
A Distinguishing supervised learning from reinforcement learning in a
feedforward model

In order to illustrate the main idea from our paper in a simplified context, we show in this section
how observed hidden-layer activity in a linear feedforward network can be used to infer the learning
rule that is used to train the network. Consider the simple feedforward network shown in Fig. S1.
In this network, random binary input patterns xt, where xt

i ∈ {−1, 1} and t = 1, . . . , T , are
projected onto a hidden layer ht = Wxt + ξt, where ξt ∼ N (0,Σ) is noise injected into the
network. The readout is then given by yt = Wbmih, and the goal of the network is to minimize
L =

∑
t Lt =

1
T

∑
t |y∗t − yt|2, where y∗ are randomly chosen target patterns with y∗i ∼ N (0, 1).

With Wbmi fixed, we can train the network using either supervised learning (SL) or reinforcement
learning (RL). In the case of SL, the learning rule performs credit assignment using a model M that
approximates the ideal credit assignment model (Wbmi)⊤ to project the error ϵt = y∗t − yt back to
the hidden layer (Fig. S1A), giving the following weight update:

∆W SL
ij = ηSL

∑
t

[Mϵt]ix
t
j . (8)

In the case where M = (Wbmi)⊤, this rule would be implementing gradient descent. In the case
where M ̸= (Wbmi)⊤ but the two matrices have positive alignment, it instead implements a biased
version of gradient descent. This is similar to learning with Feedback Alignment [4], except that here
we do not assume that the readout weights are being learned.

An alternative learning algorithm is policy gradient learning [8], which gives the following update
equation:

∆WRL
ij = ηRL

∑
t

(Rt − R̄t)ξtix
t
j , (9)

where we define the reward as Rt = −Lt, and we subtract off the baseline R̄t = ⟨Lt⟩ξ.

Our goal will be to train the network to minimize the loss using either the SL or RL learning rule,
then, assuming Wbmi and M are known, to use the observed output and hidden-layer activity during
training to infer which of the two algorithms was used to train the network. In the case of SL,
averaging (8) over noise ξ gives

⟨∆W SL
ij ⟩ = ηSL

∑
t

[M⟨ϵt⟩]ixt
j . (10)

The expected change in the hidden-layer activity due to learning is then

⟨∆ht⟩ = ⟨∆WSL⟩xt

= ηSL
∑
t′

(xt · xt′)M⟨ϵt
′
⟩. (11)

In the case of RL, the average of the weight update from (9) is

⟨∆WRL
ij ⟩ = ηRL

∑
t

[Σ(Wbmi)⊤⟨ϵt⟩]ixt
j . (12)

The expected change in the hidden-layer activity in this case is then

⟨∆ht⟩ = ⟨∆WRL⟩xt

= ηRL

∑
t′

(xt · xt′)Σ(Wbmi)⊤⟨ϵt
′
⟩. (13)

Equations (11) and (13) provide predictions for how the hidden-layer activity is expected to evolve
under either SL or RL. Since we do not presume to have knowledge of either the learning rate or the
upstream activity xt, we can concern ourselves only with the direction, but not the magnitude, of
⟨∆ht⟩. In addition, we must make an assumption about correlations between the input patterns. In
general, if the input patterns are correlated with one another, we can let xt · xt′ = C(|t− t′|), where
C is a function with a peak near zero.
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Figure S1: Inference of learning rules from activity in a feedforward model. (A) Hidden-layer weights
in a linear network are trained with SL to map random input patterns onto random output patterns.
(B) An example showing that the loss successfully decreases during training. (C) Comparison of the
observed change in hidden-layer activity during training with the predicted change assuming SL (red)
vs. assuming RL (blue). (D-F) Same as top row, but for a network trained with RL.

