Appendix of
M2N: Mesh Movement Networks for PDE Solvers

A Additional Model Details.

Global Feature Extractor As mentioned in the paper, the global feature extractor GFE(+) is com-
posed of 3 modules: GFE(M,,) = GAP(Conv(Sample(M,,))). The sampling module Sample(-) is
implemented by the built-in interpolation interface in Firedrake[Rathgeber et al., 2016, with sampling
density 32x32. The convolutional block contains 4 convolutional layers. The SELU [Klambauer
et al.,|2017] activation function is used to increase the representation capability of the model. The
output tensor from the convolutional block is then fed into a Global Average Pooling (GAP) layer to
get a mesh resolution invariant global feature embedding E,,.

Neural-Spline based Deformer The Neural-Spline based Deformer is implemented based on the
open source code [Tony Duan, [2020]. In neural spline, the invertible mapping is determined by
a differentiable monotone rational-quadratic spline function RQS(-|K'), where K represents the
learnable anchor points. As described in the paper, the neural spline deformer Spline({mit, I,)isa
stack of neural spline layers RQS ;(&£V| K 4(I,,,£~?)). The anchor points K 4 are parameterized

by the input features I,, and the other dimensions of node coordinates & (=4) which are represented
by a SELU-activated six-layer MLP with output size of (3a — 1). Here a is a hyper-parameter
and is set to be 20 for all the experiments. The output vector 8 of the MLP can be partitioned as

0 = {0“’, 0", Od} , where 8% and 8" are with length a, and 8 is with length (a — 1). Vectors 8"

and 0" are firstly normalized by a softmax layer and then used to decide the positions of (a + 1)

anchor points. The vector 0% is passed through a softplus layer (to keep derivative always positive)
and directly used as the derivatives of the inner (a — 1) anchor points. For the two end points, their
derivatives are set to be constant. In one neural spline block, each dimension of input points takes
turns to be transformed. In all experiments, only one neural-spline block is used.

Feature Extractor of GAT-based network In the GAT-based network, an additional GNN-based
local feature extractor LFE(+) is introduced to help capture local information, which is composed
of one GNN-block, i.e., Kgyy = 1. For LFE(-), the input graph G = (V| E) is constructed
according to the process illustrated in Figure (8} The edge feature encoder f(-) of the GNN-block is
implemented with a SELU-activated three-layer MLP with hidden layer size of 64 and output size of
16.

GAT-based Deformer In all experiments, the GAT-based Deformer consists of 5 GAT blocks, i.e.,
Kgar = 5. The layer sizes of each GAT block are 256, 256, 512, 256 and 20 respectively. For

the k-th GAT block, it transforms the upstream mesh vertex positions & (k=1) — (€ gk_l), o & ‘(‘k/l_l)]

to ¢ = [ﬁgk)7 s 5‘(3], where fgk) =D e, af;)!;“;k_l). The updating process is illustrated in
Figure[7} In such a way, the new position of each mesh node is confined inside the convex hull
composed of its 1-ring neighbors with previous positions, which can greatly alleviate mesh tangling.
To keep the mesh nodes of irregular meshes always on the boundary, graph cutting is needed for the
initial constructed graph. In Figure[Sb] the initial graph is constructed by simply converting the initial

mesh edges into bidirectional graph edges. However, in the processed graph in Figure[8c| graph edges

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

from interior nodes to boundary nodes (except the corner nodes), i.e., the pink nodes in Figure
are removed from the initial graph. In this manner, the mesh nodes on the boundary will only move
along the boundary without leaving it since their neighbor nodes connected by the incoming edges
are all also on the boundaries. As for the corner mesh nodes, they are always fixed. Therefore, the
interior mesh nodes will never move outside the boundary because each mesh node moves inside the
convex hull composed of 1-ring neighbors of itself. Finally, boundary consistency is also achieved
based on the above mechanism.

