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A General lower bounds and their proofs

In this section we present lower bounds for testing closeness in the general case of n ≥ 2 and provide
the proofs of the lower bounds presented in the paper.

A.1 Proof of Theorem 3.1

We consider distributions supported only on {1, 2}, this is possible since we want that our algorithm
would work for all distributions. We consider such a δ-correct test A : {1, 2}τ ×{1, 2}τ → {0, 1}, it
sees two words consisting of τ samples either from equal distributions or ε-far ones and returns 0 if it
thinks they are equal and 1 otherwise. We construct another test B : {1, 2}τ × {1, 2}τ → {0, 1} by
the expression

B(x, y) = 1∑
σ,ρ∈Sτ A(σ(x),ρ(y))≥(τ !)2/2 ,

B can be proven to be 2δ-correct and have the property of invariance under the action of the symmetric
group. This leads to an algorithm C : {0, . . . , τ}2 → {0, 1} which is 2δ correct and satisfies

C(i, j) = B(xi, yj) ,

where xk = 1 . . . 12 . . . 2 with k ones. We consider i = [τ(1/2− ε/4)] and j = [τ(1/2 + ε/4)]. We
denote by Ni(x) the number of i in a word x of length τ for i = 1, 2.

• IfC(i, j) = 0, let x (resp. y) a word of length τ constituted of i.i.d samples from {1/2−ε/2, 1/2+
ε/2, 0, . . . , 0} (resp. {1/2 + ε/2, 1/2 − ε/2, 0, . . . , 0}), then P1/2−ε/2,1/2+ε/2(N1(x) =
i,N1(y) = j) ≤ 2δ hence with Stirling’s approximation (Leubner [1985] )

e−2

2πτ
e−τ KL(i/τ‖1/2−ε/2)e−τ KL(1−j/τ‖1/2−ε/2) ≤ 2δ.

Thus
2τ KL(1/2 + ε/4− 1/τ‖1/2 + ε/2) ≥ τ(KL(i/τ‖1/2− ε/2) + KL(j/τ‖1/2− ε/2))

≥ log(1/2δ)− 2− log(2π)− log(τ) .

Hence using lemma F.5 and for τ > 2/ε

2τ KL(1/2 + ε/4‖1/2 + ε/2) ≥ −2τ(KL(1/2 + ε/4− 1/τ‖1/2 + ε/2)−KL(1/2 + ε/4‖1/2 + ε/2))

+ log(1/2δ)− 2− log(2π)− log(τ)

≥ −2τ

∫ 1/2+ε/4

1/2+ε/4−1/τ
du

∫ 1/2+ε/2

u

dv
1

v(1− v)
+ log(1/2δ)

− 2− log(2π)− log(τ)

≥ −2(ε/4 + 1/τ) sup
[1/2+ε/4−1/τ,1/2+ε/2]

1

v(1− v)
+ log(1/2δ)

− 2− log(2π)− log(τ)

≥ −2ε sup
[1/2,1/2+ε]

1

v(1− v)
+ log(1/2δ)− 2− log(2π)− log(τ) .

Then lemma F.7 implies

τ ≥
−2ε sup[1/2,1/2+ε]

1
v(1−v) + log(1/2δ)− 2− log(2π)

2 KL(1/2 + ε/4‖1/2 + ε/2)
−

log

(
−2ε sup[1/2,1/2+ε]

1
v(1−v)+log(1/2δ)−2−log(2π)

2KL(1/2+ε/4‖1/2+ε/2)

)
4 KL(1/2 + ε/4‖1/2 + ε/2)

≥ log(1/2δ)

2 KL(1/2 + ε/4‖1/2 + ε/2)
−O

(
log log(1/δ)

KL(1/2 + ε/4‖1/2 + ε/2)

)
.