For the simulations shown in Fig. S1, we have used uncorrelated inputs xt, so we can assume that
xt · xt′ ∼ δtt′ . With this assumption, Equations (11) and (13) give

⟨∆ht⟩pred ∝
{
M⟨ϵt⟩, SL

Σ(Wbmi)⊤⟨ϵt⟩. RL
(14)

Thus, if we assume that the quantities M, Σ, and (Wbmi)⊤ are known or can be estimated, (14)
provides a prediction for how the hidden-layer activity is expected to change due to learning. If this
quantity is estimated from data, then the average over noise can be replaced with an empirical average
over observed trials: ⟨. . .⟩ = 1

Ntrials

∑Ntrials

n=1 (. . .).

If we next suppose that we observe the hidden-layer activity empirically without necessarily knowing
the learning rule being used to train the network, then we can define the observed change in hidden-
layer activity as the difference between activity observed in early and late trials

⟨∆ht⟩obs =
1

Nlate

Nlate∑
n=1

hn,t − 1

Nearly

Nearly∑
n=1

hn,t, (15)

where hn,t is the activity observed at time t in trial n. We can then compare the similarity of ⟨∆ht⟩obs
with ⟨∆ht⟩pred by computing their correlations:

corr(⟨∆ht⟩obs, ⟨∆ht⟩pred) =
∑

i(⟨∆hi⟩obs − ⟨∆h⟩obs)(⟨∆hi⟩pred − ⟨∆h⟩pred)
std(⟨∆ht⟩obs) std(⟨∆ht⟩pred)

, (16)

where (. . .) denotes an average over neurons. In Fig. S1, we show results from a linear feedforward
network trained with either SL (Fig. S1A-B) or RL (Fig. S1D-E) to map random input patterns onto
random output patterns. Then, using (16), we ask whether the change in the hidden-layer activity
during learning in each of these cases is more similar to ⟨∆h⟩pred predicted assuming SL or RL. The
results in Fig. S1C,F show that, whenever M and (Wbmi)⊤ are sufficiently different, this metric is
able to correctly identify whether the network was trained with SL (Fig. S1C) or RL (Fig. S1F).
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B Biologically plausible learning rules for recurrent neural networks

In this section we provide derivations of the two learning rules studied in our paper. The RNN update
equation is

ht =

(
1− 1

τ

)
ht−1 +

1

τ
ϕ(ut) + ξt, (17)

where ut = Wrecht−1 +Wfbyt−1 +Winxt, and ξti ∼ N (0, σ2
rec) is i.i.d. noise injected into the

network. The readout is given by y = Wbmiht. The goal of both learning rules is to iteratively
update the recurrent weights Wrec such that the readout matches a target function y∗t, minimizing
the magnitude of the error ϵt = y∗t − yt. The learning rules that we consider below depend on a
multiplicative combination of pre- and postsynaptic activity, as well as a third factor related to error or
reward. Evidence for such “three-factor" learning rules has been found in a number of neuroscience
experiments [39].

B.1 Random Feedback Local Online (RFLO) learning

In this section, we briefly recapitulate the derivation of RFLO [5], a supervised learning algorithm
for RNNs that uses local weight updates to approximate gradient descent. We then compute the
expectation of the weight update by averaging over noise and show that this expected weight update
is determined by the credit-assignment matrix M.

The loss function to be minimized is

L =
1

2T

T∑
t=1

Ny∑
k=1

[
y∗tk − ytk

]2
. (18)

Taking the derivative with respect to the recurrent weights gives

∂L

∂Wab
= − 1

T

T∑
t=1

∑
i

[
(Wbmi)⊤ϵt

]
i

∂ht
i

∂Wab
. (19)

Using (17), we obtain the following recursion relation:

∂ht
i

∂W rec
ab

=

(
1− 1

τ

)
∂ht−1

i

∂W rec
ab

+
1

τ
δiaϕ

′(ut
i)h

t−1
b

+
1

τ
ϕ′ (ut

i

)∑
j

W rec
ij

∂ht−1
j

∂W rec
ab

+
∑
j

W fb
ij

∂yt−1
j

∂W rec
ab

 .

