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SpecGaussian with latent features: A high-quality modeling of
the view-dependent appearance for 3D Gaussian Splatting

Anonymous Authors

ABSTRACT
Recently, the 3D Gaussian Splatting (3D-GS) method has achieved
great success in novel view synthesis, providing real-time render-
ing while ensuring high-quality rendering results. However, this
method faces challenges in modeling specular reflections and han-
dling anisotropic appearance components, especially in dealing
with view-dependent color under complex lighting conditions. Ad-
ditionally, 3D-GS uses spherical harmonic to learn the color repre-
sentation, which has limited ability to represent complex scenes.
To overcome these challenges, we introduce Lantent-SpecGS, an
approach that utilizes a universal latent neural descriptor within
each 3D Gaussian. This enables a more effective representation of
3D feature fields, including appearance and geometry. Moreover,
two parallel CNNs are designed to decoder the splatting feature
maps into diffuse color and specular color separately. A mask that
depends on the viewpoint is learned to merge these two colors,
resulting in the final rendered image. Experimental results demon-
strate that our method obtains competitive performance in novel
view synthesis and extends the ability of 3D-GS to handle intricate
scenarios with specular reflections.

CCS CONCEPTS
• Computing methodologies → Reflectance modeling; Raster-
ization; Visibility; • Networks→ Network algorithms.

KEYWORDS
neural rendering, computer graphics, novel view synthesis, deep
learning

1 INTRODUCTION
The 3D reconstruction and novel view synthesis represent formi-
dable challenges in the fields of computer vision and computer
graphics, impacting a wide range of applications including aug-
mented and virtual reality (AR/VR), autonomous navigation, and
3D content creation. Traditional methods, relying on primitive rep-
resentations like meshes and points[4, 23, 34], often compromise
quality to achieve faster rendering. However, recent advancements,
particularly in Neural Radiance Fields (NeRF)[1, 8, 21, 22], have
made significant progress in this task by implicitly representing
the scene’s geometry and radiance information, thus achieving
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high-fidelity visual outputs. The primary drawback of NeRF, how-
ever, lies in its computationally intensive volume rendering process,
which hampers its suitability for real-time rendering applications.

A recent and promising alternative to implicit radiance field
representations is 3D Gaussian Splatting (3D-GS)[10], which has
emerged as a viable solution for real-time rendering, delivering
state-of-the-art quality results. 3D-GS leverages a collection of 3D
Gaussian primitives to explicitly model the scene, incorporating
a differentiable rasterization pipeline that circumvents the time-
comsuming ray sampling process. Moreover, clone and split strate-
gies are employed to ensure that 3D Gaussians, initialized from
Structure-from-Motion (SfM), provide better coverage of the entire
scene.

Despite its exceptional performance, 3D-GS encounters chal-
lenge when it comes to accurately capturing the complex and pro-
nounced specular effects observed in specific scenes. This limita-
tion arises from the inherent constraints of low-order spherical
harmonics (SH) used in 3D-GS, as they are adept at modeling only
subtle view-dependent phenomena. A recent study, referred to as
Spec-Gaussian[33], integrates an Anisotropic Spherical Gaussian
(ASG) technique to overcome this limitation. However, retaining
SH coefficients for each Gaussian is not only unnecessary but also
potentially leads to excessive memory usage. Moreover, it does not
resolve the issue of significant artifacts that frequently occur within
3D-GS[36].

In order to address these issues, we propose Lantent-SpecGS,
which innovatively integrates a versatile latent neural descriptor
within each 3D Gaussian. This descriptor allows each Gaussian to
encapsulate critical scene attributes such as local geometry, color,
and material properties. By embedding these latent neural descrip-
tors, our method not only enhances the generality and applica-
bility of 3D-GS but also refines the rendering of view-dependent
effects. Specifically, we utilize these latent descriptors to compute
the normal directions associated with each Gaussian, subsequently
employing these normal vectors to obtain a view-mask feature. Our
experiments indicate that this view-mask feature significantly influ-
ences the decoding of view-dependent colors, thereby overcoming
some of the limitations observed in traditional 3D-GS approaches.

