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ABSTRACT

We find video diffusion models, renowned for their generative capabilities, sur-
prisingly excel at pixel-level object tracking without any explicit training for this
task. We introduce a simple and effective method to extract motion representations
from video diffusion models, achieving state-of-the-art tracking results. Our ap-
proach enables the tracking of identical objects, overcoming limitations of previous
methods reliant on intra-frame appearance correspondence. Visualizations and em-
pirical results show that our approach outperforms recent self-supervised tracking
methods, including the state-of-the-art, by up to 6 points. Our work demonstrates
video generative models can learn intrinsic temporal dynamics of video, and excel
in tracking tasks beyond original video synthesis.

1 INTRODUCTION
“What I cannot create, I do not understand.”
— Richard Feynman
First Frame

Subsequent Frame SMTC X Spa-then-Temp X DIFT X Ours

(a) Video frames with ground truth labels (b) Predictions for subsequent frame

Figure 1: Predictions from video label propagation task. State-of-the-art models fail to find the
correct temporal correspondence when multiple objects look similar in a video, such as SMTC (Qian
et al., [2023)), Spa-then-Temp (Li & Liul 2023), and DIFT (Tang et al.,|2023)). For instance, the deer
with green segmentation map labels in (a) are mislabeled as red by existing models, as highlighted by
the red boxes in (b). By introducing latent representations from pretrained video diffusion models,
our method captures temporal motions and correctly identifies the deer, highlighted by the green box
in (b). Our work significantly improves tracking performance across various scenarios.

The ability of temporal relational reasoning over time (Y1 et al., |2019) is crucial for visual intelligence.
Rather than performing simple appearance correspondence, people often rely on temporal relational
reasoning to track moving objects in complex situations (Yi et al., [2019; |Gerstenberg et al.,|[2015;
Ullman| 2015)). For example, given the two moving deer in Figure|[I(a), we can easily reason and
track different deer even after they change their relative positions.

Learning video representations for temporal correspondence is essential for tasks like video object
segmentation (Caron et al., 2021). Appearance-based correspondence methods have been used for
tracking (Wang et al.| [2021; Hu et al.| [2022), including the recent state-of-the-art DIFT (Tang et al.|
2023) that uses latent representations from image diffusion models (Rombach et al., 2021} |Dhariwal
& Nicholl 2021). Some research also integrates temporal information in model training (Wang et al.,
2019; Jabri et al.| [2020). However, existing methods often have low accuracy because they fail to
capture temporal context in complex scenarios, see Figure[T(b), where state-of-the-art models (Qian
et al.| 2023} |Li & Liu} 2023} [Tang et al.}[2023)) fail to differentiate between two deer.

In this paper, we demonstrate that representations from video diffusion models can improve tracking
across various scenarios, including those with multiple objects of similar appearance. Video diffusion
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Figure 2: Framework. Our work focuses on the video label propagation task, which uses frame
representations to transfer the first frame’s label to subsequent frames. We term the representation
for the jth frame I; as R ;. Unlike existing methods that often extract R; by a 2D image model, we
introduce the 3D UNet backbone from video diffusion models, which includes a temporal axis and
processes the entire video sequence as input (see (a)). Our approach improves tracking by integrating
temporal motions as shown in (b), where different colors indicate different matching pairs. In (b),
the first row shows traditional appearance matching, which relies on visual similarity across frames
and may misidentify objects, such as incorrectly matching two deer in the last frame to the same
deer in the first frame. In contrast, our work (second row) captures motion patterns among frames,
resulting in more accurate tracking. We term our Temporal Enhanced Diffusion tracking method as
TED. Experiments demonstrate that our TED improves tracking performance across diverse video
scenarios, including those with similar-looking objects. (Best viewed when zoomed in.)

models, trained to generate consistent videos across frames, capture both the object appearance and
the temporal relationships between objects. We show that without additional training, the internal
layer outputs of UNet from video diffusion models introduce the temporal reasoning capability that
aids tracking in complex situations. For example, as shown in the last column of Figure[I(b), our
video diffusion representations successfully track two deer even as they change their positions relative
to each other in the video. We term our Temporal Enhanced Diffusion tracking method as TED.

Experimental results show that our TED method outperforms 23 popular baseline models, achieving
state-of-the-art performance in self-supervised pixel-level object tracking. On the DAVIS dataset
for semi-supervised video object segmentation, our TED significantly outperforms SFC
by 6.4%, SMTC by 4.6%, Spa-then-Temp by 3.5%, and
DIFT 2023) by 1.9%. Furthermore, we introduce a challenging task of tracking similar-
looking objects, and a new real-world dataset for evaluation, termed YouTube-Similar. Benefiting
from the temporal reasoning ability, our TED improves upon DIFT by 5.3%.
Moreover, our approach achieves state-of-the-art results in human pose tracking. Our work is the first
to show that temporal motions learned from video diffusion models can solve perception challenges
and significantly improve perception performance. We will release our code and data.

2 RELATED WORK

Learning temporal correspondence is crucial for visual tracking (Tao et al. 2016} [Xu & Wang]
[2021}; [Ci & Liul 2023)). Due to limited annotations, prior studies have developed methods to learn
correspondence in a self-supervised manner (Caron et all, 2021} [Qian et al] [2023). Our work
contributes to this field of self-supervised correspondence, and we discuss related work as follows.

Temporal correspondence learned from images. Self-supervised learning that trains on image
datasets has achieved great success in downstream tasks, including temporal correspondence. Pi-

oneering work, such as MoCo 2020) and DINO (Caron et al, [2021), adopt instance

discrimination as pretext task which learns similar representations for different augmentations of the
same image. DenseCL (Wang et all,[2021)) and PixPro further apply contrastive
learning to pixel-level, which improve dense prediction tasks. SFC boosts perfor-
mance on temporal correspondence further by fusing image-level and pixel-level representations.
Recently, DIFT achieves state-of-the-art results in temporal correspondence task
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by leveraging internal representations from image diffusion models (Rombach et al., 2021). These
methods learn intra-frame information and rely on appearance for pixel-level tracking. Our work
highlights the limitations of using appearance alone for temporal correspondence and significantly
improves tracking by introducing temporal reasoning capabilities.

