the design of our reward function in the
following section.

4.2 MEASURING CORRESPONDENCE VIA CYCLE-CONSISTENCY

To develop a reward function that represents the correspondence between human and robot motions,
we borrow the information-theoretic approach mentioned in the previous section. We formulate
the correspondence reward term such that it maximizes the mutual information between human and
robot pose, given by I(pr

t ,p
h
t |π). From Equation 3, this formulation can be approximated by:

I(pr
t ,p

h
t |π) ≥ H(ph

t ) + Emh∼p(mh),pr
t∼p(pr

t |ph
t ,π)

[log(qr2h(ph
t |pr

t ))]], (5)

where we assume that human motion prior is from the fixed dataset and refer to qr2h as Robot-to-
Human Mapper (R2H-Mapper). Because the first term H(ph

t ) is constant, we can find the optimal
policy by maximizing the second term, log[qr2h(ph

t |pr
t )]. A higher value represents that R2H-

Mapper is more certain about the human pose given the robot pose, hence indicating that the human
pose is distinctive given the robot pose.

We model the R2H-Mapper as a Gaussian distribution with fixed covariance qr2h(ph
t |pr

t ) =
N(µr2h(pr

t ), σ) where µr2h(pr
t ) is the mean of the distribution while σ is the constant covariance

matrix. The R2H-Mapper can be trained by minimizing a loss function Lr2h:

argmin
qr2h

Lr2h = Eph
t ∼p(ph

t ),p
r
t∼dπ(pr

t |ph
t )
[||ph

t − µr2h(pr
t )||22], (6)

where dπ(pr
t |ph

t ) is the likelihood of observing robot pose pr
t , by executing policy π given the

human pose ph
t . Similarly, we can design our correspondence reward to minimize the given term

||ph
t − µr2h(pr

t )||22.

However, R2H-Mapper does not prevent multiple robot poses pr from being mapped to the same
human pose ph because it only considers one-directional mapping, which may cause degenerated
motions. To address this issue, we add a Human-to-Robot Mapper (H2R-Mapper), denoted as
qh2r(pr

t |ph
t ), which is used for mapping the human pose back to the robot pose. We use a cycle-

consistency formulation of Zhu et al. (2017), where we first map the robot pose to the human pose,
followed by mapping the generated human pose back to the robot pose. This results in an objective
loss function Lr2r for H2R-Mapper and R2H-Mapper as:

argmin
qr2h,qh2r

Lr2r = Lr2h + Eph
t ∼p(ph

t ),p
r
t∼dπ(pr

t |ph
t )
[||pr

t − µh2r(µr2h(pr
t ))||22]. (7)

Finally, from our mutual information maximization and cycle-consistency loss minimization, we
formulate the correspondence reward as follows:

rcpdt = exp(−||ph
t − µr2h(pr

t )||22 − ||pr
t − µh2r(µr2h(pr

t ))||22). (8)

4.3 IMPLEMENTATION DETAILS

During the training process, the policy π, as well as the H2R-Mapper and R2H-Mapper, are updated
iteratively. The policy is trained using Proximal Policy Optimization (PPO) Schulman et al. (2017).
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Figure 3: Visualization of reconstructed human and robot pose. We show that the mappers can
accurately reconstruct human and robot poses when the robot actively follows human movement.
When the human is relatively stationary, human arm movements can be mapped onto the robot’s
front legs. In scenarios like human running, the framework focuses primarily on leg motion.

Meanwhile, the H2R-Mapper and R2H-Mapper are trained using supervised learning. The learning
framework is summarized in Algorithm 1.

Model Representation. Human pose (ph ∈ R23) and robot pose (pr ∈ R17) consist of local
information, including root height, root orientation, and joint pose. The robot state (srt ∈ R47)
contains all the information in pr, as well as root and joint velocity, and previous action. The human
feature vector (xh

t ∈ R188) includes human pose, root velocity, and joint velocity information at the
future 1, 2, 10, and 30 frames.