After employing Feature Gaussian Splatting, our approach yields
a diffuse feature map, a view-dependent feature map, and a view-
maskmap. For color decoding, we adopt the Cook-Torrancemodel[6]
to decompose the color into diffuse color and view-dependent colors
for individual decoding processes. The diffuse color is decoded by
our Diffuse-UNet, which enhances the smoothness of this compo-
nent. Additionally, The UNet architecture also assists in addressing
scenarios with sparse viewpoints, improving rendering quality by
mitigating issues such as jagged edges and pixel anomalies. This
decomposition technique allows us to represent colors as a superpo-
sition of physically interpretable components, thereby enhancing

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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realism and fidelity of the rendered colors. Moreover, for the de-
coding of view-dependent color, our method creates view-mask
that captures spatial lighting variations across different viewpoints.
We also incorporate view embeddings to simulate view-dependent
effects under near-field lighting conditions. By multiplying the
view-mask map with the view-dependent color map, we obtain the
final view-dependent color output. This integration can be concep-
tualized as an attention mechanism, focusing on complex lighting
conditions and delivering more precise rendering results. We have
rigorously tested our method on several public datasets such as
Shiny Dataset, and compare it with existing state-of-the-art meth-
ods. The experimental results show that our method significantly
improves the performance of specular reflectionmodeling and view-
dependent color synthesis. When synthesizing novel views, our
method exhibits superior rendering quality to existing methods.

In summary, the main contributions of our approach are as fol-
lows:

• A novel 3D Gaussian splatting-inspired framework is de-
signed by embedding latent feature in each 3D Gaussian,
which significantly boosts the representation capacity of 3D-
GS, allowing for the unified incorporation of both geometric
and appearance information.

• An efficient rendering paradigm by cooperating two paral-
lel CNNs to decoder diffuse and specular colors separately,
which can improve the rendering quality in real-world scenes,
especially for specular reflections.

• Our full pipeline achieves state-of-the-art novel view syn-
thesis performance in scenes with specular highlights, as
evidenced by our results on Shinny datasets.

2 RELATEDWORK
2.1 3D Scene Representations for NVS
Novel view synthesis (NVS) involves generating new images from
viewpoints that are distinct from the original captures. Recently,
Neural Radiance Field (NeRF)[21] has garnered significant attention
due to its impressive performance in NVS. The vanilla NeRF adopts
coordinate-based MLPs to implicitly represent both the geometry
and the radiance information of a scene, rendering images through
the volume rendering technique. In subsequent research, the pri-
mary focus in this field has been on enhancing either the quality[1–
3, 29] or efficiency[8, 17, 22, 35] of rendering. However, achieving
both simultaneously in NeRF-based methods has proven to be chal-
lenging. Further research has broadened the usefulness of NeRF
to various applications, including mesh reconstruction[15, 18, 37],
inverse rendering[26, 30, 32, 39, 40], autonomous driving[5, 14, 41]
and video generation[13, 25, 31].

In contrast to the NeRF-style implicit scene representation, 3D
Gaussian Splatting (3D-GS)[10] adopts an explicit approach by
representing scenes using a collection of anisotropic 3D Gaussians,
which are initialized from structure frommotion (SfM). Additionally,
3D-GS introduces a differentiable tile-based rasterizer that allows
for real-time rendering without compromising on high quality.
Variants of 3D-GS are dedicated to addressing challenges such as the
heavy storage requirement[7, 12, 24] and the occurrence of artifacts
under certain conditions[16, 36]. Despite the impressive outcomes,
its approach of associating each Gaussian with spherical harmonics

(SH) parameters leads to substantial memory consumption and and
fails to capture and reproduce the appearance of specular surfaces
with precision.

2.2 View-Dependent Modeling
NeRF leverages the positional encoding[27] of the input ray direc-
tion to account for view-dependency, while 3D-GS represents color
variations from different viewpoints using spherical harmonics
(SH). Nonetheless, both are generally constrained to modeling only
slight view-dependent phenomena. Advances have been made in
both methods to enhance the reconstruction of scenes with stonger
specular reflections, thereby extending their utility to more realistic
settings. Ref-NeRF[28] refines NeRF’s handling of glossy scenes by
reparameterizing the outgoing radiance using the reflection about
the local surface normal instead of ray direction, introducing an
Integrated Directional Encoding and decomposing radiance into
diffuse and specular components to for better material and texture
variation management. SpecNeRF[20] presents a novel Gaussian
directional encoding to effectively model specular reflections under
spatially varying near-field lighting conditions. This work employs
a data-driven normal estimation approach early in training to im-
prove surface geometry reconstruction, leading to more realistic
and accurate rendering of glossy surfaces in 3D scenes.