(20)

To obtain a learning rule for W rec
ab that is local, i.e. that depends only on pre- and postsynaptic

activity from units b and a, respectively, we can discard the second line of this equation and write
∂ht

i/∂W
rec
ab ≈ δiap

t
ab, where the eligibility trace ptab follows the recursion relation

ptab =

(
1− 1

τ

)
pt−1
ab +

1

τ
ϕ′ (ut−1

a

)
ht−1
b , (21)

and p0ab = 0. With this approximation, we arrive at the RFLO learning rule:

∆W rec
ab = η

∑
t

[Mϵt]ap
t
ab. (22)

In order to compute the expected change in the RNN flow fields, we wish to compute the expectation
of the weight update (22) by averaging over noise. In order to obtain a result for ∆F that does not
depend explicitly on Wrec, we assume a linear network with ϕ(u) = u. For convenience, we also
switch to the continuous-time limit. In this case, the above eligibility trace in (21) is given by

pab =

∫ t

0

e(s−t)/τhs
b

ds

τ
. (23)
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Thus, the expected weight update is given by

⟨∆W rec
ij ⟩ = η

∑
t

∑
k

Mik

∫ t

0

e(s−t)/τ
〈
(y∗k − ytk)h

s
j

〉 ds
τ

= η
∑
t

∑
k

Mik

∫ t

0

e(s−t)/τ

(
⟨ϵtk⟩⟨hs

j⟩ −
∑
l

W bmi
kl Qt,s

lj

)
ds

τ
,

(24)

where we have defined the covariance matrix Qt,t′ = ⟨ht(ht′)⊤⟩ − ⟨ht⟩ ⟨ht′⟩⊤. In the case where τ
is unknown (as it may be in experimental data) or sufficiently small relative to the timescale of RNN
dynamics, this expression can be simplified by taking the limit τ → 0, leading to

⟨∆W rec
ij ⟩ = η

∑
t

∑
k

Mik

(
⟨ϵtk⟩⟨ht

j⟩ −
∑
r

W bmi
kr Qt,t

rj

)
. (25)

In the limit where the noise is small, the first term in parentheses will be much larger than the second,
which can be dropped to obtain a simplified expression.

B.2 Reinforcement learning in recurrent neural networks

In this section, we derive a local RNN update rule using policy gradient learning. The resulting
“node perturbation” learning algorithm is essentially equivalent to previously proposed RL rules for
recurrent circuits from Refs. [28, 10]. We then compute the expectation of the weight update (34) by
averaging over noise and show that this expected weight update is determined by the decoder Wbmi,
following the unbiased gradient direction.

In policy gradient learning, a policy π(action|state) is optimized with respect to its parameters in
order to maximize a scalar performance measure Rt. In our case, we interpret ht as the action, ht−1

as the state, and Wrec as the parameters to be optimized. We take the policy to be

π(ht|ht−1,Wrec) ∼ N (ht|µt, σ2
recI), (26)

where

µ(t,Wrec) =

(
1− 1

τ

)
ht−1 +

1

τ
ϕ(ut) (27)

is the deterministic part of the update equation (17). The policy gradient theorem allows us to update
the policy parameters in a way that ensures improvement of the objective Rt. The REINFORCE
algorithm [8] is based on the policy gradient theorem and updates the parameters Wrec according to

∆Wrec ∝
(
Rt − R̄t

)
∇ lnπ(ht|ht−1,Wrec), (28)

where the gradient is with respect to Wrec. The reward baseline R̄t, to be defined below, is not
required for policy gradient learning but can decrease the variance of the updates [11].

The gradient can be computed as follows:

∂

∂W rec
ab

lnπ(ht|ht−1,Wrec) = − 1

2σ2
rec

∂

∂W rec
ab

(
h− µ(t,Wrec)

)2
=

1

σ2
rec

∑
i

[hi − µi(t,W
rec)]

∂

∂W rec
ab

µi(t,W
rec)

=
1

σ2
rec

∑
i

ξti
∂

∂W rec
ab

µi(t,W
rec)

=
1

τσ2
rec

ξtaϕ
′ (ut

a

)
ht−1
b .