Complete Reward Function. In addition to the correspondence reward mentioned earlier, our re-
ward function includes several terms to regulate the training and preserve high-level semantics. A
root tracking reward, denoted as rroott = exp(−||sroott − s̄roott ||), is designed to preserve high-
level movements by minimizing the deviation between the normalized base trajectories of the hu-
man (̄sroott ) and the robot (sroott ). In this context, both trajectories include the root position and
height, which are normalized by their respective leg lengths. Without this term, the resulting
correspondence can be arbitrary: e.g., a human forward walking motion can be mapped into a
robot’s lateral movements. To prevent unrealistic movements, a torque penalty, rtort = −||at||,
and joint limits penalty, rlimt = −1pr

t>plim , are borrowed from Rudin et al. (2022). Here, plim

is the pose limit of the robot. The overall reward is calculated as the weighted sum of all these
terms: rt = wcpdrcpdt + wrootrroott + wtorrtort + wlimrlimt . To optimize the weights, increas-
ing wcpd can improve the correspondence between robot and human motion, but it may nega-
tively affect root tracking performance or increase energy consumption. Increasing wroot puts
more emphasis on root tracking. Small values for wtor and wlim can result in unnatural mo-
tions, while excessively large values can lead to overly conservative motions. In our setting, we
use [wcpd, wroot, wtor, wlim] = [1.0, 1.0, 0.0001, 5.0].

Network Structure. The policy, critic, H2R-Mapper, and R2H-Mapper are modeled by a fully-
connected network consisting of three hidden layers with 512 nodes each. ELU is used as the
activation function for the policy and critic, while ReLU is used for the mapper networks.

5 EXPERIMENTS

We conduct a series of experiments to investigate three key aspects of the proposed work: firstly,
the feasibility of acquiring a human-motion-driven robot controller, which is referred to as the
‘human2robot’ controller; secondly, the comparative performance against alternative baseline ap-
proaches; and lastly, the influence of the correspondence reward on the training process.

We evaluate the effectiveness of our approach by transferring a set of human motions to Aliengo
quadrupedal robot (unitree, 2023) with 12 joints, which has a significantly different morphology
compared to humankind. We take human motion from LaFAN1 dataset (Harvey et al., 2020). Our
human dataset consists of 50 human motion trajectories with eight seconds of the average clip length.
The dataset contains various types of human movements, including walking, running, hopping, and
dancing. All experiment environments are conducted using Isaac Gym (Makoviychuk et al., 2021), a
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Figure 4: Comparison of generated motions. Our method, CrossLoco, synthesizes more compelling
motions compared to the baselines by preserving both high-level semantics and fine motion details.

high-performance GPU-based physics simulator. During training, 1024 environments are simulated
in parallel on a single NVIDIA GeForce RTX 3080 Ti GPU for a period of about 3 days.

5.1 MAIN RESULTS AND ANALYSIS

We present the results of our human motion driven control experiments in Figure 4. Our method
successfully learns a human2robot controller that can transfer various human motions to a robot
with a different morphology. We observe agile motions from the robot, such as running and sharp
turning when the human performs fast locomotion. The results also demonstrate that the robot can
creatively follow human dancing motions, which is hard to manually design. This showcases the
capability of our method to establish automatic correspondence between humans and robots while
learning diverse robot skills. All the motions can be best seen in the supplementary video.

In Figure: 3, we demonstrate the effectiveness of our proposed correspondence reward in conjunc-
tion with the R2H and H2R mappers, which enable the robot to mimic human movements accurately.
It’s important to note that such synchronization is unattainable without the correspondence reward.
Without it, the robot would remain stationary or merely track the human’s root position. Our ex-
periments have revealed noteworthy findings. For instance, even when humans walk at a similar
speed but with varying styles—such as different step frequencies—the robot adapts its movement to
match the human’s frequency. Another intriguing observation is the relationship between the corre-
spondence and root tracking. When a human is stationary or moves minimally, the robot responds
effectively to the human’s arm movements. However, during rapid movement, the robot prioritizes
leg motion. We hypothesize that during high-speed locomotion, the root tracking reward becomes
more dominant, leading to a balancing act in the CrossLoco framework between root tracking and
achieving high-quality correspondence.