Even so, they still face challenges in achieving real-time ren-
dering due to the implicit nature of NeRF’s representation, which
requires repeatedly querying a neural network throughout the ren-
dering process. Therefore, Spec-Gaussian[33] advances 3D-GS by
utilizing an Anisotropic Spherical Gaussian (ASG) appearance field
in place of traditional spherical harmonics. This innovation per-
mits the capture of high-frequency view-dependent appearance
information without increasing the number of 3D Gaussians. Fur-
thermore, this method incorporates anchor-based, geometry-aware
3D Gaussians for efficiency inpired by [19] and a coarse-to-fine
training strategy to eliminate artifacts, thus achieving exceptional
depiction of specular highlights. However, retaining SH coefficients
for each Gaussian is redundant and leads to excessive memory us-
age. Moreover, these aforementioned methods often struggle with
sparse viewpoints, such as scene edges, and are prone to producing
artifacts. To address these issues, our approach discards all SH pa-
rameters and instead leverages latent neural descriptor composed
of diffuse and view-dependent features. We then generate a dif-
fuse feature map via 𝛼-blending and decode it into base color and
view-dependent color based on the dichromatic reflection model
for each Gaussian. The UNet-style diffuse decoder used in our ap-
proach effectively eradicates artifacts and ensures the smoothness
of synthesized images. Experiments reveal that our method not only
shows notable improvements in reconstruction metrics but also
yields renderings with strong physical interpretability in various
specular scenarios.

3 METHODS
The overview of our method is illustrated in Figure 1. Starting with
a series of images taken from different camera poses of a static
scene, we first utilize Colmap to generate a sparse point cloud
via Structure-from-Motion (SfM). Following this, we initialize 3D
Gaussians, each endowed with neural descriptors that encompass
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Figure 1: Pipeline of our proposed Latent-SpecGaussian. It consists of three steps: First, initializing with SfM points derived
from COLMAP. Second, optimizing latent feature within each 3d gaussian and directional feature. Finally, splatting to generate
multiple feature maps and decoding color using two parallel networks.

diffuse features, view-dependant features, a view-mask feature,
and a normal vector. These four components are concatenated and
subsequently processed through Feature Gaussian Splatting, lead-
ing to the generation of several feature maps: a diffuse feature
map, a view-dependent feature map, and a view-mask map. For
the diffuse feature map and the view-dependant feature map, we
employ an UNet-style network and a compact CNN network with
embedded viewpoint encoding to decode the diffuse color and the
view-dependant color respectively. Drawing inspiration from the
Cook-Torrance model[6], the view-dependent color image is multi-
plied by the view-mask map. This product is then overlaid onto the
diffuse color image in the synthesis of the final novel view output.

3.1 Preliminaries
3.1.1 3D Gaussian Splatting. 3D-GS[10] explicitly represents
the scene with a set of anisotropic 3D Gaussians that have optimiz-
able attibutes including 3D position, opacity, anisotropic covariance,
and spherical harmonic (SH) coefficients. These primitives are sub-
sequently splatted into images via a tile-based rasterizer.

Specifically, the 𝑖-th 3D Gaussian primitive G𝑖 is parameterized
by an opacity 𝛼 , a center 𝜇, and a full 3D covariance matrix Σ
defined in world space:

G𝑖 (𝑥) = 𝑒−
1
2 (𝑥−𝜇𝑖 )

𝑇
∑−1

𝑖 (𝑥−𝜇𝑖 ) (1)

where 𝑥 is an arbitrary position within the 3D scene. The covari-
ance matrix Σ, which is positive semi-definite, is derived from a
scaling matrix 𝑆 and a rotation matrix 𝑅, expressed as Σ = 𝑅𝑆𝑆𝑇𝑅𝑇 .
Afterwards, Σ is transformed to Σ′ in camera coordinates when 3D
Gaussians G are projected to 2D Gaussians G′ for rendering:

Σ′ = 𝐽𝑊 Σ𝑊𝑇 𝐽𝑇 (2)

where𝑊 is the extrinsic matrix and 𝐽 is the Jacobian of the affine
approximation of the projective transformation. Then a tile-based
rasterizer is designed to efficiently sort the 2D Gaussians according
to depths and employ 𝛼-blending to compute the color 𝐶 at pixel
𝑥 ′:

𝐶 (𝑥 ′) =
𝑁∑︁
𝑖=1

𝑐𝑖𝛼𝑖G𝑖 (𝑥)
𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗G′
𝑗 (𝑥

′)) (3)

where 𝑥 ′ is the queried pixel, 𝑁 stands for the number of ordered
2D Gaussians associated with that pixel, and 𝑐𝑖 is the decoded color
of 𝑖-th Gaussian G𝑖 from its coefficients of spherical harmonics
(SH). During optimization, 3D Gaussians are adaptively added and
occasionally removed for precise representation of the scene. We
refer the reader to [10] for details.