Finally we get the asymptotic lower bound:

lim inf
δ→0

τ

log(1/δ)
≥ 1

2 KL(1/2− ε/4‖1/2− ε/2)
.
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• If C(i, j) = 1, let x and y two words of length τ constituted of i.i.d samples from
{1/2, 1/2, 0, . . . , 0}, then P1/2,1/2(N1(x) = i,N1(y) = j) ≤ 2δ hence with Stirling’s ap-
proximation

e−2

2πτ
e−τ KL(i/τ‖1/2)e−τ KL(1−j/τ‖1/2) ≤ 2δ .

Using the same lemmas as before, we get the following lower bound

τ ≥ log(1/2δ)

2 KL(1/2 + ε/4‖1/2)
−O

(
log log(1/δ)

KL(1/2 + ε/4‖1/2)

)
.

Finally we get the asymptotic lower bound:

lim inf
δ→0

τ

log(1/δ)
≥ 1

2 KL(1/2 + ε/4‖1/2)
.

A.2 Proof of Proposition 3.2

We propose the following general lower bounds for testing closeness.
Lemma A.1. Let T be a stopping rule for testing D1 = D2 vs TV(D1,D2) > ε with an error
probability δ. Let τ1 and τ2 the associated stopping times. We have

• E(τ1(T,D1,D2)) ≥ log 1/3δ
infD′1,2s.t. TV(D′1,D

′
2)>ε KL(D1‖D′1)+KL(D2‖D′2)

if D1 = D2.

• E(τ2(T,D1,D2)) ≥ log 1/3δ
infD KL(D1‖D)+KL(D2‖D) if TV(D1,D2) > ε.

Proof. Similarly as in the previous proof, we consider the two different cases D′ = D and
TV(D′,D) > ε.

The case D1 = D2. We denote by PD1,D2 the probability distribution on ([n] × [n])N with
independent marginals (Xi, Yi) of distribution D1 ⊗ D2. Let Z = (X1, Y1 . . . , Xτ1 , Yτ1). Let
D′1,D′2 be two distributions such that TV(D′1,D′2) > ε. Data processing property of Kullback-
Leibler’s divergence implies

KL
(
PZD1,D2

‖PZD′1,D′2
)
≥ KL

(
PD1,D2

(τ1 <∞)‖PD′1,D′2(τ1 <∞)
)
. (3)

By definition of τ1 we have PD1,D2
(τ1 < ∞) ≥ 1 − δ and PD′1,D′2(τ1 < ∞) ≤ δ. Tensorization

property and Wald’s lemma (F.4) lead to

KL
(
PZD1,D2

‖PZD′1,D′2
)

= E(τ1(T,D1,D1)) KL(D1‖D′1) + E(τ1(T,D1,D2)) KL(D2‖D′2) .

The inequality 3 becomes
E(τ1(T,D1,D2)) KL(D1‖D′1) + E(τ1(T,D1,D2)) KL(D2‖D′2) ≥ KL(1− δ‖δ) ≥ log 1/3δ ,

which is valid for all distribution D′1 and D′2 such that TV(D′1,D′2) > ε, consequently

E(τ1(T,D1,D2)) ≥ log 1/3δ

infD′1,2s.t. TV(D′1,D′2)>ε KL(D1‖D′1) + KL(D2‖D′2)
.

The case TV(D1,D2) > ε. Likewise we prove for Z = (X1, Y1 . . . , Xτ2 , Yτ2) and D a distribu-
tion on [n].

E(τ2(T,D1,D2)) KL(D1‖D) + E(τ2(T,D1,D2)) KL(D2‖D) = KL
(
PZD1,D2

‖PZD,D
)

≥ KL (PD1,D2
(τ2 <∞)‖PD,D(τ2 <∞))

≥ KL(1− δ‖δ)
≥ log 1/3δ .
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which is valid for all distribution D, consequently

E(τ2(T,D1,D2)) ≥ log 1/3δ

infD KL(D1‖D) + KL(D2‖D)
.