Temporal correspondence learned from videos. Temporal information in videos provides supervi-
sion signals to learn video representations during training. Two widely used pretext tasks for model
training are frame reconstruction and cycle-consistency over time. Frame reconstruction tasks involve
reconstructing a frame from adjacent frames (Vondrick et al., [2018} Lai & Xie,2019; Li et al.,[2019;
Lai et al.| [2020), while cycle-consistency tasks track a patch backwards and forward in time to align
start and end points (Wang et al.| 2019} [Jabri et al.,|2020). However, these methods often overlook
spatial features crucial for creating discriminative and robust representations (Li & Liul|2023). Recent
research integrates spatial with temporal information in model training, such as Spa-then-Temp (Li &
Liul [2023) and SMTC (Qian et al.l [2023). Despite incorporating temporal information during model
training, our work reveals that existing methods still face challenges in complex scenarios, such as
tracking multiple similar-looking objects, as shown in Figure[I] By introducing temporal reasoning
ability from video diffusion models to tracking, our approach significantly improves performance
across various video scenarios, including those involving similar-looking objects.

Video diffusion models. Diffusion models have significantly advanced image and video genera-
tion (Ho et al.| |2020; [Saharia et al., 2022} |Ho et al., 2022; Ruiz et al.}|2023). Text-to-image diffusion
models (Nichol et al.,[2021; Ramesh et al., 2022} allow precise control over generated image content
via text prompts, with Stable Diffusion (Rombach et al., 2021 improving generation efficiency and
quality by performing diffusion process in latent space. To generate videos with consistent frames,
video diffusion models are created by inserting temporal blocks into image diffusion models, which
are then trained on video datasets (Blattmann et al.| [2023b; |[Zhang et al, 2023). Representative
video diffusion models include Sora (Brooks et al.,[2024), ModelScope (Wang et al., 2023)), I2VGen-
XL (Zhang et al.| 2023)), and Stable Video Diffusion (Blattmann et al., [2023a)). Our work is the first
to demonstrate that temporal dynamics learned by video diffusion models can significantly improve
tracking performance. Our work highlights the potential of video generative models in tracking tasks
beyond their original use in video synthesis.

3 METHOD

We focus on the video label propagation task and first introduce the background in Section We
then discuss the challenges faced by previous methods in tracking identical objects in Sectior% In
Section[3.3] we show how our approach addresses these challenges and improves tracking performance
by leveraging temporal context. Our implementation details are provided in Section [3.4]

3.1 BACKGROUND

Video label propagation task aims to transfer ground
truth labels, such as segmentation maps, from the first
frame to subsequent frames(Vondrick et al., |2018)), as
shown in Figure [3] The key is training models to rep-
resent frames and establish pixel-level mapping among
them (Hu et al.| 2022). Due to limited annotations, prior
work trains the models in a self-supervised manner with
various pretext tasks (Jabri et al., 2020; |L1 & Liu, [2023)).
DIFT (Tang et al.| [2023)) significantly improves tracking . .
performance using latent representations from image dif- Figure 3: Video label propagation task
fusion models. We first introduce diffusion models and transfers the ground truth label of the
then discuss how DIFT uses them for tracking. first frame to subsequent frames.

-
First Frame Subsequent Frame
W& ae S RS

Label for sub-
sequent frame °

Diffusion models have achieved unprecedented success in generating images and videos with rich
content (Rombach et al.| 2022} [Brooks et al.,2024)). They are probabilistic models that learn the data
distribution p(x) and generate x from a random Gaussian variable(Nichol et al., 2021)), where x is
the image for image diffusion models.
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Figure 4: Video diffusion representations enable tracking objects with identical appearances.
We conduct a controlled study, that we perform object label propagation on videos featuring two
independently moving and identical-looking balls, with frames and their ground truth labels shown
in (a) and (b). State-of-the-art methods (Qian et al.| 2023} [Li & Liu}, 2023} Tang et al., |2023) fail
to distinguish the two balls, leading to incorrect predictions (c). In contrast, our video diffusion
representations accurately track both balls despite their identical appearance, as shown in (d).

Diffusion models learn rich visual concepts by recovering signals from corrupted data x at varying
noise levels (Choi et al.,2022), with loss defined in Eqn. m

L =FExen(o1),r [HG - Ge(xrat)\\g} )

where € is the actual noise corrupting the clean data and ey(x.,t) is the noise predicted by the
denoising model €y. UNet (Ronneberger et al.l 2015)) is commonly used as the denoising model €g.

Noisy x, is generated by adding noise from a Gaussian distribution A/(0, 1) to the clean data x,
according to the noise scheduler a; (Ho et al., [2020)), defined as:

xr = /arxo+ V1 —are, €~ N(0,1) 2)
Here, 7 represents the timestep in diffusion process, with larger 7 indicating higher noise levels.

Tracking by image diffusion representations. DIFT (Tang et al.;[2023) improves video propagation
performance using latent representations from image diffusion models (Rombach et al. 2021}
Dhariwal & Nichol|2021)). It leverages outputs from internal layers of UNet backbone, defined as:

R = UNet(x,,n) 3)

where n is the layer index. Specificially, R; = UNet;(x,,n), where subscript  indicates image
diffusion models. The input x. is generated using Eqn. [2 at a chosen timestep 7. Since UNet;
processes a single image at a time, DIFT treats video frames as independent images and extracts R;
for each frame with a single forward pass through the UNet model.

3.2 CHALLENGES FOR TRACKING IDENTICAL OBJECTS

Prior studies have achieved impressive results in video label propagation by establishing pixel-level
mappings among frames based on frame representations (Jabri et al.| [2020; |Li & Liul 2023). For
videos with a single object, pixel-level mapping often relies on object appearances, such as the
semantic information used in SFC (Hu et al.,|2022). However, in videos with multiple similar-looking
objects, like tanks with similar fish, establishing accurate correspondence remains challenging and is
underexplored in the video label propagation task.