In some scenarios, the robot is not able to perfectly mimic the given human motion. For instance,
when a human moves backward and makes a sharp 180-degree turn, the robot cannot follow the
desired orientation. Additionally, CrossLoco may struggle to transfer large side stepping. There are
two potential reasons for these imperfections. First, the neural network may be incapable of captur-
ing all motions. Second, the robot’s morphology may prohibit it from performing certain motions
that are easy for humans, such as swift turning. During training, we observed that the diversity of
human motion is critical to the training outcome. This is because the learned mappers can overfit to
specific scenarios. For instance, if the dataset contains only hand-waving motions, the robot might
slightly vibrate the root to maximize the correspondence reward hence lead to undesirable motion
transfer results.

5.2 BASELINE COMPARISON

We further quantitatively compare our method against the following baseline methods:

• Engineered Motion Retarget + DeepMimic (DeepMimic): This baseline contains two
stages. Firstly, an expert manually designs a motion retargeting function to translate human
motions to robot motion referenced trajectories. Then, the robot is trained to track these
reference trajectories using DeepMimic (Peng et al., 2018a). It is important to note that
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ACR ↑ DIV ↑ RTR ↑ CR ↑ PR ↑
CrossLoco (Ours) 0.785 2.853 0.743 65.5% 43%
DeepMimic 0.558 2.231 0.579 67.5% 16%
Task-Only 0.556 2.494 0.740 30.0% 14%
R2H-Only 0.683 2.779 0.729 42.5% 27%

Table 1: Quantitative Results. Our CrossLoco outperforms all the criteria except for being the
second-best at correctness with a small margin.

the result of this baseline heavily relies on the quality of the retargeted motions, which
requires a significant amount of effort from the expert. In our case, we have designed the
retargeted motions by matching the human foot and robot foot with a fixed tripod gait.

• Task-Only: This baseline is designed to investigate the impact of the proposed correspon-
dence reward on training outcomes. As such, we compare this approach to CrossLoco,
where the weight of correspondence is set to zero (wx = 0). Therefore, this policy is
trained solely on a root tracking reward and other regularization rewards.

• R2H-Only: This baseline is designed by removing the robot pose cycle-consistency part
from CrossLoco and only keeping the human pose’s consistency. As there is no robot
pose consistency, in this baseline, the correspondence reward is defined as rcpd,r2ht =
exp(−||ph

t − µr2h(pr
t )||22).

Since we assume we have no robot motion dataset, hence, we don’t include any GAN-based baseline
methods, such as Adversarial Correspondence Embedding (Li et al., 2023b).

Our objective is to quantitatively assess the effectiveness of establishing correspondence between
human and robot motion, as well as the diversity of the robot motion of these methods. In order to
achieve this, we utilize the following metrics:

• Averaged Correspondence Reward (ACR): This term measures the correspondence be-
tween human and robot motions. A higher ACR indicates better correspondence. Even
though no correspondence reward is used in each baseline training procedure, we co-train
R2H-Mapper and H2R-Mapper to measure the correspondence reward.

• Diversity (DIV): This term has been used for measuring motion diversity in many SOTA
works (Shafir et al., 2023; Guo et al., 2023). A higher DIV indicates robots can acquire
more skills. From a set of all generated motions from different source human motions, two
subsets of the same size Sd are randomly picked. The diversity of this set of motion is
defined as: DIV = 1

Sd
ΣSd

i=1||Ψ(sri ) − Ψr(s′
r
i )||. Ψ(sri ) and Ψ(s′

r
i ) are features extracted

from robot state. Here, we pick robot root velocity and joint pose as the feature.
• Averaged Root Tracking Reward (RTR): This term measures if the learned policy can

track the desired root trajectory. The root tracking reward is defined in Section 4.3.