The proof of Proposition 3.2 follows from this Lemma by choosing for the first point D1 = D2 =
{1/2, 1/2, 0, . . . , 0} and D′1,2 = {1/2 ± ε/2, 1/2 ∓ ε/2, 0, . . . , 0}. For the second point, we use
D = {1/2, 1/2, 0, . . . , 0} and D1,2 = {1/2± d/2, 1/2∓ d/2, 0, . . . , 0}.

B Analysis of Alg. 1

Correctness of Alg. 1. We should prove that the Alg. 1 has an error probability less than δ. We use
the following lemma which can be proven using McDiarmid’s inequality and union bounds.
Lemma B.1. If {A1, . . . , At} (resp {B1, . . . , Bt} ) i.i.d. with the law D1 (resp D2), we have the
following inequality

P

(
∃t ≥ 1,∃B ⊂ [n/2] :

∣∣∣D̃1,t(B)−D1(B)− D̃2,t(B) +D2(B)
∣∣∣ >√log

(
2n−1t(t+ 1)

δ

)
/t

)
≤ δ.

Using this lemma we can conclude:

• If D1 = D2, the probability of error is given by

P (τ2 ≤ τ1) ≤ P

(
∃t ≥ 1 : TV

(
D̃1,t, D̃2,t

)
>

√
log

(
2n−1t(t+ 1)

δ

)
/t

)
≤ δ .

• If TV(D1,D2) = |D1(Bopt)−D2(Bopt)| > ε, the probability of error is given by

P (τ1 ≤ τ2) ≤ P

(
∃t ≥ 1 : TV

(
D̃1,t, D̃2,t

)
≤ ε−

√
log

(
2n−1t(t+ 1)

δ

)
/t

)

≤ P

(
∃t ≥ 1 :

∣∣∣D̃1,t(Bopt)− D̃2,t(Bopt))
∣∣∣ ≤ ε−√log

(
2n−1t(t+ 1)

δ

)
/t

)

≤ P

(
∃t ≥ 1 :

∣∣∣D̃1,t(Bopt)−D1(Bopt)− D̃2,t(Bopt) +D2(Bopt))
∣∣∣ ≥ |D1(Bopt)−D2(Bopt)|

− ε+

√
log

(
2n−1t(t+ 1)

δ

)
/t

)

≤ P

(
∃t ≥ 1 :

∣∣∣D̃1,t(Bopt)−D1(Bopt)− D̃2,t(Bopt) +D2(Bopt))
∣∣∣

>

√
log

(
2n−1t(t+ 1)

δ

)
/t

)
≤ δ .

These computations prove the correctness of Alg. 1.
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Complexity of Alg. 1. We study here the complexity of Alg. 1. To this aim, we make a case study
and use lemma B.2 to upper bound the stopping rules.

Lemma B.2. T a random variable taking values in N, we have for all N ∈ N∗

E(T ) ≤ N +
∑
t≥N

P(T ≥ t) .

Let us take α ∈ (0, 1),

• If D1 = D2, we take N =
[
log(2n+1/δ)

(αε)2

]
+ 1 and α̃ ∈ (0, 1)1 so that

α̃2 = α2

(
log log(2n+1/δ)− log((αε)2)

log(2n+1/δ)
+ 1

)
.

The estimated stopping time can be bound as

E(τ1(D1,D2)) ≤ N +
∑
s≥N

P(τ1(D1,D2) ≥ s)

≤ N +
∑

t≥N−1

P

(
TV

(
D̃1,t, D̃2,t

)
> ε−

√
log

(
2n−1t(t+ 1)

δ

)
/t

)

≤ N +
∑

t≥N−1

P
(

TV
(
D̃1,t, D̃2,t

)
> ε− α̃ε

)
≤ N +

∑
t≥N−1

P
(

TV
(
D̃1,t, D̃2,t

)
> (1− α̃)ε

)
≤ N +

∑
t≥N−1

2n/2e−t((1−α̃)ε)
2

, (McDiarmid’s inequality)