Controlled toy example. We begin with a controlled toy example that tracks two independently
moving, identical-looking balls in a video, as shown in FigureEKa). We use the Kubric simulator (Greff]
et al.,[2022)) to create a video dataset with random ball sizes and motions, termed Kubric-Similar. In
this dataset, we propagate the segmentation map of each ball from the first frame (see Figure f[b)) to
the subsequent frames. We follow the label propagation procedures in prior studies (Jabri et al.| [2020;
Li & Liu} 2023), with implementation details in Section @

We evaluate state-of-the-art models on Kubric-Similar, with results reported in Figure [fc) and
Table [} Figure () shows that existing methods struggle with object identity, leading to poor
tracking. This aligns with Table[I] where many methods, including DIFT (Tang et al.| 2023) that uses
image diffusion representations, achieve a .J,,, around 50%. Note that a .J,,, around 50% indicates
performance no better than random guessing due to the identical size of the two balls. These findings
highlight the difficulty of tracking multiple similar-looking objects in temporal correspondence tasks.
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Figure 5: Track by temporal context. To understand why video diffusion representation (R.,,) excels
in tracking similar-looking objects, we compare the UNet backbones of video and image diffusion
models. (a) UNet; from image diffusion models consists of spatial layer blocks that process each
image independently. (b) UNet, is constructed by inserting temporal layer blocks to UNet; to ensure
frame consistency. In (c), we perform principal component analysis (PCA) on the representations from
different frames of each model, such as Rf,, R! = PCA(R? || R!) for R,,, where s and ¢ represent
different frames. The results reveal that image dlfqulOIl representation (R;) from DIFT (Tang et al.,
2023) learns similar features for both deer, leading to incorrect matching. In contrast, our R, learns
distinguishing features that achieve correct matching. Removing temporal layers from UNet,, results
in losing its distinguishing capability, shown in R/ (w/o temp). By integrating information across
frames, R,, enhances tracking by incorporating temporal context, outperforming R; from DIFT (Tang
et al.| 2023)), which is limited to intra-frame information and appearance-based tracking.

Video diffusion representations achieve Table 1: Results in tracking identical objects. We
significant improvement in tracking perform object label propagation on videos featuring
identical objects. To improve label prop- two independently moving, identical-looking balls, as
agation for identical objects, we replace  shown in Figure f{a). Our video diffusion representa-
the image diffusion representations (R;) tions achieve state-of-the-art results in tracking identical

in DIFT (Tang et al., 2023) with video dif- objects. Colors of the numbers highlight the best results.
fusion representations (R.,). Specifically,

R” is qbtaiped by applying UNetU from  Model TEFu(t)  Tn)  Fal)
video diffusion models following Eqn.[3l ;500 (fic et al12020) 519 618 568
Thus, R, = UNet,(x,,n), where X, rep-  SimSiam (Chen & He]2021) 52.8 639 583
resents the video sequence of multiple TimeCycle (Wang et al.|2019) 42.6 55.6  49.1

frames. The process of obtaining R, is =~ UVC (Lietal[2010) 58.0 526 439
illustrated in Figure[Ja), with additional G b et a1 2020) 495 9T 46
. R g =oe X R SFC (Hu et al.|[2022) 41.8 51.1 46.5
implementation details in Section[3.4] Fig-  SMTC (Qtan et al.2023) 72.6 68.5  76.7
ure Ekd) shows that our R, accurately Spa-then-Temp (Li & Liu![2023) 44.5 398 492
tracks both balls, despite their identical ap- g%£$sd (Ta%lg et al.‘12022032,13 4513.2 4513.431 ;lz.g
pearance, outperforming existing methods. adm {Tang eta’ | . : :

Table E]further confirms our approach’s ef- Video diffusion (R, ours) 90.9 87.2 94.5

fectiveness, outperforming DIFT (Tang et al.,[2023) by 38.3% in J & F,.

3.3 TRACK OBJECTS BY TEMPORAL CONTEXT

Motivated by the success of video diffusion representations when tracking identical objects in the
toy example above, we will first investigate where the tracking capability comes from. We will then
capitalize on the findings and propose a simple and effective method for better tracking.

Where does the ability to track similar-looking objects come from? We hypothesize that this
tracking capability stems from temporal context learned during video synthesis. Video diffusion
models (Blattmann et al} 2023a)) insert temporal layers into image diffusion models to learn temporal
dynamics such as motion, ensuring frame consistency in generated videos (see Figure[5](a)(b)). We
denote the UNet representations from video and image diffusion models as R, and R;, respectively.
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Table 2: Results for pixel-level object tracking. We evaluate our TED method on semi-supervised
video object segmentation, and compare it with 24 baseline models, including self-supervised and
supervised approaches. Our TED achieves state-of-the-art tracking performance on both the DAVIS
and Youtube-Similar datasets, outperforming recent methods by up to 6%. We visualize the tracking
results in Figure[6] These results demonstrate the effectiveness of our method in object tracking, even
when multiple objects have similar appearances. Colored numbers indicate the best results. TED
refers to our default setting using R ¢, while TEDT denotes the setting using R.,,.

Super- Method Dataset DAVIS Youtube-Similar
vised TJ&EFu(1)  Tn(t) Ful) JTEFu(h) ITu(t) Ful)

InstDis (Wu et al.|[2018) 66.4 63.9 68.9 - - -
MoCo (He et al.[[2020) 65.9 63.4 68.4 48.0 48.5 474
SimCLR (Chen et al.[[2020) TmageNet 66.9 64.4 69.4 37.5 36.9 38.1
BYOL (Grill et al.[[2020) w/o labels 66.5 64.0 69.0 47.1 47.7 46.5
SimSiam (Chen & Hel|2021) 67.2 64.8 68.8 474 479 47.0
DINO (Caron et al.[[2021) 71.4 67.9 749 63.9 63.0 64.7
DetCo (Xie et al.|[2021a) 65.7 63.3 68.1 41.4 42.0 40.9
DenseCL (Wang et al.[|2021) 61.4 60.0 62.9 46.4 46.5 46.3
PixPro (Xie et al.|[2021b) 57.5 56.6 58.3 45.6 45.9 45.3
DIFT 44, (Tang et al.||2023) 75.7 72.7 78.6 60.7 59.8 61.7
DIFT,; (Tang et al.|[2023) LAION 70.0 67.4 72.5 56.3 55.8 56.7

