
Supplemental Material for TAPVid-3D1

Table of Contents2

1. More Dataset Samples3

2. Dataset Statistics4

3. Evaluations using Median, Per-Trajectory, and Local Neighborhood Scaling5

4. Evaluations using Fixed Metric Distance Thresholds6

5. Baselines Details and Compute Resources7

6. Filtering Incorrect Trajectories8

7. Dataset Specifications, Metadata, and other Details9

8. Visualized Samples10

1. More Dataset Samples11

We provide visualizations illustrating each of the TAPVid-3D dataset splits in HTML in the following12

files: pstudio.html, adt.html, drivetrack.html, which display the mp4 files also available in13

the video_visualization folder, as well as links to interactive 3D visualizations. We included as14

many samples as we could fit within the 50MB supplementary size limit.15

In addition, we provide the reviewers with a Colab Notebook*, which enables interested reviewers to16

read, load, interact with, and generate visualizations for all the data in the minival split (containing17

samples from all three constituent data sources). This can help with understanding the format and18

contents of each dataset example. Reviewers can run this Colab notebook online at:19

https://colab.research.google.com/drive/1Ro2sE0lAvq-h0lixrUBB0oTYXEwXNr6620

Finally, we include static visualizations of trajectories in the figures included in the Visualized21

Samples section at the end of this PDF.22

2. Dataset Statistics23

Figure 1 showcases various summary statistics about the TAPVid-3D datasets and its 3D point24

trajectories. In the top left, we have the distribution of the number of frames in each video. The25

ADT-sourced videos contain the longest videos, and clips of 300 frames were extracted. Similarly26

Panoptic Studio contains clips of 150 frames, while DriveTrack contains clips of varying duration.27

In the top right, we have the number of point tracks annotated in each clip. In the bottom right, we28

count the number of ‘static’ trajectories in each video, marking a trajectory as static if the distance29

between all pairwise locations within a single point’s trajectory is less than 1 centimeter. The roughly30

10 DriveTrack videos consisting of static trajectories are usually cars stopped at stoplights. These31

’static’ videos are a small minority of the 4000+ clips in TAPVid-3D. In the bottom right, we show the32

average velocity of each trajectory in the dataset, noting that trajectories in DriveTrack are the fastest.33

These histograms convey that there is a diversity of overall trajectory lengths, video lengths, and34

point velocities in the TAPVid-3D dataset. Additionally, this dataset is larger than two widely used35

2D point tracking real-world-video datasets: TAPVid-Kinetics (1,189 videos) and TAPVid-DAVIS36

(30 videos).37

3. Metrics using Median, Per-Trajectory, and Local Neighborhood Rescaling38

In the results included in the main paper, we compute the 3D Average Jaccard and APD metrics39

using a global median rescaling procedure (L277). To get a good score, the entire scene must be40

*The Colab does not collect any view analytics, or track visitors (in any way accessible to the authors of this
work).

1

video_visualizations/pstudio.html
video_visualizations/adt.html
video_visualizations/drivetrack.html
https://colab.research.google.com/drive/1Ro2sE0lAvq-h0lixrUBB0oTYXEwXNr66


Figure 1: Statistics on TAPVid-3D. Top left: video lengths. Top right: Number of trajectories in each
clip. Bottom left: Number of static tracks in each clip. Bottom right: average point velocity.

reconstructed up to scale, and dynamic objects must be placed precisely. This is useful for many41

applications, such as navigation, but for others it may be overly stringent. If there is little camera42

motion, or if some of the objects have unclear size, it may also be very difficult for models to infer43

global scene shape.44

However, not all applications require such strong global scene shape capabilities. For example,45

for imitation learning, we may want an agent to simply approach an object. For such applications,46

measuring the relative depth of estimated 3D locations along a single trajectory may be sufficient, and47

it may be substantially easier, as the (2D) scaling of local textures may provide enough information to48

solve the problem. More generally, for robotic imitation of an assembly task, it is the local consistency49

that’s most important: as long as points that are near each other in 3D have the correct depth relative50

to one another, then the relative pose of the assembled parts will be clear, especially at the critical51

stage when the assembled parts are close together.52

To enable more rapid progress in such domains, we propose two additional approaches to rescaling53

estimated trajectories to match the ground-truth 3D point cloud: Per-Trajectory, and Local Neigh-54

borhood. We apply the same Average Jaccard metric regardless of how the points are rescaled,55

although in the case of Local Neighborhood, the ground truth trajectories are also slightly modified,56

as explained below. In all cases, users can evaluate the same predictions using any metric without57

providing any extra information.58

Per-Trajectory scaling is computed by rescaling each track P i separately, multiplying by ∥P i
tq∥/∥P̂

i
tq∥,59

where tq is the query frame index, and then computing 3D AJ as before. As a result, methods must60

only compute the relative depth for the point at each time, relative to the query frame.61