≤ N +
2n/2e−(N−1)((1−α̃)ε)

2

1− e−((1−α̃)ε)2

≤ log(2n+1/δ)

(αε)2
+ 2

2n/2e−(N−1)((1−α̃)ε)
2

((1− α̃)ε)2
+ 1 , (1− e−x ≥ x/2 for 0 < x < 1)

≤ log(2n+1/δ)

ε2
+

log(2n+1/δ)2/3

ε2
+O

(
log(2n+1/δ)2/3

ε2

)
≤ log(2n+1/δ)

ε2
+O

(
log(2n+1/δ)2/3

ε2

)
,

for α = (1 + log(2n+1/δ)−1/3)−2 so that 1 − α̃ ≥ C log(2n+1/δ)−1/3 and we suppose here
that n < 2C2 log(2n+1/δ)1/3.

• If d = TV(D1,D2) = |D1(Bopt) − D2(Bopt)| > ε, we take N =
[
log(2n+1/δ)

(αd)2

]
+ 1. We take

α̃ ∈ (0, 1) so that α̃2 = α2
(

log log(2n+1/δ)−log((αd)2)
log(2n+1/δ) + 1

)
. The estimated stopping time can be

1for fixed α we take δ small enough to have α̃ < 1.
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bound as

E(τ2(D1,D2)) ≤ N +
∑
s≥N

P(τ2(D1,D2) ≥ s)

≤ N +
∑

t≥N−1

P

(
TV

(
D̃1,t, D̃2,t

)
≤

√
log

(
2n−1t(t+ 1)

δ

)
/t

)

≤ N +
∑

t≥N−1

P

(
TV

(
D̃1,t, D̃2,t

)
≤

√
log

(
2n−1t(t+ 1)

δ

)
/t

)

≤ N +
∑

t≥N−1

P

(∣∣∣D̃1,t(Bopt)− D̃2,t(Bopt))
∣∣∣ ≤√log

(
2n−1t(t+ 1)

δ

)
/t

)

≤ N +
∑

t≥N−1

P

(∣∣∣D̃1,t(Bopt)−D1(Bopt)− D̃2,t(Bopt) +D2(Bopt))
∣∣∣

> |D1(Bopt)−D2(Bopt)| −

√
log

(
2n−1t(t+ 1)

δ

)
/t

)

≤ N +
∑

t≥N−1

P

(∣∣∣D̃1,t(Bopt)−D1(Bopt)− D̃2,t(Bopt) +D2(Bopt))
∣∣∣ > (1− α̃)d

)
≤ N +

∑
t≥N−1

e−t((1−α̃)d)
2

≤ N +
e−(N−1)((1−α̃)d)

2

1− e−((1−α̃)d)2

≤ log(2n+1/δ)

(αd)2
+

2

(1− α̃)2d2
+ 1

≤ log(2n+1/δ)

d2
+O

(
log(2n+1/δ)2/3

d2

)
,

where we choose α = (1 + log(2n+1/δ)−1/3)−2 and we use the inequality 1− e−x ≥ x/2 for
0 < x < 1 in the last line.

Finally, we can deduce the limit when D1 = D2:

lim sup
δ→0

E(τ1(D1,D2))

log(1/δ)
≤ lim sup

δ→0

log(2n+1/δ)

log(1/δ)ε2
+O

(
log(2n+1/δ)2/3

log(1/δ)ε2

)
≤ 1

ε2
,

and when d = TV(D1,D2) > ε:

lim sup
δ→0

E(τ2(D1,D2))

log(1/δ)
≤ lim sup

δ→0

log(2n+1/δ)

log(1/δ)d2
+O

(
log(2n+1/δ)2/3

log(1/δ)d2

)
≤ 1

d2
.