3.1.2 Cook-Torrance. Compared to NeRF, Ref-NeRF[28] decom-
poses outgoing radiance into diffuse color 𝑐𝑑 and specular color 𝑐𝑠 ,
and then combines them to obtain a single color value:

𝑐 = 𝛾 (𝑐𝑑 + 𝑠 ⊙ 𝑐𝑠 ) (4)

where ⊙ denotes dot product, and𝛾 is a fixed tonemapping function.
And 𝑠 represents the specular tint predicted by a spatial MLP similar
to 𝑐𝑑 , while 𝑐𝑠 is predicted by a directional MLP.

This decomposition aligns with the principles posited in the
Cook–Torrance approximation[6] of the rendering equation.Within
this context, the expression 𝑠 ⊙ 𝑐𝑠 embodies the split-sum approx-
imation of the specular component of the Cook-Torrance model.
Specifically, 𝑐𝑠 is correlated with the preconvolved incident light
reflecting off the surface, while 𝑠 approximates the pre-integrated
bidirectional reflectance distribution function (BRDF).

3.2 Latent 3D-GS and Feature Gaussian
Splatting

3.2.1 Latent 3D-GS. In contrast to the original 3D-GS, ourmethod
introduces several key modifications to enhance color expression.
Notably, we have replaced the spherical harmonic (SH) parameters
adhering to each 3D Gaussian with more versatile and optimized
neural descriptors. This substitution facilitates the learning of latent
representations encapsulating local geometry, color, and material
properties within a scene, thereby achieving a more detailed and
accurate depiction.

In our method, the 𝑖-th Gaussian carries a 16-dimensional la-
tent feature vector 𝑓𝑖 , which is bifurcated into two distinct compo-
nents: an 8-dimensional vector of diffuse latent features 𝑓𝑑 and an
8-dimensional vector of specular latent features 𝑓𝑠 . These compo-
nents are structured as follows:

𝑓𝑖 = 𝑓𝑑 ⊕ 𝑓𝑠 (5)
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where ⊕ denotes the operation of concatenation. And the latent
features are randomly initialized, akin to other base attributes such
as scales and rotations associated with each Gaussian. These latent
features are further decoded by specific networks to extract color
components related to diffuse reflection and specular reflection,
respectively.

Figure 2: Schematic of Latent 3D-GS. In addition to the latent
features attached to the 3DGS, we also use these features to
predict normals and decode the viewpoint mask features.

3.2.2 View-Mask Feature and Normal Estimation. The ac-
curate understanding and representation of the Bidirectional Re-
flectance Distribution Function (BRDF) are essential when using 3D
Gaussian splatting for photorealistic rendering of intricate scenes.
The BRDF describes the material properties of surfaces, including
characteristics such as reflectance, glossiness, and transparency. By
faithfully modeling the BRDF, we enhance the realism and accuracy
of rendered images, particularly in complex scenes.

In our approach, we assign a view-mask feature to each latent
3D-GS in order to learn the distribution of the BRDF function. For
each latent 3D-GS, we have attributes including its position, opacity,
rotation matrix, and scaling matrix. To determine the viewpoint
direction vector for each latent 3D-GS, we compute the vector
difference between its position and the camera center. Additionally,
we use a small MLP to predict the normal direction, as described
by the following equation:

Ψ(𝑓𝑠 , 𝑓𝑑 ) = n (6)
Considering the BRDF function, the equation for outgoing light

𝐿𝑜 in a given direction 𝝎𝒐 at a point 𝒙 is described by:

𝐿𝑜 (𝝎𝒐, 𝒙) =
∫
Ω
𝑓 (𝝎𝒐,𝝎 𝒊, 𝒙) 𝐿𝑖 (𝝎𝑖 , 𝒙) (𝝎𝑖 · 𝒏) 𝑑𝝎𝑖 , (7)

where 𝐿𝑖 corresponds to the incident light radiance coming from
direction 𝝎 𝒊 , and 𝑓 represents the point’s BRDF properties. The
integration domain is the upper hemisphere

∫
Ω defined by the point

𝑥 and its normal 𝑛. And 𝝎𝑜 can be expressed as:

𝜔𝑜 = 2 (𝜔𝑖 · 𝑛) · 𝑛 − 𝜔𝑖 , (8)

where𝝎 𝒊 is the incident light direction that can be approximated
by the opposite direction of the viewing direction, and 𝑛 is the
approximate surface normal.