(29)

In order to address temporally delayed credit assignment, we can additionally incorporate an eligibility
trace in the gradient appearing in (28), replacing ∇ lnπ −→ ∇ lnπ, where the bar denotes low-pass
filtering [11]. This allows credit for rewards at time t to be assigned to the RNN activity at earlier
time steps. This leads to the following update rule:

∆W rec
ab = η(Rt − R̄t)qtab, (30)
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where the eligibility trace is given by

qtab =

(
1− 1

τe

)
qt−1
ab +

1

τe
ξtaϕ

′(ut
a)h

t−1
b , (31)

with q0ab = 0. In our simulations, we set the timescale for the eligibility trace to be equal to the
network time constant, i.e. τe = τ .

In order to compute the expected change ∆Fpred in the RNN flow fields, we next wish to compute the
expectation of the weight update (30) by averaging over noise. As in the SL case from the previous
section, we assume that the RNN is linear and switch to the continuous-time limit. In this case, the
eligibility trace is given by

qtij =

∫ t

0

e(s−t)/τeξsi h
s
j

ds

τe
.

The reward Rt itself is given by

Rt = −|ϵt|2 = −|y∗t|2 − |yt|2 + 2y∗t · yt. (32)

We assume that the expected reward R̄t is independent of the noise ξ, so it doesn’t contribute to
⟨∆W rec⟩. Then we can use Wick’s theorem to calculate the expected weight update:

⟨∆W rec
ij ⟩ = η

∑
t

∑
k

∫ t

0

e(s−t)/τe
〈
(2y∗ky

t
k − ytky

t
k) ξ

s
i h

s
j

〉 ds
τe

= η
∑
t

∑
k

∫ t

0

e(s−t)/τe
(
2⟨y∗khs

j⟩ − 2⟨ytkhs
j⟩
)
⟨ξsi ytk⟩

ds

τe

= 2η
∑
t

∑
k,l

W bmi
kl

∫ t

0

e(s−t)/τe
(
⟨y∗khs

j⟩ − ⟨ytkhs
j⟩
)
⟨ξsi ht

l⟩
ds

τe
.

(33)

For the linear network we are considering, we have ⟨ξsi ht
l⟩ =

∑
m

Σim

(
eW(t−s)

)
lm

, where ξs ∼

N (0,Σ) and W = −I+Wrec +WfbWbmi. Then

⟨∆W rec
ij ⟩ = 2η

∑
t

∑
k,l,m

W bmi
kl Σim

∫ t

0

e
s−t
τe

(
eW(t−s)

)
lm

(
⟨ϵtk⟩⟨hs

j⟩ −
∑
r

W bmi
kr Qt,s

rj

)
ds

τe
. (34)

In the case where τe is unknown (as it may be in experimental data) or sufficiently small, this
expression can be simplified by taking the limit τe → 0, leading to

⟨∆W rec
ij ⟩ = 2η

∑
t

∑
k,l

W bmi
kl Σil

(
⟨ϵtk⟩⟨ht

j⟩ −
∑
r

W bmi
kr Qt,t

rj

)
. (35)

As in the SL case, in the limit where the noise is small, the first term in parentheses will be much
larger than the second, which can be dropped to obtain a simplified expression.

C Simulations

C.1 Experimental details

The code used to run these simulations can be found at www.github.com/jacobfulano/
learning-rules-with-bmi

As stated in the main text, we first pretrain the recurrent weights Wrec of an RNN with fixed, random
readout weights Wbmi0 to perform a center-out cursor-control task, in which a cursor must be moved
to one of four target locations specified by the input to the RNN. We then change the BMI decoder to
Wbmi1, make identical copies of the network, and train one with SL and the other with RL. Multiple
seeds (n = 4) were selected for Wbmi1 and M and applied to network copies in the training phase,
and correlation metric results Corr(∆Fobs,∆Fpred) were averaged over these seeds. Error bars are
S.E.M. Unless stated otherwise, all simulations involved pretraining.
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Simulations for Figures 2 used 4 input dimensions, N = 50 recurrent units, and 2 output dimensions,
with a trial duration of 20 timesteps. The scale for the variance of the noise injected at each
layer was σ2

in = 0, σ2
rec = 0.25, σ2

bmi = 0.01 for input, recurrent, and output units respectively.
Constant learning rate for recurrent weights was ηrec = 0.1, and the RNN time constant was set
to τ = 10. Recurrent weights Wrec were initialized with Wrec ∼ N (0, g2/

√
N) where g = 1.5.