This concludes the proof of the complexity of Alg. 1.
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C Proof of Theorem 4.4

We prove both cases at once, to do so let d = ε ∨ TV(D1,D2), τ = τ1 if d = 0 and τ = τ2 if
d > ε, we know that E(τ) ≤

∑
s≤Nd P(τ ≥ s) +

∑
s>Nd

P(τ ≥ s) ≤ Nd +
∑
s>Nd

P(τ ≥ s)

so it suffices to prove that
∑
s>Nd

P(τ ≥ s) ≤ Nd. By the definitions of τ1 and τ2, τ ≥ s

implies |Zs−1 − E(Zs−1)| > ∆s−1 − Ψs−1 but we have chosen Nd so that if t = s − 1 ≥ Nd,

∆s−1 −Ψs−1 ≥ C
2 min

{
(s− 1)d, (s−1)

2d2

n , (s−1)
3/2d2√
n

}
. This last claim follows from Lemma F.8

in App. F.5. Finally∑
s>Nd

P(τ ≥ s) ≤
∑
t≥Nd

P

(
|Zt − E(Zt)| >

C

2
min

{
td,

t2d2

n
,
t3/2d2√

n

})
(McDiarmid’s inequality)

≤
∑

t≥Nd−1

e
−C2

16 min
{
td2, t

3d4

n2 , t
2d4

n

}
≤ Nd .

The last inequality is proven in App. F.5. Our claim follows.

D Proof of Theorem 4.5

We prove only the first statement, the others being similar. Suppose that such a stopping rule exists.

Let d > ε and m = c

√
n log(1/3δ)

d2 . Let Un the uniform distribution and D a uniformly chosen
distribution where Di = 1±2d

n with probability 1/2 each. With the work of Diakonikolas and Kane
[2016] (Section 3), we can show that KL(D⊗Poi(m)‖U⊗Poi(m)

n ) ≤ Cm2d4

n where C is a constant.
Therefore

KL(D⊗m‖U⊗mn ) = mKL(D‖Un)

= E(Poi(m)) KL(D‖Un)

= KL(D⊗Poi(m)‖U⊗Poi(m)
n ) (Wald’s lemma)

≤ Cm
2d4

n
.

But

KL(D⊗m‖U⊗mn ) ≥ KL(PD(τ2 ≤ m)‖PUn(τ2 ≤ m))

≥ KL(1− δ‖δ)
≥ log(1/3δ) ,

since PD(τ2 ≤ m) ≥ 1 − δ and PUn(τ2 ≤ m) = PUn(τ2 ≤ m, τ1 < τ2) + PUn(τ2 ≤ m, τ1 ≥
τ2) ≤ δ. Hence

C

(
c

√
n log(1/3δ)

d2

)2

d4

n
≥ log(1/3δ) ,

which gives the contradiction if c < 1/
√
C.

E Proof of Theorem 4.7

We prove here Theorem 4.7. We use ideas similar to Karp and Kleinberg [2007]. We prove only the
first statement, the others being similar. Let’s start by a lemma:
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Lemma E.1. Let X and Y two random variables and E some event verifying PX(E) ≥ 1/3 and
PY (E) < 1/3, we have

KL(PX‖PY ) ≥ −1

3
log(3PY (E))− 1

e
.

Proof. By data processing property of Kullback-Leibler’s divergence:

KL(PX‖PY ) ≥ KL(PX(E)‖PY (E))

≥ PX(E) log
PX(E)

PY (E)
+ (1− PX(E)) log

1− PX(E)

1− PY (E)

≥ −1

3
log(3PY (E)) + (1− PX(E)) log(1− PX(E))

≥ −1

3
log(3PY (E))− 1

e
.