2



Local Neighborhood is somewhat more involved. Here, the goal is to capture whether nearby points62

are scaled correctly relative to one another, even if distant parts of the scene may not be. For example,63

if the goal is to understand an action depicted in a video that uses a tool, it is typically important64

to understand where the hand is relative to the tool, and where the tool is relative to the objects it’s65

acting on. The distance to the backgrounds–such as the back wall of the room–may not be obvious,66

especially if there’s relatively little camera motion. However, precisely computing these distances is67

not relevant to understanding the tool’s motion.68

Intuitively, we wish to find an intermediate between two extremes: either rescaling the entire scene69

with a single scale factor, or rescaling every point with its own scale factor. To this end, we propose to70

scale each track according to the other track segments that intersect with its 4D tubelet [8], according71

to a fixed neighborhood radius.72

Specifically, we start by choosing a single neighborhood radius τ specified in meters. For a given73

trajectory P i, we first find all points that are within τ meters of the ground truth on any frame, which74

define the tubelet T (P i) associated to the trajectory P i:75

T (P i) = {P j
t s.t. ∥P j

t − P i
t ∥ < τ}.

Note that tubelet T (P i) includes the trajectory P i entirely, plus the portions of the trajectories of the76

other points where they come closer than the tublet’s radius τ . For each selected ground-truth point77

in the tubelet, we select the corresponding points from the predictions to construct T (P i; P̂ i) as78

T (P i; P̂ i) = {P̂ j
t s.t. ∥P j

t − P i
t ∥ < τ}.

Analogously, we select the predicted and ground-truth visibility T (v̂i) and T (vi).79

Finally, given a predicted tubelet T (P i; P̂ i), we rescale all its points together using the ratio of query80

point distances ∥P i
tq∥/∥P̂

i
tq∥, and evaluate the rescaled tubelet set as if it were a single trajectory, by81

replacing P i, P̂ i and vi with their tubelet counterparts in equations (5) or (6) to compute the APD3D82

and AJ3D respectively. In our experiments, we set the radius τ to 3 centimeters for the PStudio and83

Aria scenes, and as 10 centimeters for the DriveTrack scenes, across all experiments. This is because84

tabletop manipulation and human-object motion likely require finer-grained movement than large85

vehicle movement in the Waymo Open public road scenes.86

Aria DriveTrack PStudio Average
Baseline 3D-AJ ↑ APD ↑ OA ↑ 3D-AJ ↑ APD ↑ OA ↑ 3D-AJ ↑ APD ↑ OA ↑ 3D-AJ ↑ APD ↑ OA ↑

BootsTAPIR + Zoedepth 17.3 27.0 86.5 7.4 12.3 85.3 12.3 20.6 82.7 12.3 20.0 84.8
CoTracker + Zoedepth 17.4 26.3 87.8 6.7 12.3 82.6 12.0 20.8 80.0 12.0 19.8 83.4

TAPIR + Zoedepth 16.2 24.2 79.7 7.4 12.2 81.6 12.0 20.0 78.7 11.9 18.8 80.0
BootsTAPIR + COLMAP 28.8 41.3 78.6 20.0 29.3 83.8 12.9 20.8 81.8 20.6 30.4 81.4

CoTracker + COLMAP 26.8 38.3 78.6 18.2 28.8 81.7 12.1 19.7 77.2 19.1 28.9 79.1
TAPIR + COLMAP 26.5 37.7 72.6 16.5 24.6 80.4 12.1 19.6 75.2 18.4 27.3 76.1

TAPIR-3D 8.5 14.9 86.0 10.2 17.0 83.3 7.2 13.1 78.9 8.6 15.0 82.8
SpatialTracker 17.4 26.9 89.0 9.0 16.1 83.7 14.2 24.6 78.6 13.6 22.5 83.7

Static Tracks 5.4 11.8 55.4 4.8 8.4 80.8 6.4 12.7 75.8 5.5 11.0 70.7

Table 1: Using per-trajectory depth scaling. We compare the performance on the full_eval
split of several 2D-TAP models [3, 4, 6] combined with ZoeDepth [2] and COLMAP [10] on the
TAPVid-3D benchmark. We also measure performance on the recently released SpatialTracker [12],
and a static point baseline, in which the predicted trajectories are exactly the same as the query point.