ék_l‘) v
1)

— GAT [

k
GAT-Deformer ff)

Figure 7: Illustration of the GAT based mesh deformer. The new position of each mesh node is
confined inside the convex hull composed of its 1-ring neighbors with previous positions.

oY I /f ol b\
N T TR Jhs Yt Seero Jhs
RREY OEAY
(a) Inital mesh (b) Mesh graph constructing (c) Mesh graph cutting

Figure 8: Illustration of graph construction process. (a) The initial mesh, where blue nodes are mesh
nodes and black edges are mesh edges. (b) The initial mesh is converted to a graph, where blue nodes
are graph nodes and black edges are bidirectional graph edges. (c) The pink nodes are boundary
nodes but not at corners. The edges starting from interior blue graph nodes to pink graph nodes are
removed from the graph.

Baselines To ensure the fairness of the comparison between our proposed two models and their
corresponding baselines, the scale of the networks is similar except for the last layer. In the two
baseline models MLP-Deform-Clip and GAT-Deform-Clip, the sizes of the last layer are set as 2
to predict the displacement of each mesh node. It should be noted that the predicted displacement
of corner mesh nodes are always set as 0. Furthermore, to preserve consistency of the domain, the
displacement of boundary nodes are projected onto the domain boundary. This means that such nodes
can only move tangentially to the boundaries. In some cases, because there is no constraint on the
predicted displacements output by the naive MLP and GAT, some interior mesh nodes can be located
outside of the boundaries after adding the predicted displacements. Under such circumstances, these
outside mesh nodes are directly projected onto the nearest boundaries. However, this will cause mesh
tangling.

B Experimental Setup

Software. For all experiments, we use Firedrake [Rathgeber et al.) 2016], a Python li-
brary for automating the numerical solution of PDEs. We implement our models with Py-

Torch [Paszke et al., [2019], and use PyTorch Geometric (PyG) [Fey and Lenssen, [2019]]
for graph neural networks. The code for generating the target meshes are based on the
repository by [Wallwork [2022]. A MindSpore version of the code will be available at
https://gitee.com/mindspore/models/tree/master/research/hpc/m2n.

Monitor Function. In all experiments, we use the Monge-Ampere (MA) method to generate the
target deformed mesh. For the MA method, the mesh is equidistributed with respect to a user-defined
monitor function. The monitor function provides a concept of ‘mesh density’ and controls the sense in
which errors are equidistributed by the mesh adaptation algorithm. Therefore, the choice of monitor
function greatly impacts the geometry of the deformed mesh and should be chosen with care. In this
paper, we define the monitor function as

(u— uemct)2 | H (u)|r
2)
maXg 4 (U - uezact) maxg y HH(U) ”F

m=1+4«

(D

where w is the numerical solution on the current mesh, %4+ 1S the numerical solution on a uniformly
refined mesh or analytical solution, || H (u)|| » represents the Frobenius norm of the Hessian matrix
of the solution u, and o and 3 are two non-negative coefficients, which weight the importance of the
two terms.

Evaluation Methods. We evaluate the performance of different models from three aspects: error
reduction ratio, mesh generation speed and tangling avoidance.

The error reduction ratio is calculated by the formula (€initial — €adapted) / €initial, Where €initial and €adapted
are the £ norms of the discretization errors of the PDE solutions on the initial mesh and the deformed
mesh compared with the ground truth respectively. The ground truth of the PDE solution is provided
either with the analytical solutions or the numerical solutions on meshes with very high resolution. In
the experiments of Poisson’s equation problems, the ground truth is provided by analytical solutions,
while in the experiment of Burgers’ equation problems, the ground truth is provided by the numerical
solution on a fine mesh with the resolution of 100 x 100.

We assess whether a particular model leads to mesh tangling by analyzing the Jacobian Jx of the

affine transformation between the reference element K and a particular element K of the adapted
mesh:

F:K—> K, Jg=VF 2)

Initially the sign of det(Jx) will be either positive or negative, depending on the mesh ordering used.
If this determinant changes sign after a mesh adaptation step then this means that the element has
been inverted, i.e., the mesh has tangled.