Input weights Win and decoder weights Wbmi were initialized randomly and uniformly over [−2, 2]

and [−2/
√
N, 2/

√
N ] respectively. For all networks, the activation function was ϕ(·) = tanh(·).

Pretraining was run for 2,500 trials using SL, and training was run for 1,500 trials for SL and 15,000
trials for RL. Alignment between M and Wbmi0 was fixed at 0.5. Input signals for each target
consisted of a step function that was 1 for 20% of the trial duration (i.e. 4 timesteps) and 0 for the
remainder. Input to the network at each timestep was therefore a 4 dimensional vector with one entry
equal to 1 and other entries equal to zero. For both SL and RL algorithms, weights were updated at
the end of each trial (i.e. “offline”). For RL simulations using (3), a separate reward baseline R̄t was
kept for each target.

In order to control alignment α between decoder weights (Wbmi)⊤ and matrices M, we gen-
erated a matrix M by randomly changing a subset of matrix entries from (Wbmi)⊤ such that
sim(M, (Wbmi)⊤) = α. Networks trained with SL were able to consistently learn the task with
four targets for α > 0.3. Throughout this study, analyses were only performed on networks that
successfully learned the center-out reach task.

When calculating the flow field metric in (7), “early” (before learning) and “late” (after learning)
blocks consisted of 500 trials. Activity during learning was split into training trials and test trials;
predictions of the (direction of) weight change ∆Wpred|SL and ∆Wpred|RL were constructed using
activity hn,t and error ϵn,t from the training trails, and the full metric Corr(∆Fobs(h),∆Fpred(h))
was evaluated on activity hn,t from the test trials.

Fig. S2 shows that the flow field correlation metric successfully distinguishes the learning rules
across hyperparameters, including recurrent noise σ2

rec and number of recurrent units, for both SL
and RL. For networks with a large number of recurrent units, we found that the RL node perturbation
algorithm was more effective when the noise was low-dimensional. In Fig. S2D, therefore, the
recurrent noise is 50-dimensional, and isotropic within those dimensions.

For Fig. 3A, weight mirroring [6] was used as a convenient way to update M while also learning
recurrent weights Wrec with SL. Network parameters were the same as Fig. 2, except that ηrec was
lowered to 0.05 and the weight mirroring learning rate was ηWM = 0.001. The weight mirroring
algorithm applied to our context simply correlates presynaptic recurrent noise ξj ∼ N (0, σ2

rec) with
postsynaptic activity yi = W bmi

ij ξj and then updates M with a update rule ∆Mji = ηWMξjyi. On
average, this pushes M in the direction of E[ξjyi] = σ2

recW
bmi
ji , i.e. the transpose of the decoder

weights Wbmi.

For Fig. 3C-E, we included driving feedback weights Wfb = γM and varied the strength of the
driving feedback weights by a scalar factor γ between 0.5 and 5. For these simulations, M was kept
fixed at sim(M, (Wbmi)⊤) = 0.5. Training ran for 5,000 trials for networks using SL, and 10,000
trials for networks using RL. Network parameters were the same as Fig. 2, except with ηrec = 0.1
and σ2

rec = 0.1.

For Fig. 4, the stimulus signal was equal to 1 for the full trial, and the feedback weights were set to
Wfb = γM with γ = 5. Pretraining lasted for 2,500 trials, while training was set to 1,000 trials
and the overlap between M and Wbmi0 was set to 0.5. Network parameters were the same as Fig. 2,
except with ηrec = 1, and σ2

rec = 0.2.