4. Evaluations with Median, Per-Trajectory, and Local Neighborhood Scaling87

Tables 1, 2, 3 present additional experimental results on the full_eval set, on all our baselines. To88

avoid biasing the results to the TAPVid3d splits with higher number of videos, these tables present89

averaged results across the three constituent data sources (weighing each source equally, rather than90

weighted by dataset size, as was done in Table 3 in the main paper).91

3



Aria DriveTrack PStudio Average
Baseline 3D-AJ ↑ APD ↑ OA ↑ 3D-AJ ↑ APD ↑ OA ↑ 3D-AJ ↑ APD ↑ OA ↑ 3D-AJ ↑ APD ↑ OA ↑

BootsTAPIR + Zoedepth 16.8 26.3 86.7 6.4 10.9 85.3 11.6 19.6 82.6 11.6 18.9 84.9
CoTracker + Zoedepth 17.0 25.7 88.0 6.0 10.9 82.6 11.4 19.9 80.0 11.4 18.8 83.5

TAPIR + Zoedepth 15.7 23.5 79.8 6.3 10.5 81.6 11.2 18.9 78.7 11.0 17.6 80.1
BootsTAPIR + COLMAP 26.1 38.0 78.8 16.6 25.1 83.8 10.8 17.8 81.8 17.8 27.0 81.5

CoTracker + COLMAP 24.6 35.3 78.8 15.7 25.2 81.7 10.8 17.7 77.1 17.0 26.1 79.2
TAPIR + COLMAP 23.8 34.4 72.8 12.9 20.3 80.4 9.9 16.5 75.1 15.5 23.7 76.1

TAPIR-3D 7.3 12.9 86.3 5.9 10.5 83.4 5.1 9.6 78.9 6.1 11.0 82.8
SpatialTracker 16.7 25.7 89.3 6.9 12.4 83.7 12.3 21.6 78.5 12.0 19.9 83.8

Static Tracks 5.5 11.8 56.0 4.8 8.4 80.8 6.4 12.6 75.7 5.5 10.9 70.8

Table 2: Using local neighborhood scaling. We compare the performance on the full_eval split
of 2D-TAP models [3, 4, 6] combined with ZoeDepth [2] and COLMAP [10]. We also include
SpatialTracker [12], and a static point baseline.

Aria DriveTrack PStudio Average
Baseline 3D-AJ ↑ APD ↑ OA ↑ 3D-AJ ↑ APD ↑ OA ↑ 3D-AJ ↑ APD ↑ OA ↑ 3D-AJ ↑ APD ↑ OA ↑

BootsTAPIR + Zoedepth 9.9 16.3 86.5 5.4 9.2 85.3 11.3 19.0 82.7 8.8 14.8 84.8
CoTracker + Zoedepth 10.0 15.9 87.8 5.0 9.1 82.6 11.2 19.4 80.0 8.7 14.8 83.4

TAPIR + Zoedepth 9.0 14.3 79.7 5.2 8.8 81.6 10.7 18.2 78.7 8.3 13.8 80.0
BootsTAPIR + COLMAP 9.1 14.5 78.6 11.8 18.6 83.8 6.9 11.6 81.8 9.3 14.9 81.4

CoTracker + COLMAP 8.0 12.3 78.6 11.7 19.1 81.7 8.1 13.5 77.2 9.3 15.0 79.1
TAPIR + COLMAP 7.1 11.9 72.6 8.9 14.7 80.4 6.1 10.7 75.2 7.4 12.4 76.1

TAPIR-3D 2.5 4.8 86.0 3.2 5.9 83.3 3.6 7.0 78.9 3.1 5.9 82.8
SpatialTracker 9.9 16.1 89.0 6.2 11.1 83.7 10.9 19.2 78.6 9.0 15.5 83.7

Static Tracks 4.9 10.2 55.4 3.9 6.5 80.8 5.9 11.5 75.8 4.9 9.4 70.7

Table 3: Using median depth scaling. We compare the performance on the full_eval split
of 2D-TAP models [3, 4, 6] combined with ZoeDepth [2] and COLMAP [10]. We also include
SpatialTracker [12], and a static point baseline.