x Colorization (Vondrick et al.|[2018) 34.0 34.6 32.7 - - -
VINCE (Gordon et al.{[2020) 65.2 62.5 67.8 449 454 443
VES (Xu & Wang|2021) Kinetic 68.9 66.5 71.3 57.3 57.1 57.5
UVC (L1 et al.;[2019) 60.9 59.3 62.7 49.7 49.8 49.7
CRW (Jabri et al.|[2020) 67.6 64.8 70.2 52.0 52.3 51.6
CorrFlow (Lai & Xie|[2019) OxUvA 50.3 484 522 39.6 400 393
TimeCycle (Wang et al.|[2019) VLOG 48.7 46.4 50.0 39.8 413 38.2
MAST (Lai et al.| 2020} VIVOS 65.5 633 616 - - .
SMTC (Qian et al.|[2023) 73.0 69.4 76.6 57.5 57.2 57.9
SFC (Hu et al.||2022) 71.2 68.3 74.0 55.5 55.3 55.7
Spa-then-Temp (Lt & Liu][2023} TmageNet, YT-VOS | 7, L1 771 50.6 592 60.1
TED' (Ours, R,) Web-Vid 66.3 63.4 69.1 62.0 61.5 62.5
TED (Ours, Ry) ImageNet, Web-Vid 77.6 74.4 80.8 66.0 65.1 67.0

v OSVOS (Caelles et al.|[2017) ImageNet, DAVIS 60.3 56.6 63.9 - - -
OnAVOS (Voigtlaender & Leibe!2017)  ImageNet, DAVIS 65.4 61.6 69.1 - - -
CFBI+ (Yang et al.{[2020) YT-VOS, DAVIS 82.8 80.1 85.5 - - -

We examine the properties of R, and R,; using principal component analysis (PCA), as shown in
Figure[5{c), where two moving deer change their relative positions over time. We will show that R,,
learns distinguishing features for two deer even if they have similar appearances, while R; learns
similar features for both deer.

We perform PCA on pairs of frames for each model, such as R, R! = PCA(R? || R!) for R, where
s and t represent different frames. Figure[5|c) shows that R; of DIFT (Tang et al.,[2023) learn similar
features for both deer, leading to incorrect matching. In contrast, R, learns distinguishing features
for the two deer that enable correct matching. We then remove the temporal blocks from UNet,
and recomputed R,,, termed R . Interestingly, Figure c) shows that R/ loses the distinguishing
features between the two deer. Unlike R; which only uses intra-frame information, the temporal
layers in UNet, (like temporal attention layers) enable R, to integrate information across multiple
video frames, introducing temporal motion to tracking. We compare our temporal motion matching
using R, to the appearance matching of R; in Figure[2(b). Our results and discussions demonstrate
the superiority of R, in using temporal context for tracking.

Using R, for better tracking. Our investigations show that video diffusion representations (R,)
capture temporal context, crucial for tracking identical objects. Since temporal context is orthogonal
to appearance information, it complements prior tracking methods like image diffusion (R;). As
shown in Eqn. ] we employ a simple concatenation of the representations from video and image
diffusion models in later experiments:

R; = Concat (a|Ryl2, (1 —a)||Rill2) “4)
where || - || denotes L2 normalization and « is a hyperparameter between 0 and 1. We term our

Temporal Enhanced Diffusion tracking method as TED. We use R by default and denote the setting
that uses R, as TED' for distinction. We will show our TED achieves state-of-the-art tracking results.
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3.4 IMPLEMENTATION DETAILS

Video label propagation. Our work follows prior studies (Jabri et al.| 2020; |Caron et al.,[2021}; | Tang
et al.,[2023) for the evaluation protocol of label propagation, which includes representation extraction
and label prediction stage, as shown in Algorithm[I] We first obtain frame representations Ry using
video and image diffusion models. To predict the label of current frame, similar pixel pairs between
current and previous frames are identified by computing the similarities of their representations. Each
pixel in the current frame is then labeled by aggregating the labels of similar pixels from previous
frames, weighted by their pixel similarity. More experimental setups are detailed in Appendix [B.1]

Appearance representations. Following (Tang et al., 2023, we use the output from the internal
layers of UNet; as the appearance representation R;, following R; = UNet;(x,,n). X, represents
each video frame, generated according to Eqn. 2] with an empirically determined 7. We process each
frame through a single forward pass of UNet;. Our framework accommodates any pre-trained image
diffusion model for R;, using ADM (Dhariwal & Nichol, 2021) by default. We also investigate other
models such as Stable Diffusion (Rombach et al., [2022).

Temporal representations. We obtain R, following R,, = UNet, (x,,n) as shown in Fig a). The
key difference in obtaining R, compared to R; is using UNet, from video diffusion models, which
process video sequence of multiple frames as x,. Since current video diffusion models accept limited
frames as input, long videos are split into subsequences. R, is then obtained for each subsequence
through a one-pass forward process in UNet,,. Our framework supports any off-the-shelf pre-trained
video diffusion model for R, using I2VGen-XL (Zhang et al}2023) by default. We also explore
additional models like Stable Video Diffusion (Blattmann et al., [2023a)).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate our TED method on the video label propagation task, and compare it with 24 baseline
models. Our work uses video representations from pre-trained diffusion models, and does not require
additional training.

* Pretrained self-supervised learning models. We evaluate 9 self-supervised models pre-
trained on ImageNet known for strong temporal correspondence performance: 6 instance
discrimination models like MoCo (He et al., 2020) and 3 dense contrastive learning models,
such as DenseCL (Wang et al.| [2021).

* Image diffusion model representations. We compare with DIFT (Tang et al.| |2023)), which
leverages representations from image diffusion models for temporal correspondence.

» Task-specific models (self-supervised). We include 11 self-supervised models tailored
for temporal correspondence tasks, trained by pretext tasks like frame reconstruction (e.g.,
UVC (Li et all} [2019)), cycle consistency (e.g., CRW (Jabri et al. [2020)), and video
contrastive learning (e.g., VFS (Xu & Wang, |2021))). We also include recent methods such
as SMTC (Qian et al., 2023) and Spa-then-Temp (Li & Liul 2023).

 Task-specific models (supervised). We compare our method with 3 supervised approaches
that utilize labeled data during training, such as CFBI+ (Yang et al., 2020).