Training Details. In the experiments, the models are trained with ¢! loss function, and an Adam
optimizer [Kingma and Bal, [2014] with learning rate of 10~2 on two RTX-2080ti GPUs. For the
experiment of Poisson’s equation problems in a square domain, it takes around 3 hours to train each
of the two GNN-based models, namely M2N-GAT and GAT-Deform-Clip, while it takes around 1.5
hours to train each of the other two models, namely M2N-Spline and MLP-Deform-Clip. For the
experiments of Poisson’s equation problems on a heptagonal domain and Burgers’ equation problems,
the training time for each model is about twice than that of Poisson’s equation problems on a square
domain. To ensure the reliability of the results, each training is run three times with different random
seeds.

Testing Details. The Monge-Ampere method is run on an 8-core i7-7820X CPU. The implementa-
tion of the Monge-Ampere method naturally supports parallelization since Firedrake itself supports
MPI (Message Passing Interface), which uses PETSc and libblas-3.7.1 as the underlying linear
algebra library. However, we only use single processing across the experiments, because we find that
for our experiments, multiprocessing actually does not provide a performance boost. For the other
learning-based models, we run experiments on one RTX-2080ti GPU.

C Dataset Generation

Some specifics of the dataset generation are summarized in Table [d In total, three datasets are
generated, which are Poisson’s Equation problem on a Square domain, Poisson’s Equation problem
on a Heptagonal domain, and Burgers’ Equation problem on a Square domain.

C.1 Poisson’s Equation

For the two datasets of Poisson’s equation problems, the first degree continuous Lagrange polynomial
is used as the basis function for the Finite Element Method. We generate a manufactured analytical
solution u by sampling from a mixed Gaussian distribution, which can be fed into Poisson’s equation
to obtain the corresponding source terms f and boundary conditions ug. The analytical solution u

(w=ai)®+(y=bi)®

wi

follows the form of u = > _." | exp () The target optimized meshes are generated

using the Monge-Ampere method.

Poisson’s Equation on an square domain In the square domain, we sample n € {1,...,6},
w; € [0.01,0.2]. The center of each Gaussian function is sampled inside the square domain. To train
the model, 275 samples are generated under the each mesh resolution of 15 x 15 and 20 x 20. To
test the generalization ability of the model, 125 samples are further sampled on each mesh resolution
ranging from 12 to 23. Some examples are shown in Figure 9]

W
N
N

N
RRNVY
. SINIINNANAN

Figure 9: Some examples of Poisson’s equation problem on the square domain.

Poisson’s Equation on an irregular heptagonal domain To generate an initial irregular heptagonal
mesh, we use Gmsh [Geuzaine and Remaclel, [2009], an open source finite element mesh generator. In
the irregular heptagonal domain, we sample n € {1, ...,5}, w; € [0.005,0.01]. The center of each
Gaussian function is sampled inside the irregular domain. To construct the training set, 320 samples
are generated under the each mesh density of 13, 16, 19, and 22. For the test set, 80 samples are
generated for each mesh density from 12 to 23. We provide some examples shown in Figure[I0]

\ AV,
Vays WAV,

s
Ay

A
oirirase

aviy,
TaVay,d v
AVa)

A8y §
u"ﬁﬁ:fvlv: N 7l
LA e e
Lo W S
AVAVAY A 74 X V4
RS SRR
BRCXOD %
ERRRE
RREEN

AV)
R XK
KX OROSIANS
RSO

KRR

7 D
XY YAy A PO
ay Vv VAVav, sy, L] vy,
v Vi AVavgy 4 XK
AV AVavay,. % AVAVAY, AV
R TG 200 ',,VA"»"

PR Va
4 Xy
A

Figure 10: Some examples of Poisson’s equation problem on the heptagonal domain.