As expected, the AJ increases when using the less-strict local rescaling approaches. That is, per-92

trajectory scaling require less scale consistency than the local neighborhood metric, which itself93

is less stringent than the global median scaling. However, different methods improve by different94

amounts. Perhaps most surprisingly, COLMAP gives strong performance with local and per-trajectory95

rescaling, but underperforms Zoedepth on Aria and Panoptic Studio when evaluated with global96

rescaling. This is likely because COLMAP completely fails to reconstruct moving content. For97

scenes where the majority of tracks are moving, the median rescaling will fail completely; therefore,98

Zoedepth giving reasonable estimates for a larger fraction of points gives it an advantage.99

TAPIR-3D, unsurprisingly, presents poor performance using global or local scaling, as it does not100

provide relative depth estimates for different tracks. However, evaluated with per-trajectory scaling,101

it gives competitive results on DriveTrack, even outperforming SpaTracker. This is somewhat102

surprising given that it operates on a completely different principle than other methods; it is trained103

using entirely synthetic data and does not use any geometric constraints, nor relies on monodepth104

models providing geometric priors. Overall, the different strengths and weaknesses of these highly-105

diverse methods suggests that the best performance will come from a method that combines ideas106

from all three. SpaTracker is a step in this direction, using a monodepth initialization while checking107

the 2D consistency of 3D reconstructions via reprojection, similar to COLMAP, and it often gives108

competitive performance. We hope that this benchmark can provide a way to quantify how well109

future methods in this vein accomplish the task.110

Finally, we include a static baseline, which predicts the static 3D point Pq = K−1[xq, yq, 1]
T · Zq111

for all timestamps, in order to quantify the impact of motion. Note that this baseline still requires112

ground truth depth for the query points, and so isn’t trivial to reproduce automatically; however,113

it still performs very poorly, even for the PStudio dataset where the camera is static (note that the114

static baseline is static in the camera coordinate frame). Thus, we conclude tracking the camera and115

tracking the objects is important for obtaining strong performance.116

4



5. Evaluations using Fixed Metric Distance Thresholds117

In the Average Jaccard formulation in Section 3.5, we describe how we use determine correctly118

predicted points along a trajectory, using a depth-adaptive radius threshold denoted δ3D(P i
t ). We also119

explored using a fixed metric threshold. Specifically, instead of the {1, 2, 4, 8, 16} pixel thresholds120

(projected into 3D), we use a the fixed metric radius thresholds of 1 centimeter, 4 centimeter, 16121

centimeters, 64 centimeters, and 2.56 meters. If the predicted point is within this distance to the122

ground truth point, it is marked as position correct within that threshold. Table 4 describes the model123

baselines results using this alternative metric.124

Aria DriveTrack PStudio Average
Baseline 3D-AJ ↑ APD ↑ OA ↑ 3D-AJ ↑ APD ↑ OA ↑ 3D-AJ ↑ APD ↑ OA ↑ 3D-AJ ↑ APD ↑ OA ↑

BootsTAPIR + Zoedepth 31.9 45.6 86.5 11.4 16.3 85.3 41.5 55.9 82.7 28.3 39.2 84.8
CoTracker + Zoedepth 32.7 44.0 87.8 10.7 16.2 82.6 40.2 56.1 80.0 27.8 38.8 83.4

TAPIR + Zoedepth 28.2 41.7 79.7 11.0 15.9 81.6 39.0 55.2 78.7 26.1 37.6 80.0
BootsTAPIR + COLMAP 24.0 35.5 78.6 18.7 25.2 83.8 31.6 43.6 81.8 24.7 34.7 81.4

CoTracker + COLMAP 23.6 33.6 78.6 18.2 25.7 81.7 31.6 44.1 77.2 24.4 34.4 79.1
TAPIR + COLMAP 20.5 32.2 72.6 15.5 21.9 80.4 28.8 41.7 75.2 21.6 31.9 76.1

TAPIR-3D 19.2 29.9 86.0 7.0 10.9 83.3 24.8 36.1 78.9 17.0 25.6 82.8
SpatialTracker 33.1 45.0 89.0 13.1 19.3 83.7 39.5 56.1 78.6 28.5 40.2 83.7

Static Tracks 21.2 40.3 55.4 5.8 9.7 80.8 31.7 46.4 75.8 19.6 32.1 70.7

Table 4: Using fixed metric thresholds for AJ, with median scaling. We compare the performance
on the full_eval split of several 2D-TAP models [3, 4, 6] combined with ZoeDepth [2] and
COLMAP [10]. We also include SpatialTracker [12] and the static point baseline.