Evaluation datasets. We evaluate TED on the semi-supervised video object segmentation task,
which propagates the object segmentation from the first frame to subsequent frames. We evaluate
widely-used DAVIS-2017 (Pont-Tuset et al.l 2017) which includes 30 videos from various scenarios.
To test the tracking ability for similar-looking objects, we introduce the Youtube-Similar dataset,
composed of 28 videos from Youtube-VOS (Xu et al.| 2018) that feature multiple similar-looking
objects. Following (Tang et al., [2023), we report region-based similarity (J,,,) and contour-based
accuracy (F},). More dataset details are provided in the Appendix

4.2 EXPERIMENTAL RESULTS

Quantitative results. We compared our TED to 24 baseline models on the DAVIS and Youtube-
Similar dataset, with results detailed in Table|2] Our TED achieves the state-of-the-art tracking
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First Frame Spa-then-Temp X DIFT X TED (Ours) Ground Truth
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Figure 6: Predictions for pixel-level object tracking. We evaluate our TED method on semi-
supervised video object segmentation, which propagates object segmentation maps from the first
frame to subsequent frames. Our TED consistently outperforms state-of-the-art methods (Li & Liu,
2023}, [Tang et al., [2023) on the DAVIS (Figure a-d) and YouTube-Similar (Figure e-f) datasets,
aligning with the results in Table[2] Notably, our TED delivers more accurate predictions in scenarios
with complex deformations (a) and viewpoint changes (b), while Spa-then-Temp (Li & Liul 2023))
and DIFT (Tang et al., 2023) struggle with tracking completeness, such as the missing arm in (a).
Our TED also excels in multi-object scenarios, delivering superior tracking for interacting objects
(c-d) and similar-looking objects (e-f). In contrast, Spa-then-Temp (Li & Liu, [2023) and DIFT (Tang
et al., [2023)) have mislabeling issues, such as incorrect labels for the gun in (d) and misaligned labels
for sheep in the background (f). These results show that our TED significantly improves tracking
performance, highlighting the benefits of incorporating temporal reasoning into tracking. (Best
viewed when zoomed in.)

performance on both datasets, surpassing recent methods by up to 6%. Specifically, on the DAVIS
dataset, our method outperforms SFC (Caron et al.,|2021) by 6.4%, SMTC (Qian et al., | 2023) by 4.6%,
Spa-then-Temp (Li & Liu} |2023) by 3.5%, and DIFT (Tang et al.l 2023) by 1.9%. On the Youtube-
Similar dataset, our TED shows an even greater improvement, exceeding Spa-then-Temp (Li & Liul
2023) by 6.4% and DIFT (Tang et al.,2023) by 5.3%. These improvements highlight the effectiveness
of our method in object tracking, even for challenging settings with multiple similar-looking objects.

Visualizations. We present our tracking results alongside those from state-of-the-art methods in
Figure[6] with results for DAVIS shown in Figure [f[a-d) and for YouTube-Similar in Figure [6{e-f).
Our TED outperforms existing studies on both datasets, aligning with Table[2} Our TED effectively
handles complex deformations (a) and viewpoint changes (b), outperforming Spa-then-Temp (Li &
Liul 2023) and DIFT (Tang et al.}2023)), which struggle with tracking elements like the human arm
in Figure[f[a). Additionally, our TED excels in multiple-object scenarios, such as interacting objects
(c-d) and similar-looking objects (e-f), whereas Spa-then-Temp and DIFT often confuse different
objects, leading to incorrect label assignments. For instance, in Figure[6(d), Spa-then-Temp (Li & Liu}
2023) incorrectly labels the gun as a human, and DIFT (Tang et al.,|2023) shows significant errors
in the predicted contour. In Figure[6|(f), featuring multiple sheep, both Spa-then-Temp (Li & Liul
2023)) and DIFT (Tang et al.,[2023)) mistakenly align the object label to the sheep in the background.
Our TED consistently achieves more accurate tracking results across these scenarios, demonstrating
significant performance improvements through enhanced temporal reasoning.
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Figure 7: How and why does ¢ influence tracking. We present tracking results in (a) using
diffusion representations obtained at varying noise levels 7 (see Eqn. 2] and Eqn. [3)), with higher
7 indicating more noise (b). TED uses combined R defined in Eqn. Ié-_ll, and TED' uses video
diffusion representation R.,. The best result for each method is marked with a star and the best result
for DIFT 2023) across all 7 is indicated as a red dashed line. Using image diffusion
representations (R;), DIFT peaks at low noise (7 < 200) and deteriorates as noise increases. This
is due to its reliance on appearance for tracking, which becomes almost unavailable at high noises.
In contrast, TED' (using R.,) excels at higher 7 values, peaking at 7=600 on Youtube-Similar and
7=900 on Kubric-Similar where the input video is heavily corrupted (b). The high accuracy at high
noise levels is because R, learns coarse-grained motions that enable tracking similar-looking objects,
such as object positions. When the video input is less noisy, the diffusion model is trained to denoise
appearance details, where motion feature may not be so prioritized, leading to performance decrease
at low noise levels. Our TED consistently outperforms DIFT across various
7 values on all datasets, demonstrating the superiority of incorporating temporal information into
tracking.

4.3 ABLATION STUDIES AND DISCUSSIONS

How and why does 7 influence tracking. We obtain frame T oavs
representations from diffusion models as defined in Eqn. [3] ao | ~° oumbe-similar
—&— Kubric-Similar

with the UNet input x, generated according to Eqn.[2| Fol-
lowing DIFT 2023), we empirically determine =™
the noise level ¢ to produce x,. We investigate the impact of .
noise level 7 on tracking performance in Figure[7(a), where
a higher 7 indicates more noise (Figure[7(b)). In Figure[/[(a), 50 ]
Kubric-Similar is a dataset featuring independently moving

and identical-looking balls, defined in Section@ ‘We mark

the best result for each method with a star. TED uses combined Figure 8: Fusion weight . Our
R defined in Eqn. E, and TED' uses video diffusion repre- TED outperforms DIFT
sentation R,. Using image diffusion representations (R;), [2023)(a=0.0) on all datasets.

DIFT 2023) achieves the best result at low noise (7 < 200) and decreases rapidly as
noise increases due to diminishing availability of appearance information. In contrast, our TED' with
R, peaks at a higher ¢ and maintains robust tracking over a much broader range of 7. Notably, TEDf
reaches its best performance at 7=600 on Youtube-Similar and 7=900 on Kubric-Similar, where
the input video is heavily corrupted and appearance information is almost unavailable as shown in
Figure[7[b). These results suggest that R,, encodes temporal motion that can be used for tracking at
higher noise levels. Moreover, our TED with R ¢ consistently outperforms DIFT
across a wide 7 range, demonstrating the effectiveness of our TED by integrating temporal dynamics
into tracking.