Suppose by contradiction that there is a stopping rule such that

P

(
τ2(T,D1,D2) >

n1/2 log log(1/d)1/2

Cd2

)
≤ 1

16
,

whenever d = TV(D1,D2) > 0. Let ε1 = 1/3, we construct recursively Tk =⌈
n1/2 log log(1/εk)

1/2

Cε2k

⌉
= C′

√
n

ε2k+1
where C and C ′ are constants defined later. For each integer j,

we take mj ∼ Poi(j). Let Un the uniform distribution and Dk a uniformly chosen distribution
where Dk,i = 1±2εk

n with probability 1/2 each. With the work of Diakonikolas and Kane [2016]

(Section 3), we can show that KL(U
⊗mj
n ⊗ D

⊗mj
k ‖U⊗mjn ⊗ U

⊗mj
n ) ≤ C ′′

j2ε4k
n where C ′′ is a

constant. Since TV(Un, Dk) = εk > 0, P (τ2(T,Un, Dk) > Tk) ≤ 1/16. Let Ek be the event
that the stopping rule decides that the distributions are not equal between Tk−1 and Tk. We have
P (τ2(T,Un, Dk) ≤ Tk−1) ≤ 1/3 since otherwise Lemma E.1 implies:

−1

3
log (3P (τ2(T,Un, Un) ≤ Tk−1))− 1

e
≤ KL(U

⊗mTk−1
n ⊗D

⊗mTk−1

k ‖U
⊗mTk−1
n ⊗ U

⊗mTk−1
n )

≤ C ′′
T 2
k−1ε

4
k

n
≤ C ′′C ′ ,

thus

P (τ2(T,Un, Un) ≤ Tk−1) ≥ e−3C
′′C′−3/e/3 > 0.1,

for good choice of C ′ and this contradicts the fact the the stopping rule is infinite with a probability
at least 0.9. The stopping rule is 0.1 correct so P (τ2(T,Un, Dk) < +∞) ≥ 0.9 then

P (Tk−1 < τ2(T,Un, Dk) ≤ Tk) ≥ 0.9− 1/3− 1/16 > 0.5.

The same inequalities for the Kullback-Leibler’s divergence as above permits to deduce:

1 ≥
∑
k≥1

P (Tk−1 < τ2(T,Un, Un) ≤ Tk) ≥
∑
k≥1

1

3
e−3C

′′T 2
k ε

4
k/n−3/e

≥
∑
k≥1

1

3e2
e−3C

′′/C2 log log(1/εk) and choosing C st 3C ′′/C2 = 1/2

≥
∑
k≥1

1

3e2
1√

log(1/εk)
.

But the later sum is divergent because if we denote ak = log(1/εk), we have ak+1 ≤ ak +
1
4 log log ak +O(1) thus ak = O(k log log k) therefore 1√

log(1/εk)
≥ c

k which is divergent.
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F Technical lemmas

F.1 Kullback-Leibler divergence

Definition F.1 (Kullback Leibler divergence). The Kullback Leibler divergence is defined for two
distributions p and q on [n] as

KL(p‖q) =

n∑
i=1

pi log

(
pi
qi

)
.

We denote by KL(p‖q) = KL(B(p)‖B(q)).

Kullback-Leibler’s divergence satisfies data-processing and tensorization properties:

Proposition F.2. Let p, p′, q and q′ distributions on [n], we have

• Non negativity KL(p‖q) ≥ 0.
• Data processing Let X a random variable and g a function. Define the random variable
Y = g(X), we have

KL
(
pX‖qX

)
≥ KL

(
pY ‖qY

)
. (4)

• Tensorization

KL(p⊗ p′‖q ⊗ q′) = KL(p‖q) + KL(p′‖q′).

F.2 Poissonization

The Poisson law of parameter λ is denoted Poi(λ) and defined as follows.

∀k ∈ N, P(Poi(λ) = k) =
λk

k!
e−λ .

Poisson law is important for the analysis of testing’ algorithms. In fact, some important random
variables becomes independent when we take a number of samples following a Poisson law.