6. Baselines Details and Compute Resources125

CoTracker. We use the pretrained model and PyTorch code from the official CoTracker codebase126

and run inference enabling the bi-directional tracking mode, with no other modifications to the default127

parameters. Internally, inference is performed in 512× 384 resolution, and the output predictions128

are rescaled back to the original clip resolutions. Inference is performed using A100 GPUs, and129

processing each dataset clip takes about 30s, totaling roughly 38 GPUh for running CoTracker on the130

whole benchmark.131

BootsTAPIR and TAPIR. We use the pretrained models and JAX code from the official codebase and132

run inference with the default parameters. Internally, inference is performed in 256× 256 resolution,133

and the output predictions are rescaled back to the original clip resolutions. Inference was performed134

in a CPU cluster using up to 1024 CPUs and totalling about 22800 CPUh.135

COLMAP. For running COLMAP, we dumped the 2D tracks estimated by CoTracker, TAPIR and136

BootsTAPIR as a set of per-frame image feature files and corresponding matches in txt format and137

imported those in COLMAP using the ‘feature_importer‘ and ‘matches_importer‘ functionality. We138

then perform 3D reconstruction through the incremental mapping pipeline (‘mapper‘). As each input139

2D track can lead to multiple reconstructed 3D points across time (eg. for moving objects), we only140

keep those with larger "track length" (number of images where that 3D point was reconstructed from).141

Finally, we transform the resulting reconstructed 3D points positions in world coordinates to camera142

coordinates using the predicted extrinsic parameters. Inference was performed in a CPU cluster using143

up to 1024 CPUs and totalling about 14000 CPUh.144

ZoeDepth. We used the pretrained models and PyTorch code from the official codebase and run145

inference with the default parameters. Inference is performed in the native resolution for the ADT146

and Panoptic Studio clips and in 720× 480 for DriveTrack, where the original resolution was too147

large for running infrence in this model on a standard GPU. Inference was performed on 16 V100148

GPUs, totalling about 200GPUh.149

5



TAPIR3D150

We propose a straightforward extension of TAPIR to 3D by training on 3D ground truth from151

Kubric [5]. As Kubric is synthetic data, it is straightforward to obtain ground-truth 3D point tracks.152

However, we don’t expect that Monodepth models trained on Kubric will generalize, as the scenes are153

very different from real ones. However, we expect that a model trained here might be able to estimate154

relative depth of a point at different times on the trajectory, relative to the query point. Like with155

point tracking, we expect that low-level texture information may be sufficient to predict the relative156

depth (specifically, the scaling of the texture elements), and so high-level semantic understanding157

won’t be necessary, meaning that it can be learned from a semantically meaningless dataset.158

Specifically, we train TAPIR to output the log depth of each point on the trajectory, relative to the159

query point. This is a scalar quantity, and can be predicted using the same network structure as the160

other scalar quantites, e.g., the occlusion logit. That is, we predict an initial log-space scale factor161

for every frame by adding an extra head to TAPIR’s occlusion prediction network, which performs162

convolutions on top of the cost volume for each frame followed by global average pooling. Then163

we feed this estimate to the iterative refinement steps by concatenating it with the local score maps,164

the initial occlusion estimate, and so on, passing it through the 1-D convolutional network which165

produces an update; again, we add an extra head on this network which produces and updated relative166

depth estimate. We apply an L1 loss on the estimate for both the initialization and each of the four167

refinement passes, with a weight of 1.0. Otherwise, we train the entire network using the procedure168

described in [3].169

7. Filtering Incorrect Trajectories170

We apply different automatic filters for removing problematic tracks. Tracks can present three type of171

issues: (i) issues with visibility flags, (ii) queries which are outside the moving objects, and (iii) noisy172