Diffusion models solve different tasks at different noise levels during training 2022).
When the video input is corrupted at high noise levels, video diffusion models are trained to solve the
hard task that learning coarse-grained signals in the video, such as motion (like the change of object
positions among frames). Therefore, its representation encodes rich motion information that enables

O:O O.‘Z 014 O.‘ﬁ O.‘E 1.‘0
Fusion weight (a)
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tracking similar-looking objects. When the video input is less noisy, the diffusion model is trained to
denoise appearance details, where motion features may not be so prioritized, leading to performance
decrease at low noise levels.

Fusion weight a. To utilize both temporal motion and appearance for better tracking, our TED
combines R, and R,; into R as defined in Eqn. E} Figure shows the tracking results with varying
fusion weight o, where a higher « increases the contribution of R,. Ry reduces to R; when
a=0.0 and to R, when o=1.0. We mark the best result on each dataset with a star in Figure
Our TED achieves the best results with medium « values of 0.4 for DAVIS and 0.6 for Youtube-
Similar, demonstrating that the integration of appearance and temporal information improves tracking
performance. For Kubric-Similar, TED performs best with a=1.0, reflecting the dataset’s unique
characteristics of containing identical objects where appearance information from R,; does not provide
additional value for tracking. On all datasets, our TED consistently outperforms DIFT (Tang et al.,
2023)) (=0.0), highlighting the advantage of our work by introducing temporal motions to tracking.

Feature layers for video diffusion representations. We
use R, from internal layers of the UNet in video diffusion
models for video label propagation, as illustrated in Fig-
ure[2]and Eqn.[3] Following (Tang et al.,[2023), we use the

Table 3: Ablation study on UNet
blocks. TED' achieves the best track-
ing results using R, from block 2.

decoder representations from UNet and report the track- Block | Jn&Fy  Jm  Fi
ing results of TED' on DAVIS using R, from different 0 248 282 214
decoder blocks in Table[3l Table [3]shows that the medium é ‘6‘2-2 22-1 ‘6‘;-?
block (block 2) yields the best performance among all 3 315 272 358

blocks.

Different diffusion models. We evaluate the tracking re-
sults of TED using R obtained from different video and
image diffusion models on the DAVIS dataset, as shown
in Table[d We investigate video diffusion models like Sta-
ble Video Diffusion (SVD) (Blattmann et al., 2023a) and

Table 4: Pretrained diffusion models
for TED. Our TED achieves the best
tracking results using representations
from I2VGen-XL and ADM.

I2VGen-XL (I12V) (Zhang et al., 2023), image diffusion  video Image , J&Fu(1) JTn(1) Ful)
models like Stable Diffusion (SD) (Rombach et al., [2022) SVD _ sSD 715 689 741
and ADM (Dhariwal & Nichol, 2021). Our TED achieves SVD ADM 76.6 736 797
the best tracking performance when using video diffusion Rv - SD 717 69.0 745
representations from [2VGen-XL (Zhang et al., 2023) and 2V ADM D ARSI

image diffusion representations from ADM (Dhariwal & Nicholl |2021), which is used as the default
setting in the paper.

Results on human pose tracking. In addition to video
object segmentation, we test our method on the JHMDB
benchmark (Jhuang et al., 2013)), which tracks 15 human
pose keypoints in 268 videos. We follow the evaluation
protocol of prior studies (Li et al.} 2019; |Jabri et al., [2020;
L1 & Liu| 2023), and report the percentage of correctly
tracked keypoints (PCK) for JHMDB. We compare our
method with baseline models in Table[5l Table 3] shows
that our approach achieves state-of-the-art performance in

Table 5: Results on JHMDB dataset.
Our method achieves state-of-the-art per-
formance in human pose tracking.

Method PCK@0.1 PCK@0.2
SFC (Hu et al.|[2022) 61.9 83.0
SMTC (Qian et al.[[2023) 62.5 84.1
DIFT (Tang et al.{|2023) 63.4 84.3
Spa-then-Temp (Li & Liu{[2023) 66.4 84.4
TED (Ours) 68.3 85.8

the human pose tracking task.

5 CONCLUSION

In this work, we leverage latent representations from video diffusion models for pixel-level tracking.
Benefiting from video diffusion models’ ability to incorporate information across multiple frames,
our work introduces temporal reasoning to the tracking tasks. Without additional training, our method
improves tracking performance in various video scenarios, even enabling tracking of similar-looking
objects where previous methods struggle. Experimental results show that our approach achieves
state-of-the-art tracking performance, outperforming recent studies by up to 6 points. Our work
highlights the potential of video generative models in tracking applications beyond their original use
in video synthesis task.
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A DISCUSSIONS

A.1 ADVANTAGES OF OUR WORK OVER DIFT

We clarify and highlight the advantages of our work over the state-of-the-art DIFT (Tang et al.|, 2023))
as follows.

* We solve a task that tracks similar-looking objects which DIFT cannot solve. Tracking
similar-looking objects in label propagation is a very fundamental task in the field. Since
DIFT learns only appearance features, it fails to track similar-looking objects.

* Our work uses temporal motions learned from video diffusion models in tracking,
providing new insights into how motion-based tracking emerges. Our experiments and
analysis show that temporal layers in video diffusion models enable motion-aware features
necessary for tracking similar-looking objects, which are absent in DIFT.

* Improved tracking accuracy across various scenarios. Our work significantly outper-
forms DIFT in tracking performance in various videos, such as those with severe object
deformation, achieving 1.9% higher accuracy on DAVIS and 5.3% on YouTube-Similar.

A.2 ADVANTAGE OF OUR WORK IN LEARNING TEMPORAL FEATURES

We clarify and highlight the advantages of our work over prior studies in learning temporal features
as follows.