For Fig. 5, we trained networks to learn a cursor-control task with non-isotropic noise via either
SL or RL. In the SL case, we chose a biased credit mapping M that has partial overlap with the
new decoder, with sim(M, (Wbmi1)⊤) = 0.6. Network parameters were the same as Fig. 2, except
with ηrec = 0.2. Training was run for 1,000 trials. The recurrent noise covariance was chosen to
be d-dimensional, with rank(Σ) = d, and isotropic within those dimensions. Simulations were
run for d = 5, 10, 25, 50 with three seeds for each dimension. The first two of these dimensions
were selected to lie in the subspace spanned by M for the SL-trained RNNs or by Wbmi1 for the
RL-trained RNNs via QR decomposition. Other components of Σ were added in random dimensions
orthogonal to this subspace and to one another.

20



0.01 0.1 0.25 0.5
recurrent noise 2

0

0.25

0.5

0.75

1

C
or
r(
Fo

bs
,
Fp

re
d )

RL

Train with SL

SL

25 50 100 200
recurrent units

0

0.25

0.5

0.75

1

C
or
r(
Fo

bs
,
Fp

re
d )

Train with SL

RL SL

A B

C D

SL(M)

50 100 150 200
recurrent units

0

0.2

0.4

C
or
r(
Fo

bs
,
Fo

bs
)

Train with RL

RL( 2I) RL( )

RL SL(M)

0.01 0.1 0.25 0.5
recurrent noise 2

0

0.2

0.4

0.6

C
or
r(
Fo

bs
,
Fo

bs
)

Train with RL

rec

rec

Figure S2: Learning rules are distinguishable across hyperparameter choices. (A) Varying recurrent
noise while training with SL for networks with 50 recurrent units. (B) Varying the number of recurrent
units while training with SL. Both (A) and (B) were obtained using sim(M, (Wbmi1)⊤) = 0.5, with
other hyperparameters the same as in Fig. 2. (C) Varying recurrent noise while training with RL
for networks with 50 recurrent units. (D) Varying the number of recurrent units while training with
RL. Noise dimension was set to 50, and correlation was calculated for true, low-dimensional noise
covariance (light blue), or naive, full dimension estimate of the noise covariance (dark blue). For both
(C) and (D), M̂ was randomly sampled such that sim(M̂, (Wbmi1)⊤) = 0.5; other hyperparameters
are the same as in Fig. 2.

In Fig. S1, the network size was 20-20-2, and the task was to map T = 5 random binary input patterns
onto random output targets. For SL, the parameters were ηSL = 0.001, σ = 0.1, Ntrials = 500, and
Nearly = Nlate = 10. For RL, the parameters were ηSL = 0.003, σ = 0.1, Ntrials = 5000, and
Nearly = Nlate = 100. In both cases, the results shown in Fig. S1C,F were computed by averaging
over 100 different networks for each condition.

C.2 Alternative supervised learning rules: “Biased” Backpropagation Through Time (BPTT)

As described in the main text, RFLO [5] is an approximate gradient-based algorithm with ∆Wrec ≈
−∂L/∂Wrec. The main results of this study depend on the key idea that the matrix M used in the
(supervised) learning rule is not identical to the transpose of the decoder weights (Wbmi)⊤. This
idea can be applied to BPTT, leading to a learning rule we call “biased” BPTT. The standard BPTT
update is

∂L

∂W rec
ab

= − 1

τT

∑
t

ztaϕ
′(ut

a)h
t−1
b (36)

zti =
∑
j

W bmi
ji ϵtj +

(
1− 1

τ

)
zt+1
i +

1

τ

∑
j

ϕ′(ut+1
j )W rec

ji zt+1
j (37)

with ut
i =

∑
k W

rec
ik ht−1

k +
∑

k W
in
ikx

t
k +

∑
k W

fb
ik y

t
k, as in the main text. For a careful comparison

of BPTT, RFLO, and other related gradient-based algorithms for training RNNs, see Refs. [5, 40].