For each Gaussian, we utilize a small MLP to learn the view-
mask feature 𝑓𝑚 . Specifically, the input to this MLP comprises the
predicted normal direction n and the view direction d, the latter of
which is transformed using Spherical Harmonic encoding. Equation
9 represents this process:

𝑓𝑚 = 𝐹𝜽 (𝜆SH (d), n) , (9)
where 𝜆SH (·) represents SH encoding. Directly learning the normal
vector from latent features can result in significant errors. To miti-
gate these inaccuracies, we introduces a pseudo normal calculation
as regularization. Typically, the accurate estimation of normal vec-
tors requires a continuous surface; however, the discrete nature of
scene representations poses a substantial challenge to this direct
estimation. Empirical observations indicate that configuration of
3D-GS tends to approximate a flatter geometry as the optimiza-
tion process. Based on this phenomenon, it becomes pragmatically
feasible to approximate the normal vector by identifying the short-
est axis of the Gaussian. This approach aligns with Spec-Gaussian
[33], where the shortest axis, determined by the rotation and size
matrices of each Gaussian, is used as the pseudo normal direction.
And we also flip the normal direction based on the current view
direction. This process can be represented by the following formula:

n =

{
−𝒏, 𝒏 · 𝒗 < 0
𝒏, 𝒏 · 𝒗 ≥ 0 (10)

While the pseudo normals estimated through this method may
not perfectly align with real-world physical normals, employing
them as supervisory signals effectively enhances the network’s abil-
ity to approximate actual normal directions and precisely capture
reflection distributions, essential for sophisticated view-dependent
learning.

3.2.3 Feature Gaussian Splatting. Rather than splatting colors,
we now splat the features due to the replacement of SH coefficients
with neural descriptors. Following the the normal estimation and
view-mask feature prediction methods aforementioned in Section
3.2, we concatenate the diffuse latent feature and the specular latent
features on latent 3D-GS, along with the view-mask feature and the
estimated normal. These concatenated features are subsequently
used in Feature Gaussian Splatting to generate latent feature maps,
which are then decoded into colors as detailed in Section 3.3.

Parallel to the rasterization pipeline of 3D-GS, Feature Gauss-
ian Splatting isimilarly relies on 𝛼-blending approach. Specifically,
at each pixel on the image plane, the features are accumulated
with weights determined by the alpha values of each Gaussian, as
described by the following equation:

𝑓 (p) =
∑︁
𝑖∈𝑁

𝑇𝑖𝛼𝑖 𝑓𝑖 , 𝛼𝑖 = 𝜎𝑖𝑒
− 1

2 (p−𝜇𝑖 )
𝑇 ∑′ (p−𝜇𝑖 ) , (11)

where p is the pixel coordinates, 𝑇𝑖 is the transmittance defined by
Π𝑖−1
𝑗=1

(
1 − 𝛼 𝑗

)
, 𝑓𝑖 denotes the latent feature of the sorted Gaussian

distribution associated with the query pixel, and𝑚𝑢𝑖 denotes the
coordinates when projected onto a 3D Gaussian to a 2D image
plane.
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Figure 3: Network Architecture. It includes a UNet to decode diffuse color and a CNN for decoding view-dependent color. The
view-dependent color is multiplied by the view mask to superimpose the diffuse colors, resulting in the final rendering.

3.3 Decoder Architecture
Our decoder architecture is depicted in Figure 3. To effectively de-
compose the diffuse and specular components of color, we have de-
veloped two specialized networks. The first, a UNet-style network,
is tasked with decoding the diffuse feature map, while the second,
a CNN-based network with viewpoint embeddings, is designed for
decoding the view-dependent feature map. In the subsequent text,
we simply called them as Diffuse-UNet and Specular-CNN.

The original 3D-GSmethod densifies sparse point clouds through
splitting and pruning strategies, but this approach may neglect
the scene’s underlying structure, leading to redundant Gaussian
distributions. These excess distributions can produce jagged edges
or anomalous Gaussians, diminishing the method’s robustness to
new viewpoints. Furthermore, 3D-GS struggles in scenarios with
sparse viewpoints, such as scene edges or the initial frames of a
sequence, often resulting in noticeable blurriness and artifacts.