In addition to these metrics, we conducted a user study with 15 subjects to evaluate the performance
from a subjective perspective.

• Correct Rate (CR): We first investigate whether users can identify a correct match be-
tween the given human and synthesized robot motions. A user is tasked to find a matched
pair from one human animation and four retargeted robot motions. One robot motion is
retargeted from the given human motion, while the other three are generated from different
inputs. We examined the combination of four human motions and four methods, and then
measured the percentage of correct matches. Ideally, a good transfer should accurately
capture the style of the human motion, resulting in easy matching for the user.

• Preference (PR): In the second part, we provided users with robot motions generated with
different approaches. We asked the users to select the motions that they believed repre-
sented a good transfer. We then measured the ratio at which each method was chosen.

Our results are summarized in Table 1. The quantitative analysis indicates that CrossLoco outper-
forms the baseline methods in all metrics suggesting that it can effectively learn a controller that can
translate different human motions to diverse robot motions while tracking the desired root trajectory.
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Figure 5: Illustration of two applications: Language2Robot and Interactive Robot Control.
Although DeepMimic is designed as a one-to-one mapping between human and robot poses, it
achieved a lower correspondence reward than CrossLoco (0.558 vs 0.785). This could be attributed
to the fact that an engineering mapping function may not be physically feasible for all input human
motions, and the learning process may sometimes sacrifice the desired posing tracking for a higher
desired root tracking reward. Moreover, since the engineered robot desired motion can sometimes
be physically infeasible, the root tracking reward of DeepMimic is also lower than that of CrossLoco
(0.579 vs 0.743). Based on the results of the user study, it was found that DeepMimic’s motion (with
a 16% PR score) was not preferred by users. However, it achieved the highest CR score (67.5%).
This can be because users can match human and robot motions based on the most obvious frames,
even with poor overall motion quality.

As for Task-only, since it is trained only with root tracking and regularization rewards, it produces
conservative motions by ignoring human leg motions in some cases, such as different in-place danc-
ing motions. All human in-place dancing motions are mapped to the robot standing with slight
root movements by Task-only baseline. However, the correspondence reward in CrossLoco triggers
robots to learn diverse skills that correspond to different human motions, as evidenced by its superior
performance in terms of correspondence reward, diversity term, and user study results compared to
Task-only. We also obverse that for CrossLoco achieves slightly higher root tracking reward, indi-
cating CrossLoco’s great capability.

The results show that CrossLoco achieves a higher correspondence reward and more diverse motion
compared to R2H-Only. Additionally, users found the results of CrossLoco to be more distinguish-
able. This could be attributed to the effective regularization provided by the cycling of human back
to robot, resulting in more distinguishable outcomes.

5.3 APPLICATIONS

Numerous studies have delved into human motion synthesis using a variety of input sources, such
as text (Bahl et al., 2022), music Tseng et al. (2023), and user inputs (Holden et al., 2020). Our
learned human2robot controller can be seamlessly integrated with these modules, utilizing human
motion as the interface for new applications. In this context, we have implemented two examples:
Language2Robot and Interactive Robot Control. An illustration of these examples is presented
in Figure 5. Language2Robot merges the established text-to-human-motion module (MDM (Bahl
et al., 2022)) with CrossLoco, enabling the generation of robot motion based on verbal instructions.
Interactive Robot Control combines an existing humanoid character controller (LMM (Holden
et al., 2020)) with a CrossLoco-trained policy to facilitate interactive robot control without the need
to retrain a large-scale interactive robot control policy from scratch. For more details, please refer
to our supplementary videos and the appendix.