Lemma F.3 (Poissonization). Let k ∼ Poi(τ) and X = (X1, . . . , Xk) i.i.d samples from a dis-
tribution p on [n]. For i ∈ [n], we denote Yi the number of times i appears in the tuple X . We
have

1. {Y1, . . . , Yn} are independent.

2. For all i ∈ [n], Yi ∼ Poi(τpi).

F.3 Wald’s lemma

Lemma F.4 (Wald [1944]). Let (Xn)n≥0 i.i.d random variables and N ∈ N a random variable
independent of (Xn)n. Suppose that N and X1 have finite expectations. we have

E(X1 + · · ·+XN ) = E(N)E(X1) .
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F.4 Modified McDiarmid’s inequality

Proof. The proof uses similar arguments of Howard et al. [2018]. Actually Zt is a function of
4t variables (the samples from the distributions) and has the property (2, . . . , 2)-bounded differ-
ences. McDiarmid’s inequality implies P (∃t ≥ 1 : |Zt − E[Zt]| ≥ a+ 4bt/a) ≤ 2e−2b, taking the
intervals Ik = [ηk, ηk+1) for k integer we deduce for bk = 1

2 log
(

2(k+1)s

ζ(s)−1δ

)
and ak = bk

ak
ηk+1 that

P (∃t ≥ 1 : |Zt − E[Zt]| ≥ J(η, s, 4t)) ≤
∑
k≥0

P (∃t ∈ Ik : |Zt − E[Zt]| ≥ J(η, s, 4t))

≤
∑
k≥0

P (∃t ∈ Ik : |Zt − E[Zt]| ≥ ak + 4bkt/ak)

≤
∑
k≥0

2e−2bk ≤
∑
k≥0

δ
ζ(s)−1

(k + 1)s
≤ δ .

F.5 Tools for non asymptotic inequalities

We group here different lemmas that help us to deal with the kl-divergence or logarithmic relations in
order to find non asymptotic results. We start by giving some useful lemmas for the Kullback-Leibler’s
divergence between Bernoulli variables.

Lemma F.5 (Lemmas for kl-divergence.). Let q > p two numbers in [0, 1]. Then

• 2(p− q)2 ≤ KL(p‖q) ≤ (p−q)2
q(1−q) ,

• KL(p‖q) ∼
q→p

(p−q)2
2q(1−q) ,

• KL(q‖p) =
∫ q
p
du
∫ u
p
dv 1

v(1−v) .

Sketch of proof. The LHS of the first inequality is Pinsker’s inequality, the RHS can be proven
using the inequality log(1 + x) ≤ x, the second equivalence can be found by developing the log
function and the third equality is proven by calculating the integral.

Lemma F.6. [Developing kl]Let q, ε and α positive real numbers such that q + ε < 1 and α < 1,
we have for α close enough to 1

1

KL(q + αε‖q)
≤ 1

KL(q + ε‖q)
+ (1− α) sup

[q,q+ε]

1

x(1− x)
.

Proof. We use the inequality 1
1−x ≤ 1 + 2x for 0 < x < 1/2. We write

1

KL(q + αε‖q)
=

1

KL(q + ε‖q)(1− x)
,
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where x = KL(q+ε‖q)−KL(q+αε‖q)
KL(q+ε‖q) < 1

2 if α is close enough to 1. Hence
1

KL(q + αε‖q)
≤ 1

KL(q + ε‖q)(1− x)

≤ 1

KL(q + ε‖q)
(1 + 2x)

≤ 1

KL(q + ε‖q)
+ 2

KL(q + ε‖q)−KL(q + αε‖q)
KL(q + ε‖q)2

≤ 1

KL(q + ε‖q)
+

2

KL(q + ε‖q)2

∫ q+ε

q+αε

du

∫ u

q

dv
1

v(1− v)

≤ 1

KL(q + ε‖q)
+

2(1− α)ε2

KL(q + ε‖q)2
sup

[q,q+ε]

1

v(1− v)

≤ 1

KL(q + ε‖q)
+

2(1− α)ε2

2ε2
sup

[q,q+ε]

1

v(1− v)

≤ 1

KL(q + ε‖q)
+ (1− α) sup

[q,q+ε]

1

v(1− v)
.