To solve these problems, we introduce the Diffuse-UNet. This
network efficiently down-samples the diffuse feature map to one-
eighth of its original size, and then employs up-sampling to restore
it. Residual modules bolster feature extraction at each convolu-
tion step, complemented by skip connections for enhanced feature
fusion. The base layer uses 3 × 3 convolutions with ELU activa-
tion, and LayerNorm is applied in the residual modules to adapt to
single-batch optimizations in the UNet framework. The integration
of Diffuse-UNet into the 3D-GS framework is designed to substan-
tially improve reconstruction quality and minimize the occurrence
of artifacts. Notably, Diffuse-UNet helps in filling the gaps and
smoothing out jagged edges in synthesized images, especially in
areas with sparse viewpoints. The strategic use of residual modules

and skip connections further refines the image generation process,
significantly elevating the overall visual quality.

For the Specular-CNN network designed to decode the specular
feature map, we begin with a base convolutional layer to expand
the dimensions of the view-dependent feature map. Following the
viewpoint embedding technique used in NeRF, we calculate a ray
direction for each pixel in the 2D image, encode these directions
with positional encoding, and concatenate them with the expanded
specular feature map. We then decode the specular colors using
the enriched, concatenated features. This approach enhances the
rendering of view-dependent effects in the image.

Based on the Cook-Torrance physical model[6], our method
multiplies the specular color with the view-mask map and then
adds it to the diffuse color to obtain the final result. The total process
can be expressed as:

𝑐 = 𝐹𝜃𝑈𝑁𝑒𝑡
(f𝑑 ) +

(
𝐹𝜃𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟−𝐶𝑁𝑁

(
𝜆PE (dpixel), f𝑠

)
·𝑚𝑎𝑠𝑘

)
(12)

3.4 Loss Function
Our loss function is designed as :

𝐿 = 𝐿renders + 𝜆diffuse𝐿diffuse + 𝜆normal 𝐿normal, (13)

where,

𝐿renders = (1 − 𝜆D-SSIM ) 𝐿1(𝑟𝑒𝑛𝑑𝑒𝑟𝑠, 𝑔𝑡)
+𝜆D-SSIM 𝐿D-SSIM (𝑟𝑒𝑛𝑑𝑒𝑟𝑠, 𝑔𝑡), (14)

𝐿diffuse = (1 − 𝜆D-SSIM ) 𝐿1(𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒, 𝑔𝑡)
+𝜆D-SSIM 𝐿D-SSIM (𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒, 𝑔𝑡), (15)
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𝐿normal = 1 −
n · n𝑝𝑠𝑒𝑢𝑑𝑜

∥n∥ · ∥n𝑝𝑠𝑒𝑢𝑑𝑜 ∥
(16)

In our method, 𝐿renders and 𝐿diffuse mirror the loss functions
from the original 3D-GS. 𝐿renders is designed to compare the final
rendered image against the ground truth, assessing overall synthe-
sis quality, while 𝐿diffuse specifically targets the accuracy of the
rendered diffuse color relative to the ground truth as a form of reg-
ularization. This distinction is crucial as it addresses an observed
trend in joint optimization scenarios where simpler networks often
disproportionately capture most of the information. To counter-
act this bias in training process, we incorporate the 𝐿diffuse loss to
ensure that the Diffuse-UNet, which decodes diffuse colors, ade-
quately captures the scene’s details. We set 𝜆diffuse = 0.05 in our
loss function to maintain this balance.

The loss function 𝐿normal, which measures the discrepancy be-
tween two direction vectors, utilizes cosine similarity to encourage
the MLP (described in Section 3.2.2) to predict direction vectors
that align closely with the true normals. We set 𝜆normal = 0.001,
intentionally keeping the weight low. This allows for a slight devia-
tion from the pseudo normal, promoting predictions that are more
in line with the physical facts.

Overall, the combination of 𝐿renders, 𝐿diffuse, and 𝐿normal in the
loss function ensures that our method learns light condition and
represents the scene more accurately and realistically.

4 EXPERIMENTS
4.1 Setups
4.1.1 Datasets and Metrics. We conduct a comprehensive eval-
uation of our proposed model on 21 scenes from public datasets,
including 8 scenes from Shiny Dataset[28], 9 scenes from Mip-
NeRF360[2], 2 scenes from Tanks&Temples[11], and 2 scenes in
DeepBlending[9]. Consistent with methodologies outlined in pre-
vious works[2, 10], we adopted a train/test split approach where
every 8th photo was selected for testing. To assess the rendering
quality, we further measured the average Peak Signal-to-Noise Ra-
tio (PSNR), Structural Similarity IndexMeasure (SSIM), and Learned
Perceptual Image Patch Similarity (LPIPS)[38].