6 DISCUSSION

We introduce CrossLoco, an unsupervised reinforcement learning framework designed to en-
able robot locomotion control driven by human motion. This framework incorporates a cycle-
consistency-based reward function, which facilitates the discovery of robot skills and the establish-
ment of correspondence between human and robot motion. Our experimental results demonstrate
the effectiveness of our approach in transferring a wide range of human motions to control a robot
that has a different morphology.

Our next steps involve exploring two directions. Firstly, we aim to extend our framework beyond
locomotion control to more complex scenarios, including long-horizon human demonstrations that
involve long-distance locomotion and tool manipulation on a legged-manipulation robot, such as a
quadrupedal robot with an arm mounted on its body. Secondly, we are interested in implementing
our method on real-world robots for practical applications.
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A TRAINING HYPERPARAMETERS

In this study, we trained the policy using Proximal Policy Optimization (PPO) Schulman et al.
(2017). Additionally, both the H2R-Mapper and R2H-Mapper were trained utilizing supervised
learning techniques. Below, we detail the hyperparameters employed in our training process.

Env number 1024
Batch size 2048
Policy lr 1e-4
Critic lr 1e-4
Mappers lr 1e-4
Optimizer Adam
Clip 0.2
Entropy Coefficient 5e-3
γ 0.99
λ 0.9

Table 2: Training hyperparameters.

B APPLICATIONS

Many research and work have explored the field of human motion synthesis using various input
sources, including text (Bahl et al., 2022), music Tseng et al. (2023), and user inputs (Holden et al.,
2020). Our learned human2robot controller can be seamlessly integrated with these modules by
using human motion as the interface for new applications. In this section, we present two examples:
Language2Robot and Interactive Robot Control.

Language2Robot. Our approach involves utilizing the text2human module in combination with our
human2robot controller. This allows for the generation of robot movements from language by first
producing human motion using the text2human module, which is then transferred to the robot using
the human2robot controller. Our method differs from recent language to quadrupedal robot motion
work (Tang et al., 2023) in that it does not require an engineering-intensive interface, such as foot
contact patterns, which could limit the range of possible generated robot motions.

In our implementation, we utilize the Human Motion Diffusion Model (MDM) (Bahl et al., 2022)
as our text-to-human motion translator. MDM is a diffusion model-based lightweight model that
achieves state-of-the-art results on leading benchmarks. However, MDM uses AMASS (Mahmood
et al., 2019) human model which is different from the LaFAN1 (Harvey et al., 2020) model we used
for training the policy. Therefore, we retarget the outputs of the MDM to the skeleton model we use.

Our study involves testing the generation of robot motion based on different input messages. The
results of our study are presented in Figure 5. We show that this framework can generate robot
motion according to instructions. For instance, the message “strides swiftly in a straight” results in
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a fast walking straight robot motion, while “squats down then jumps” triggers a robot squats and
jumps motion.

Interactive Robot Control. Interactive control of robots in response to changing conditions or un-
expected obstacles is a significant challenge in robotics, which involves careful controller design
and motion planning. Recent advances in character animation enable users to interactively control
human characters using joysticks, automatically adapting their motion styles to the surrounding en-
vironment, like crouching in confined spaces or leaping over obstacles. Our key idea for the second
application, Interactive Robot Control, is to leverage the existing human animation techniques for
robot control. Instead of retraining a large-scale model from scratch, we simply translate the output
of the existing character controller to the robot’s operational space using the proposed method.

Our implementation of this framework utilizes Learned Motion Matching (LMM) (Holden et al.,
2020), which is a scalable neural network-based framework for interactive motion synthesis. We
combine LMM with our learned controller. During interactive robot control, LMM takes input user
commands for human motion generation, and our controller converts the generated human motion
to robot control commands.

We evaluated our implementation by controlling the robot using a joystick. Figure 5 presents the
results of using LMM2robot. The experiment demonstrated that the robot can actively adjust its
motion based on the user’s commands. These results provide evidence of the effectiveness of our
learned controller for interactive robot control.
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