A biased BPTT learning rule according to our framework would simply replace the (Wbmi)⊤ϵt term
with Mϵt:
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Figure S3: Correlation metric generalizes to other SL algorithms. Networks are trained with a biased
form of BPTT, where (Wbmi1)⊤ is replaced by M in the weight update rule.

zti =
∑
j

Mijϵ
t
j +

(
1− 1

τ

)
zt+1
i +

1

τ

∑
j

ϕ′(ut+1
j )W rec

ji zt+1
j (38)

We show in Fig. S3 that our results hold when using a biased BPTT learning rule instead of the
supervised RFLO learning rule. Network parameters and simulation details were the same as Fig. 2,
except that a biased BPTT learning rule was used. For lower similarity between M and (Wbmi)⊤,
the correlation metric is able to correctly identify bias in the change in flow field. Compared with the
results shown in Fig. 2, the correlation metric values are somewhat lower for biased BPTT. This is
likely because additional nonlocal recurrent terms are contained in the true weight update that are not
accounted for in the expression for ∆Fpred

SL that uses ∆Wpred|SL from (5).
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Figure S4: Correlation metric generalizes to linear networks.

C.3 Linear RNNs

We show that the RNN nonlinearity ϕ(·) = tanh(·) is not a crucial architectural choice for our main
conclusions. In Fig. S4 we apply the same approach (and hyperparameters) as shown in Fig. 2C to
linear RNNs and find similar results.

C.4 Velocity-based cursor control

In the main text, we modeled a task in which a BMI readout maps neural activity directly onto cursor
position. While this is a conceptually simple way to illustrate our main ideas, actual BMI experiments
more commonly use the readout of neural activity to control cursor velocity rather than position
(e.g. Refs. [12, 15, 16, 17]). In this section we show that our main results can also be obtained for
this case.

Let the RNN readout yt = Wbmiht correspond to cursor velocity rather than to cursor position, and
let the cursor position be given by rt = (1− 1/τr)r

t−1 + yt/τr. For simplicity, we take τr = τ in
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Figure S5: SL and RL are distinguishable with velocity-based cursor control. (A) Example
trajectories from a trained RNN in which BMI readout weights map neural activity to cursor
velocity. (B) Corr(∆Fobs,∆Fpred) for RNNs trained with SL to control cursor velocity. (C)
Corr(∆Fobs,∆Fpred) for RNNs trained with RL to control cursor velocity.

our simulations. Let the target velocity at time t be given by y∗t = r∗ − rt, where r∗ is the target
position, and the error be given by ϵt = y∗t − yt.

Using velocity-based cursor control leads to smoother cursor trajectories, as shown in Fig. S5A.
Figures S5B-C show that the learning rules can be correctly identified in RNNs that are trained under
these assumptions using either SL or RL.
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Figure S6: Correlation metric applied to networks with 200 recurrent units. BMI decoders only read
out activity from a subset of neurons in the recurrent population.

C.5 Learning with a BMI that samples from a subset of the neural population

The simulations in this study have assumed that the decoder Wbmi reads out the neural activity
from all the neurons in the RNN. While this assumption is not realistic with respect to neuroscience
experiments, we show here that it does not affect our conclusions.

We ran simulations for RNNs with 200 recurrent units using SL and varied the number of units read out
by the decoder between 25 and 200, setting the decoder weights of all non-readout units to zero. After
pretraining the RNN, the decoder Wbmi1 was randomly selected such that sim(Wbmi0,Wbmi1) =
0.5, while reading out from the same units that were read out from during pretraining. The credit
assignment mapping M was randomly chosen such that sim(M, (Wbmi1)⊤) = 0.5, and was not
necessarily restricted to the same subset of readout units. This was repeated with different numbers
of readout units, each across 5 random seeds. Network and training hyperparameters were otherwise
the same as in Figures 2 and S2. Fig. S6 shows that, in this more realistic scenario where a BMI
only decodes a subset of the neurons in the neural population, our correlation metric continues to
distinguish between the SL and RL training algorithms.