C.2 Burgers’ Equation

In the Burgers’ equation experiment, the second degree continuous Lagrange polynomial is chosen as
the basis function. For simplicity and stability, a backward Euler scheme is used. The simulation time
step is set as 1/30 second and each trajectory runs for 60 time steps. The initial condition is set as

n z—a;)?+(y—b:)?
Winigial = [Ua, 0], where ug = 3 317 exp (—%

on two mesh resolution of 15 and 20. These trajectories are generated by pairing three different
initial conditions and three different viscosity coefficients {0.0001, 0.001, 0.002}. To evaluate the
generalization ability of different models, 8 trajectories with unseen viscosity coefficients {0.005,
0.0015} and initial conditions are generated for the mesh resolution from 11 to 24. The generation

). We generate 9 trajectories for training

time of Burgers’ Equation dataset is much longer than the above two Poisson’s equation datasets
because of the nonlinearity of Burgers’ equation and the time-consuming mesh-to-mesh projection
step in Firedrake. Some examples of trajectories are provided in Figure[TT]

N
NNNNSSISRN
NNSRNESN
NSNSNSNSSS
NNSN

%
1
14

ud!ﬂﬂﬂ?ﬂA

N

VAN

VAYAYi%

V4%

VAV

RS
RS

%)
Vi)

AVAVAVAYAYA

A4

\VAYAVAVa!
VAV
%/

|
)

NRNWN
SANVENS
NN m::

L
I
V: V[

(UAA)
.
2

VAUV
VAYAYAYAYaYd)
4vava) E‘
2000

i

\/

%)
%)

(a) step 1 (b) step 15 (c) step 30 (d) step 45 (e) step 60

Figure 11: Some examples of the trajectories of the Burgers’ equation.

D Extra Experiment Results

In Section 4 of the main paper, the error reduction ratio results summarized in Tables 1, 2 and 3 are
averaged over the results under all mesh resolutions in the test set. Here, we provide the detailed error
reduction ratio results under each mesh resolution for all the three experiments, namely Poisson’s
equation problem on the square domain, Poisson’s equation problem on the heptagonal domain, and
Burgers’ equation problem, shown in Figure [I2] [T3]and 14} respectively.

By analyzing the results given in Figure[I2] [I3]and[T4] several conclusions can be obtained.

First of all, the error reduction ratio gap between M2N-Spline and MLP-Deform-Clip is generally
larger than that of M2N-GAT and GAT-Deform-Clip, which is because the spline module can
simultaneously provide more representation power and robustness for mesh movement network
compared with the vanilla MLP module, thus achieving higher error reduction ratio. However,
we also need to point out that M2N-GAT and GAT-Deform-Clip have basically the same network
size, where the only difference between them is the specially-designed attention-based anti-tangling
mechanism for M2N-GAT. On the other hand, Spline-based and MLP-based deformers are of totally
different network structures, hence cannot be totally fairly compared in scale.

Secondly, by comparing between Figure[I3]and the other two figures, namely Figure[I2]and [T4] we
can see that the error reduction ratio gap between four learning based methods and MA method in the
experiment of Poisson’s equation problem on the heptagonal domain is larger than that of other two
experiments. This is because, compared with a square domain, the degree of mesh movement has a
greater impact on the error reduction ratio in the case of a heptagonal domain. Therefore, the learning
based methods need higher mesh movement accuracy, compared with the other two experiments, to
achieve similar error reduction ratio with the MA method.

Thirdly, it can be seen from Figure[T4]that the error reduction ratio of the MA method gradually arises
with the increase of mesh resolution. This phenomenon is caused by the fact that the second degree
continuous Lagrange polynomial is used as the basis function in the experiment of Burgers’ equation
problem. The utilization of higher order basis functions makes mesh adaptation more effective.