3D trajectories.173

We found visibility issues (i) to be present in all dataset splits, and we remove it simply by oversam-174

pling the number of query points and discarding those whose visibility flag changes state more than a175

10% of the number of frames in the video.176

Issue (ii) was present mostly in the DriveTrack split, where trajectories in a video are localized and177

describe the motion of exactly one moving object in the scene. In some cases the 3D point-clouds178

associated with vehicles also contain points that are within the object bounding box, but outside of179

the object itself, such as in the road. To filter out errant trajectories, we use the Segment Anything180

model (SAM) to generate an object mask for each frame [7]. We prompt SAM with a point prompt,181

computed by taking the geometric median of DriveTrack trajectories at each point in time.182

Finally, we found that noisy 3D trajectories (iii) could occur in the Panoptic Studio split, where183

sometimes the reconstructed 3D Gaussians where not sufficiently constrained due to surfaces having184

uniform colors. In this case we apply a similar approach as before, and score trajectories based on the185

percentage of time they are on foreground object masks across all camera viewpoints. We perform a186

hyperparameter search on the threshold value and select the points that stay on the object masks at187

least 75% of the time across all masks, which removes most of the problematic points.188

8. Dataset Specifications, Metadata, and other Details189

For this dataset release, we preserve the licenses for the constituent original data sources, which are190

non-commercial. For our additions, to the extent that we can, we release under a standard Apache 2.0191

license. A full amalgamated license will be available in the open-sourced repository during complete192

release of the work, after the review period is finished.193

We will publicly host the dataset for wide consumption by researchers on Google Cloud Storage194

indefinitely. Part of the dataset is already hosted in this way (and how the Colab link linked above195

6



is able to run). We also intend to open-source code for computing the new 3D-AJ metrics after the196

camera ready. We anticipate the release will require little maintenance (and the TAPVid-2D dataset197

release that the team released two years ago is similarly low maintanence), but we are happy to198

address any emergent issues raised by users.199

Specific implementation details on how the dataset can be read are found in the Colab link provided.200

Each dataset example is provided in a *.npy file, containing the fields: tracks_xyz of shape [T, Q,201

3] (containing the Q ground truth point tracks for the corresponding video of T frames, with (x, y, z)-202

coordinates in meters), query_xyt of shape [Q, 3] (containing each track’s query point position in203

format (x, y, t), in (x,y)-pixel space and t as the query frame index), the ground truth visibility204

flags with shape [Q, T], and the camera_intrinsics (as [fx, fy, cx, cy]). Each *.npy file is named205

after its corresponding video in the original data source, which can be loaded by downloading from206

the original hosting sites [1, 9, 11], respecting their corresponding licenses.207

9. Visualized Samples208

See Figures 2, 3, 4, 5, 6, 7, 8, 9, and 10 below.209

7



Figure 2: Random samples from ADT subset in TAPVid-3D: on the top row, we visualize the point
trajectories projected into the 2D video frame; on the bottom row, we visualize the metric 3D point
trajectories. For each video, we show 3 frames sampled at time step 30, 60 and 90.

8



Figure 3: Random samples from ADT subset in TAPVid-3D (cont’d.): on the top row, we visualize
the point trajectories projected into the 2D video frame; on the bottom row, we visualize the metric
3D point trajectories. For each video, we show 3 frames sampled at time step 30, 60 and 90.

9



Figure 4: Random samples from ADT subset in TAPVid-3D (cont’d.): on the top row, we visualize
the point trajectories projected into the 2D video frame; on the bottom row, we visualize the metric
3D point trajectories. For each video, we show 3 frames sampled at time step 30, 60 and 90.

10



Figure 5: Random samples from DriveTrack subset in TAPVid-3D: on the top row, we visualize the
point trajectories projected into the 2D video frame; on the bottom row, we visualize the metric 3D
point trajectories. For each video, we show 3 frames sampled at time step 30, 60 and 90.

11



Figure 6: Random samples from DriveTrack subset in TAPVid-3D (cont’d.): on the top row, we
visualize the point trajectories projected into the 2D video frame; on the bottom row, we visualize the
metric 3D point trajectories. For each video, we show 3 frames sampled at time step 30, 60 and 90.

12



Figure 7: Random samples from DriveTrack subset in TAPVid-3D (cont’d.): on the top row, we
visualize the point trajectories projected into the 2D video frame; on the bottom row, we visualize the
metric 3D point trajectories. For each video, we show 3 frames sampled at time step 30, 60 and 90.