C.6 Weight updates are distinct for biased SL and RL

In order to build an intuition for how the SL and RL rules affect weight updates, we analyzed these
updates directly (rather than the changes in flow fields, which was the focus in the main text).
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Figure S7: Observed weight updates follow the predicted update direction. (A) PCA on the weight
changes for a network trained with SL (red) and for a network trained with RL (blue). (B) In a
network trained with SL, the observed weight updates from individual trials are correlated with
∆Wpred predicted by SL (using matrix M). (C) For a network trained with RL, the observed weight
updates averaged over trials are correlated with ∆Wpred predicted by RL (using matrix Wbmi).

In the SL case we use (5):

∆W pred
ij |SL =

T∑
t

∑
k

Mikϵ
t
kh

t
j .

In the RL case we use (6):

∆W pred
ij |RL =

T∑
t

∑
k

W bmi
kl Σilϵ

t
kh

t
j ,

with isotropic noise Σ = σ2
recI.

Fig. S7B shows that, for an RNN trained with SL, the observed weight updates ∆Wobs for each trial
are highly correlated with the predicted weight updates ∆Wpred|SL. This is particularly pronounced
early in learning, as the loss is still decreasing. This analysis is applied to a network trained with SL
with sim(M, (Wbmi)⊤) = 0.6, and is one way of building intuition for the results in Fig. 2C and the
FFCC metric Corr(∆Fobs,∆Fpred).

The RL updates look quite different. Principal component analysis on the weight changes for a
network trained with RL shows that weight updates are much more spread out across PCs (Fig. S7A),
which also indicates that individual weight updates don’t follow one direction in the loss landscape. In
Fig. S7C, however, the average of the observed weight updates over trials during learning ⟨∆Wobs⟩
is correlated with ∆Wpred|RL predicted after each trial throughout learning.

C.7 Statistical significance of simulations

To confirm the statistical significance of our results and their dependence on the level of noise in the
RNN, we repeat the simulations from Figure 2 with different levels of noise in Figure S8 and show
that predictions of the two learning rules are statistically distinct when the alignment between the
BMI decoder and the credit assignment weights is sufficiently small.

C.8 Change of neural activity manifold with training

In order to predict the flow field change for a point h in neural activity space, the direction of weight
change is predicted via (5) and (6) by sampling activity from trials during training. In order to verify
that there is significant overlap of the distributions from which h is sampled at different points during
training and retraining, we compared the covariance matrices of the RNN activity (Figure S9A) from
early trials vs. later trials with the same decoder (Figure S9B, green curve) or trials after retraining
on a new decoder (Figure S9B, magenta curve). These results show that, although the alignment
between the neural activity manifolds before vs. after retraining with a new decoder decreases as the
old and new decoders become less similar, a significant degree of overlap remains even when the
decoders are highly dissimilar.
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Figure S8: Statistical significance of the correlation metric. (A) The std of the recurrent noise was set
to 0.1, with the simulations being otherwise identical to the simulations in Fig. 2C. (B) Same as in
(A), but with the recurrent noise set to 0.5. (C) RL simulation data from Fig. 2F. Two sample t-test:
(*) indicates p < 0.05, (**) indicates p < 0.01, and (***) indicates p < 0.001.
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Figure S9: Change of neural activity manifold with training. (A) Example covariance matrices
for activity before (“pre”) and after (“post”) learning a new decoder via SL. For these examples,
sim(Wbmi0,Wbmi1) = 0.8 (B) Pearson r for pairs of covariance matrices as a function of the
alignment between Wbmi0 and Wbmi1. Magenta line shows the correlation of covariance matrices
for activity before (“pre”) and after (“post”) learning a new decoder via SL. Green line shows the
Pearson correlation of covariance matrix pairs for activity in the first half (“early”) and second half
(“late”) of learning a new decoder via SL (n=3 seeds; error bars show standard deviation).
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