 Better representations obtained by solving a harder generative task. Previous methods
are trained on easier tasks that always have shortcuts. For example, mismatched patches
in [Wang et al.| (2019)); [Jabri et al.| (2020) or objects in [Gordon et al| (2020); Xu & Wang]
with similar appearances can also yield low training loss. In contrast, our video
diffusion models are trained to fully reconstruct every pixel from noisy inputs, enabling
better representation learning.

e Advanced temporal attention vs. simple pairwise correlation. During training, prior
methods learn temporal features by simple correlations between spatial features across
frames (Vondrick et al.| 2018} [Wang et al., 2019; [Li et al} 2019; [Lai & Xie} [2019; [Lai et al.}
2020; [Qian et al.,[2023}; |Li & Liu, 2023), which fail to distinguish similar-looking objects.
In contrast, our video diffusion model uses temporal attention layers to integrate multiple
frames, enabling advanced reasoning in complex scenarios like the deer with changing
positions in Figure[T]

* Significantly improved tracking accuracy. Quantitative results and visualization show
that our method significantly improves the tracking performance compared to prior studies,
by more than 3.5% on DAVIS and 6.4% on YouTube-Similar.

B EXPERIMENTAL SETUPS

B.1 VIDEO LABEL PROPAGATION

In this work, we evaluate the video label propagation task, which predicts pixel-level labels for
subsequent video frames given the ground-truth label of the first frame. We follow the evaluation
protocol of prior studies (Jabri et all, 2020} [Caron et al 2021} [Tang et al.| [2023), as detailed in
Algorithm[I] Pixel-level labels for each frame are predicted based on the frame representations and
labels of previous frames. For the current frame, we first identify similar pixel pairs between this
frame and the previous frames by computing the similarities of their pixel representations. Labels for
the current frame are then predicted by aggregating the labels of similar pixels from previous frames,
weighted by their pixel similarity. A key advantage of TED over prior studies is that it generates
frame representations by inputting the video sequence into the 3D UNet,,, which encodes the temporal
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motions learned in video generation and significantly improves tracking accuracy. To handle videos
longer than the sequence length limit of UNet,, we split each video into multiple sequences and
process each sequence separately. An optional technique to improve accuracy is allowing overlapping
frames among sequences. Another optional technique is using a batch of random noise to obtain an
averaged representation for each video following DIFT (Tang et al.l [2023).

Algorithm 1: Temporal Enhanced Diffusion tracking (TED)

Input: Video frames I; to I ; Ground-truth label for the first frame L;; Video diffusion model
with UNet,; Image diffusion model with UNet;.

Qutput: Label predictions Lo to Ly for frames 15 to Iy.

Let d be the sequence length defined by UNet,, split all video frames to n = L%J sequences;
Initialize queue Q = () to store the representations and labels of the previous p frames;

for each sequence 7 =0ton — 1 do
Select the frames I 1 ;.4 to I(;11).q as the current sequence;

Step 1: Computation of Frame Representations ‘

Compute the video diffusion representation R, using a single forward pass of UNet,:
Rv,1+j-d, RN Rv7(j+1)4d = UNetU(IlJrj.d, S 7I(j+1)-d);
Compute the image diffusion representation R; using d forward passes of UNet;:
for each frame Iy, in 1. to I(j11).q do
L Ri,k = UNeti(Ik);
Compute the fused representation Ry following Eqn. E}
Ry = Concat (af|Ryll2, (1 —a)||Rill2):

‘ Step 2: Label Prediction ‘

if 7 = 0 then
L Add (Ry,1, L) of the first frame to the queue Q;

for each frame Iy, in the sequence from I yj.q 1o I(;11).q do
if £ = 1 then
L Skip the first frame since the ground truth label is already provided ;

Compute the pixel similarity matrix A between pixel representations of current frame
Ry}, and previous frames R € Q;
for each pixel in the frame I}, do
Retain only the similarities for spatially neighboring pixels in A;
Apply top-« filtering to retain the strongest similarities and set the remaining values
in A to zero;

Predict the labels for the current frame k by propagating the labels from the most similar
pixels in previous frames, weighted by their pixel similarity:
L; = A- (labels L € Q);
Add (Ry i, L) to the queue ();
if the size of Q) exceeds the maximum allowed size p then
L Remove the oldest entry from the queue Q;

return L, to L.

B.2 PRETRAINED DIFFUSION MODELS

In our work, we utilize pretrained diffusion models without additional training. Our framework
supports any pretrained diffusion model and we use open-sourced checkpoints for our experiments.
For video diffusion models, we use the official weights of Stable Video Diffusion (Blattmann et al.|
2023a) and I12VGen-XL (Zhang et al.,[2023) available on Hugging Face (HuggingFace| 2024)). For
image diffusion models, we use pretrained weights from Hugging Face for Stable Diffusion (Rombach
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et al, [2022)) (version 2-1) and from the official GitHub repository for ADM (Dhariwal & Nichol,
2021)). We follow the configurations of DIFT 2023)) and summarize as in Table|[6]

Table 6: Experimental setups of TED in video label propagation task.

Dataset Video diffusion Image diffusion Fusion Softmax Propagation k for
Model Timestep Block Model Timestep Block weight temp radius top-k

DAVIS 12VGen-XL 300 2 ADM 51 7 0.4 0.2 15 10

Youtube-Similar  12VGen-XL 600 2 ADM 51 7 0.6 0.1 15 10

B.3 EVALUATION DATASETS

We evaluate TED on the semi-supervised video object segmentation task using three datasets: DAVIS-
2017 (Pont-Tuset et all, 2017), Youtube-Similar, and Kubric-Similar. Figure [D]shows video examples
from each dataset.

e DAVIS-2017 (Pont-Tuset et al., 2017): A widely used benchmark for semi-supervised object
segmentation. Following prior work (Caron et al, 2021} [Tang et al., 2023)), we use the val
subset, which includes 30 videos with 2023 frames and 59 annotated objects.

* Youtube-Similar: We propose this benchmark to evaluate tracking on multiple similar-
looking objects. It includes 28 videos from Youtube-VOS (Xu et al.|[2018) with 839 frames
and 69 annotated objects.

* Kubric-Similar: We use Kubric simulator (Greff et al.,2022)) to generate this dataset for
tracking identical objects. Each of the 14 videos contains two identical balls with random
sizes and movements, totaling 224 frames and 28 objects.