251
20
S
c
2151
o
=]
kel
(9]
4
5 107
ut.| B MA(traditional)
. M2N-Spline
5 s MLP-Deform-Clip
BN M2N-GAT
Bm GAT-Deform-Clip
0_

12 13 14 15(train) 16 17 18 19 20(train) 21 22 23
Mesh Resolution

Figure 12: Error reduction ratio comparison under each mesh resolution of the Poisson’s equation
problem on the square domain.

30
25
<
c 20
o
k9]
3
215
o
S
IE 10 mmm MA(traditional)
- M2N-Spline
B MLP-Deform-Clip
5 mm M2N-GAT
I GAT-Deform-Clip
0_

12 13(train) 14 15 16(train) 17 18 19(train) 20 21 22(train) 23
Mesh Resolution

Figure 13: Error reduction ratio comparison under each mesh resolution of the Poisson’s equation
problem on the heptagonal domain.

704

60 1

MA(traditional)
M2N-Spline
MLP-Deform-Clip
M2N-GAT
GAT-Deform-Clip

N
=1

104

Error Reduction (%)
8 3 g

11 12 13 14 15(train) 16 17 18 19 20(train) 21 22 23 24
Mesh Resolution

Figure 14: Error reduction ratio comparison under each mesh resolution of the Burgers’ equation
problem.

AK)1suap ysow

cr=gp=0 09 X § 09 X 6 v2-11 0T ‘ST 101owrered eorsAyd 06 Eomm%%ﬁb&? arenbg s103Ing
[UON
Py uonnjos :

o) e K)isuap ysow . onels [euo3eideyq
0=g'9=mo 08 0ze €C-C1 | TT6l 91 ‘¢l WLI9] 951105 01 Ieour [euoSeidoy U0SSI0q
o) . AJ1suap ysow . onels arenbg
9=g'0="o Sl SLT €C-1l 0C ST WLI3) 90IN0S 0] Teaur arenbg U0SsI0g

UOTIN[OSIY | UOTIN[OSIY Sunsal Sururer]
Eo._oE 200 SO US°IN H.ow .How . () SuitL odA1, 9ad urewo(J josere(

V'IN Iod Sunsay, | 1od Sururely, uoneZI[eIouan uonoNNSU0))
uonn[osdy | uonN[OSAY
Ioj ojdwreg | 10j o[dureg

‘uondiosap jesere(: 9[qeL

References

Florian Rathgeber, David A. Ham, Lawrence Mitchell, Michael Lange, Fabio Luporini, Andrew T. T.
McRae, Gheorghe-Teodor Bercea, Graham R. Markall, and Paul H. J. Kelly. Firedrake: automating
the finite element method by composing abstractions. ACM Trans. Math. Softw., 43(3):24:1-24:27,
2016. ISSN 0098-3500. doi:10.1145/2998441. URL http://arxiv.org/abs/1501.01809.

Giinter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. Advances in neural information processing systems, 30, 2017.

Anand Avati Tony Duan. normalizing-flows. https://github.com/tonyduan/
normalizing-flows} 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32:
8026-8037, 2019.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Joseph G. Wallwork. pyroteus/movement: Mesh movement in Firedrake, May 2022. URL https
//doi.org/10.5281/zenodo.6559934.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Christophe Geuzaine and Jean-Frangois Remacle. Gmsh: A 3-d finite element mesh generator
with built-in pre-and post-processing facilities. International journal for numerical methods in
engineering, 79(11):1309-1331, 2009.

https://doi.org/10.1145/2998441
http://arxiv.org/abs/1501.01809
https://github.com/tonyduan/normalizing-flows
https://github.com/tonyduan/normalizing-flows
https://doi.org/10.5281/zenodo.6559934
https://doi.org/10.5281/zenodo.6559934

	Additional Model Details.
	Experimental Setup
	Dataset Generation
	Poisson's Equation
	Burgers' Equation

	Extra Experiment Results