13



Figure 8: Random samples from Panoptic Studio subset in TAPVid-3D: on the top row, we visualize
the point trajectories projected into the 2D video frame; on the bottom row, we visualize the metric
3D point trajectories. For each video, we show 3 frames sampled at time step 30, 60 and 90.

14



Figure 9: Random samples from Panoptic Studio subset in TAPVid-3D (cont’d.): on the top row, we
visualize the point trajectories projected into the 2D video frame; on the bottom row, we visualize the
metric 3D point trajectories. For each video, we show 3 frames sampled at time step 30, 60 and 90.

15



Figure 10: Random samples from Panoptic Studio subset in TAPVid-3D (cont’d.): on the top row, we
visualize the point trajectories projected into the 2D video frame; on the bottom row, we visualize the
metric 3D point trajectories. For each video, we show 3 frames sampled at time step 30, 60 and 90.

16



References210

[1] Arjun Balasingam, Joseph Chandler, Chenning Li, Zhoutong Zhang, and Hari Balakrishnan.211

Drivetrack: A benchmark for long-range point tracking in real-world videos. arXiv preprint212

arXiv:2312.09523, 2023.213

[2] Shariq Farooq Bhat, Reiner Birkl, Diana Wofk, Peter Wonka, and Matthias Müller. Zoedepth:214

Zero-shot transfer by combining relative and metric depth. arXiv preprint arXiv:2302.12288,215

2023.216

[3] Carl Doersch, Yi Yang, Mel Vecerik, Dilara Gokay, Ankush Gupta, Yusuf Aytar, Joao Carreira,217

and Andrew Zisserman. TAPIR: Tracking any point with per-frame initialization and temporal218

refinement. arXiv preprint arXiv:2306.08637, 2023.219

[4] Carl Doersch, Yi Yang, Dilara Gokay, Pauline Luc, Skanda Koppula, Ankush Gupta, Joseph220

Heyward, Ross Goroshin, João Carreira, and Andrew Zisserman. Bootstap: Bootstrapped221

training for tracking-any-point. arXiv preprint arXiv:2402.00847, 2024.222

[5] Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel Duckworth, David J223

Fleet, Dan Gnanapragasam, Florian Golemo, Charles Herrmann, et al. Kubric: A scalable224

dataset generator. In Proc. CVPR, 2022.225

[6] Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi, and226

Christian Rupprecht. CoTracker: It is better to track together. arXiv preprint arXiv:2307.07635,227

2023.228

[7] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,229

Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In230

Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 4015–4026,231

2023.232

[8] Hao Liu, Yanni Ma, Qingyong Hu, and Yulan Guo. Centertube: Tracking multiple 3d objects233

with 4d tubelets in dynamic point clouds. IEEE Transactions on Multimedia, 2023.234

[9] Xiaqing Pan, Nicholas Charron, Yongqian Yang, Scott Peters, Thomas Whelan, Chen Kong,235

Omkar Parkhi, Richard Newcombe, and Yuheng Carl Ren. Aria digital twin: A new benchmark236

dataset for egocentric 3d machine perception. In Proceedings of the IEEE/CVF International237

Conference on Computer Vision, pages 20133–20143, 2023.238

[10] Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion revisited. In239

Conference on Computer Vision and Pattern Recognition (CVPR), 2016.240

[11] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul241

Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in perception for242

autonomous driving: Waymo open dataset. In Proceedings of the IEEE/CVF conference on243

computer vision and pattern recognition, pages 2446–2454, 2020.244

[12] Yuxi Xiao, Qianqian Wang, Shangzhan Zhang, Nan Xue, Sida Peng, Yujun Shen, and Xiaowei245

Zhou. Spatialtracker: Tracking any 2d pixels in 3d space. arXiv preprint arXiv:2404.04319,246

2024.247

17


	More Dataset Samples
	Dataset Statistics
	Metrics using Median, Per-Trajectory, and Local Neighborhood Rescaling
	Evaluations with Median, Per-Trajectory, and Local Neighborhood Scaling
	Evaluations using Fixed Metric Distance Thresholds
	Baselines Details and Compute Resources
	Filtering Incorrect Trajectories
	Dataset Specifications, Metadata, and other Details
	Visualized Samples