~ DAVIS-2017 Youtube-Similar Kubric-Similar

Time

Figure 9: Dataset examples. We present video examples from various evaluation datasets. Following
prior work (Caron et al, 2021}, [Tang et al, 2023)), we evaluate our method on the widely-used
DAVIS-2017 dataset (Pont-Tuset et al., [2017), shown in the first two columns of the figure. For
the first time, we propose the challenging task of tracking multiple similar-looking objects in video
label propagation. To assess model performance in this setting, we introduce two new datasets:
Youtube-Similar (the third and fourth columns) and Kubric-Similar (the fifth column).

B.4 FEATURE VISUALIZATION

In Section [3.3] we use PCA (Mackiewicz & Ratajczak] [1993) to reduce the dimension of pixel
representations for visualization. Figure Ekc) visualizes the representations after PCA, where similar
colors indicate similar pixel representations. If different objects have distinct pixel colors, it indicates
they are successfully distinguished from each other. Figure [Bfc) shows that our work succeeds
in distinguishing and tracking similar-looking objects (third column), unlike DIFT which learns
similar pixel representations for different objects and fails in tracking (second column). These results
highlight the effectiveness of temporal motions in our work for tracking, which DIFT lacks.
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C ADDITIONAL RESULTS

C.1 COMPUTATION COST ANLYSIS

We compare computation cost of our method with DIFT 2023) in Table[7] We track a
100-frame video, reporting average time per frame and maximum GPU memory. Our TED (efficient)
outperforms DIFT (best) by 1.5% in accuracy with similar speed and slightly higher memory use,
while TED (best) achieves higher accuracy at greater computation cost. In real applications, users
can choose the version based on their requirements on accuracy and efficiency.

We introduce the setups for computation cost analysis as follows. We test the model on a single
NVIDIA TITAN RTX GPU using a 100-frame DAVIS video. Following DIFT, we introduce two TED
versions, efficient and best, based on whether to use the optional techniques. For DIFT, the optional
technique involves averaging representations using a batch of noise. For TED, it includes both
averaged representations and overlapping frames among sequences, as discussed in Appendix [B.}

Our work demonstrates, for the first time, that motions learned from video diffusion models can solve
perception challenges and achieve state-of-the-art results. Our work offers new insights for diffusion
and tracking, benefiting both communities. We believe our method can be further accelerated with
future research on diffusion model acceleration as well as advances in computing and resources.

Table 7: Computation cost analysis. Our TED (efficient) outperforms DIFT (best) by 1.5% in
accuracy with similar speed and slightly higher memory use, while TED (best) achieves higher
accuracy at greater computation cost. Here, the time refers to the duration required to track a single
image.

Model Version  Optional Techniques Accuracy Time (s) FPS Memory (GB)

DIFT _ -2023 Efficient No 74.7 0.73 1.37 5.53
Best Yes 75.7 1.36 0.74 9.25

TED(ours) Efficient No 77.2 1.21 0.82 11.65
Best Yes 77.6 2.24 0.47 15.20

C.2 DISCUSSIONS ON THE TRAINING DATASET

To investigate the influence of training dataset on the tracking results, we train image diffusion
model from DIFT [2023)) on the same training dataset as our video diffusion model for
comparison. Table [8]shows that without temporal modeling, training on additional video data fails to
track similar-looking objects, indicated by a low J & F, of 43.8% on Kubric-Similar. Web-Vid
has lower individual image quality [2024)), such as motion blur and watermarks.
Fine-tuning DIFT on Web-Vid even reduces performance. In contrast, our TED achieves significant
improvements using video diffusion models and effectively distinguishes similar-looking objects,
demonstrating the importance of learning temporal motions from video diffusion models for tracking.

Table 8: Fine-tune DIFT’s image diffusion models on video datasets. DIFT fails to track similar-
looking objects even when trained on the same datasets as our video diffusion models. This is because
image diffusion models learn only appearance features from video datasets, lacking the temporal
motion information critical for tracking.

Version Model Dataset Kubric-Similar Youtube-Similar DAVIS
JEFn(1) In() Fu(l) J&Fu(l) Tul) Ful) JEFa) In() Fu)
Original DIFT ImageNet 52.6 50.3 54.8 60.7 59.8 61.7 75.7 72.7 78.6
Finetune on Web-Vid | DIFT  ImageNet, Web-Vid 43.8 40.1 47.4 58.9 58.3 59.4 72.9 70.1 75.6
Ours TED  ImageNet, Web-Vid 90.4 86.9 94.0 66.0 65.1 67.0 717.6 74.4 80.8

18



Under review as a conference paper at ICLR 2025

C.3 RESULTS OF TIME-TUNING METHOD

We use Time-Tuning features (Salehi et al., [2023) for video label propagation task and find that
it fails to distinguish similar-looking objects in our work, as shown in Figure [T0} This failure is
because Time-Tuning is trained to learn semantic features for semantic segmentation task, as shown
in Figure 3 of the original paper (Salehi et al., 2023), which lacks object motions needed in tracking
similar-looking objects.

First Frame DIFT X Time-Tuning X Ours Ground Truth

Figure 10: Time-Tuning fails to distinguish multiple similar-looking objects.

C.4 RESULTS WITH ADDITIONAL DINO FEATURES

Prior work (Zhang et al.| |2024) shows that the combination of Stable Diffusion and DINOv2 (Oquab
et al.| 2023) features significantly improves performance in semantic correspondence task. Follow-
ing (Zhang et al., 2024), we add DINOv2 features to our TED and report the tracking results in
Table[9] Table[9]shows that incorporating additional DINOv2 features in our TED does not further
improve tracking performance.

Table 9: TED with additional DINOv2 features. We introduce additional DINOv2 features as a
complementary to our TED method following |Zhang et al.|(2024)). We find that additional DINOv2
features do not further improve the performance of our TED in the tracking task.

Model Features Kubric-Similar Youtube-Similar DAVIS
TE&Fu(1)  In()  Fulh) JEFal) Tl Ful) J&Fn() ITnll)  Fal)

TED (With DINOV2 features) | ADM, 12VGen-XL, DINOv2 90.0 86.6 93.5 65.9 65.0 66.7 713 74.2 80.5

TED (Ours) ADM, I2VGen-XL 90.4 86.9 94.0 66.0 65.1 67.0 7.6 74.4 80.8
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