When we deal with inequalities involving t and log t (or log log t) and want to deduce inequalities
only on t, the following lemma proves to be useful.
Lemma F.7. Let t, a > 1 and b real numbers. We have the following implications:

• If b ≥ a+ 1 :

t ≥ b+ 2a log(b)⇒ t ≥ b+ a log(t) ,

• If b ≥ 1 :

t ≥ b− a log(t)⇒ t ≥ b− a log(b) ,

• If b ≥ 2a :

t ≥ b+ 2a log(log(b) + 1)⇒ t ≥ b+ a log(log(t) + 1) .

Proof. We prove only the first statement, the others being similar. Let f(t) = t− b− a log(t), we
have f ′(t) = 1− a/t thus f is increasing on (a,+∞). Let t ≥ b+ 2a log(b) > a,

f(t) ≥ f(b+ 2a log(b)) = b+ 2a log(b)− b− a log(b+ 2a log(b))

= a log(b)− a log(1 + 2a log(b)/b))

≥ a log(1 + a)− a log(1 + 2ab/eb) because log(b) ≤ b/e
≥ 0 .

For instance, by applying this lemma, we can obtain:
Lemma F.8. Recall the definition of Nη:

Nη = max

{
128

C2

log(π
2

3δ )

η2
+

512e

C2η2
log

(
log

(
128 log(π

2

3δ )

η2C2

)
+ 1

)
+

16c2

C2η2
,

(
128

C2

n2 log(π
2

3δ )

η4
+

512en2

C2η4
log

(
log

(
128

C2

n2 log(π
2

3δ )

η4

)
+ 1

)
+

16c2n2

η4C2

)1/3

,

(
128

C2

n log(π
2

3δ )

η4
+

512en

C2η4
log

(
log

(
128

C2

n log(π
2

3δ )

η4

)
+ 1

)
+

16c2n

η4C2

)1/2}
.

22



Let η > 0, if t ≥ Nη , then

min

{
tη,

t2η2

n
,
t3/2η2√

n

}
≥ 4

C

√
2t log

(
π2

3δ

)
+ 4et log(log(t) + 1) +

2c

C

√
t .

Finally, the next lemma shows that the complexity of Alg. 2 cannot exceed Nd∨ε very much.

Lemma F.9. We have for all d > 0:
∑
t≥Nd e

−C2

16 min
{
td2, t

3d4

n2 , t
2d4

n

}
≤ Nd.

Proof. We have∑
t≥Nd

e
−C2

16 min
{
td2, t

3d4

n2 , t
2d4

n

}
≤

∑
t≥nd−2

e−
C2

16 td
2

+
∑

n≥t≥Nd−1

e−
C2

16
t3d4

n2 +
∑

nd−2>t>n

e−
C2

16
t2d4

n

≤
∑

t≥nd−2

e−
C2

16 td
2

+
∑

n≥t≥Nd−1

e
−2C1/3 td4/3

n2/3 +
∑

nd−2>t>n

e
−C2

td2√
n

≤ 1

1− e−C
2

16 d
2

+
1

1− e−2C
1/3 d4/3

n2/3

+
1

1− e−
C
2
d2√
n

≤ 32

C2d2
+

n2/3

C1/3d4/3
+

4
√
n

Cd2
since 1− e−x ≥ x/2 for 0 < x < 1

≤ Nd .

Acknowledgement.
Aurélien Garivier acknowledges the support of the Project IDEXLYON of the University of Lyon,
in the framework of the Programme Investissements d’Avenir (ANR-16-IDEX-0005), and Chaire
SeqALO (ANR-20-CHIA-0020).

23