4.1.2 Implementation Details. Our method is built upon the
widely-used open-source 3D-GS codebase[10]. In line with the ap-
proach described in 3D-GS, our models undergo training for 30K
iterations across all scenes, employing the same Gaussian den-
sity control strategy and training schedule. Furthermore, we have
enhanced the differentiable Gaussian rasterization technique to in-
clude latent feature and normal vector rendering. All experiments
were conducted on an RTX 4090 GPU with 24GB of memory.

4.2 Comparisons
We assesse the quality of our approach by comparing it to current
state-of-the-art baselines, including Instant-NGP[22], Plenoxels[8],
Mip-NeRF360[2], 3D-GS[10], Ref-NeRF[28], SpecNeRF[20], Spec-
Gaussian[33]. Notably, the latter four methods are specifically de-
signed for 3D scene reconstruction involving specular reflections.
The quality metrics for these methods align with the best results
reported in their respective published papers. Additionally, we

have re-implemented 3D-GS and Spec-Gaussian on Shiny Dataset,
adhering to their hyperparameters. Specifically, Spec-Gaussian is
evaluated using anchor Gaussians[19].

4.2.1 Quantitative Comparisons. We conducted comparisons
on the challenging Shiny Dataset[28], characterized by scenes with
stronger specular reflections. As illustrated in Table 1, our approach
significantly outperforms all baseline methods on the Shiny Dataset
across the metrics mentioned earlier, particularly excelling over
models based on 3D-GS. Futhermore, Table 2 presents the results on
three real-world datasets[2, 9, 11], highlighting that our approach
also achieves competitive performance in rendering quality com-
pared to state-of-the-art methods. These promising results demon-
strate the effectiveness of our method in capturing spatial lighting
variations under different viewpoints.

Table 1: Quantitative comparison on Shiny Dataset.

Dataset Shiny Dataset
Method|Metric PSNR↑ SSIM↑ LPIPS↓

Ref-NeRF 26.50 0.724 0.283
SpecNeRF 26.56 0.728 0.278
3D-GS 25.58 0.874 0.118

Spec-Gaussian 26.43 0.883 0.099

Ours 27.23 0.884 0.109

4.2.2 Qualitative Comparisons. Qualitative results across var-
ious datasets are provided in Figure 4. On one hand, it is evident
that other baselines struggle to accurately model specular high-
lights or reconstruct correct geometry, whereas our method adeptly
captures specular details. On the other hand, under conditions of
sparse viewpoints, such as the scene of DrJohnson from the Deep
Blending dataset, other models tend to produce artifacts. In con-
trast, thanks to the Diffuse-UNet, our method is better equipped
to capture global image information and complete scene edges.
As illustrated in Figure 4, our method clearly delivers smoother
rendering results.

4.3 Ablation Study
4.3.1 Ablations on different modules. We have conducted an
ablation study on Shiny Dataset to evaluate the effectiveness of
using view-mask and Specular-CNN for decoding specular color.
The results are shown in Figure 5. We do not fuse the components
of specular color for the baseline Ours no specular and directly
fuse with diffuse color without using mask multiplication when
synthesizing specular color for the baseline Ours no mask. The
former method yields rendering results that closely resemble diffuse
reflections, while the latter method achieves better simulation of
specular reflection with highligh distributions and shapes that are
closer to the original image.

Table 3 further conducts a quantitative analysis that the perfor-
mance of our method gradually improves upon incorporating the
Specular-CNN and viewpoint mask modules. Comparing it to the
baseline methods, including the original 3D-GS method (line1) and
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Table 2: Quantitative comparison on real-world datasets.

Dataset Mipnerf-360 Tanks&Templates Deep Blending
Method|Metric PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Instant-NGP 25.59 0.699 0.331 21.72 0.723 0.178 23.62 0.797 0.423
Plenoxels 23.08 0.626 0.463 21.08 0.719 0.379 23.06 0.795 0.510

Mip-NeRF360 27.69 0.792 0.237 22.22 0.759 0.257 29.40 0.901 0.245
3D-GS 27.25 0.800 0.221 23.68 0.849 0.178 29.41 0.903 0.243

Spec-Gaussian 27.46 0.810 0.221 24.46 0.864 0.160 30.41 0.912 0.240

Ours 27.60 0.811 0.229 24.81 0.855 0.175 30.06 0.906 0.245

Mipnerf360 3DGS SpecGS Ours GT

Figure 4: Qualitative Comparisons on Shiny Dataset, Mipnerf360 Dataset and Deep Blending Dataset.

the latent-SH approach (line3), the latter does not utilize the view-
mask or Specular-CNN for decoding specular color but instead
relies on the original 3D-GS’s Spherical Harmonic expression for
view-dependent color. Our method (line5) outshines the SH-based
approach in accurately decoding view-dependent color. Addition-
ally, the latent-SH baseline method also demonstrates superior
results compared to the original 3D-GS method, indicating that our
latent feature decoding of diffuse color is more effective. In the pre-
decode color baseline (line6), we experimented with simplifying the

network by placing the color decoding before Gaussian splatting.
This involved using an MLP to decode diffuse features and obtain
diffuse color, decoding view-dependent features using an MLP after
embedding the viewpoint, combining these with the view-mask
features to derive specular components, and then merging them
directly with the diffuse color. The final rendering was processed
through Gaussian splatting. However, this early fusion method
underperformed, highlighting the importance of our structured
approach.
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Figure 5: Ablation on our baseline. We visualize the results of our method after removing the viewpoint mask and removing
the specular color components. The top images are the results of our rendering and the bottom images are the orresponding
specular color component.

Through our experiments, we have demonstrated that integrat-
ing view-mask and Specular-CNN allows our model to more ef-
fectively capture complex lighting distributions and model high-
frequency and anisotropic scene features, leading to more precise
and realistic rendering results.

Table 3: Ablations of our method on Shiny Dataset.

diffuse color specular color Shiny Dataset
SH0 latent SH3 specular mask PSNR↑ SSIM↑ LPIPS↓
✔ ✘ ✔ ✘ ✘ 25.58 0.874 0.118
✘ ✔ ✘ ✘ ✘ 26.53 0.876 0.122
✘ ✔ ✔ ✘ ✘ 27.04 0.878 0.113
✘ ✔ ✘ ✔ ✘ 27.05 0.882 0.111
✘ ✔ ✘ ✔ ✔ 27.23 0.884 0.109

pre-decode color 26.17 0.880 0.111

4.3.2 Ablations on different channels. To investigate the im-
pact of the number of channels on our model, we conducted experi-
ments with different channel configurations. Typically, our method
employs a configuration of 8 + 8 latent feature channels, where 8
dimensions are allocated for latent diffuse features and another 8
for latent view-dependent features. We evaluated the performance
with varying these numbers to 4 + 4 and 16 + 16. The outcomes,
detailed in Table 4, demonstrate that models with more channels
generally perform better. However, the improvement between the
8 + 8 and 16 + 16 configurations is marginal. Considering this and
the balance between computational efficiency and effectiveness,
we opted for the 8 + 8 channel configuration, which optimizes the
trade-off between performance and training time, ensuring efficient
yet effective rendering.

Table 4: Ablations about the impact of varying the number
of latent feature channels on the Shiny Dataset.

scene channels
diffuse+spec PSNR↑ SSIM↑ LPIPS↓

food
4 + 4 23.30 0.808 0.160
8 + 8 23.55 0.819 0.140
16 + 16 23.71 0.820 0.128

seasoning
4 + 4 28.87 0.906 0.105
8 + 8 29.49 0.913 0.102
16 + 16 29.21 0.914 0.089

average
4 + 4 26.09 0.857 0.133

8 + 8 (Ours) 26.52 0.866 0.121
16 + 16 26.46 0.867 0.108

5 CONCLUSION
In this paper, we introduce a novel method called Lantent-SpecGS
that aims to improve the modeling of specular reflections and han-
dle anisotropic appearance components in 3D Gaussian Splatting
(3D-GS). The proposed method achieves more efficient representa-
tion of 3D feature fields, including geometry and appearance, by
utilizing universal latent neural descriptors within each 3D Gauss-
ian . To decode the splatting feature maps into diffuse and specular
colors, the method employs two parallel convolutional neural net-
works. The final rendered image is obtained by merging these two
colors using a viewpoint-dependent mask learned during training .
Experimental results demonstrate the competitiveness of the pro-
posed method in novel view synthesis and its enhanced capability
to handle complex scenes with specular reflections. In future work,
we will explore the consistent representation of cross-modal neural
descriptors to achieve multi-modal tasks using latent features.
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