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Abstract—In this paper, we modified the shifted Rayleigh filter
(SRF) to improve its performance of tracking with bearing-
only measurement. The proposed method uses multiple parallel
SRF with different initial positions and it is named as range
parameterized shifted Rayleigh filter (RP-SRF). The RP-SRF is
applied to an underwater target motion analysis (TMA) where
the target moves in a nearly straight line motion with constant
velocity, and the observer maneuvers to track the target. The
performance of the proposed estimator is compared with the
SRF, cubature Kalman filter (CKF), and RP-CKF in terms of
root mean square error (RMSE), percentage of track loss, and
computational time. Simulation results indicate that the RP-SRF
is more accurate than the CKF, SRF, and RP-CKF and would
be ahead of its nearest competitor for underwater bearing-only
tracking.

Index Terms—Bearing-only tracking, target motion analysis,
range-parameterization, shifted Rayleigh filter, cubature Kalman
filter.

I. INTRODUCTION

Bearing only tracking (BOT) problem finds application
in different areas like aircraft surveillance, submarines, and
torpedo tracking, and many more [1]–[3]. These problems
are generally referred to as target motion analysis (TMA).
In TMA, a moving target is tracked using noisy bearing
measurements. In military applications, bearing measurements
are obtained mostly from passive sensors to stay hidden from
enemies. Thus it provides an efficient and effective way of
tracking an enemy submarine, ship, or torpedo without getting
revealed [4].

Most of the research works on BOT problems deal with
the tracking of a non-maneuvering target. For such system
the target becomes unobservable if the observer follows a
straight line path with constant velocity. To make the system
observable and track the target, the observer must maneuver
[5]–[8].

As the measurement equation is non-linear, the BOT prob-
lems are solved using non-linear estimators. In such estima-
tors, the posterior probability density of the target’s state is
calculated using the predicted target motion and the likelihood
of the measured bearing received by the observer. Due to the
fact that the measurement model is highly nonlinear and the
observability issue appears, it is not a simple task to locate the
target [9], [10]. Several algorithms of filtering are proposed
[2], [10]– [11] to do the task in recursive way.

The extended Kalman filter (EKF) [12] and its variants
[13]–[15] which are based on the linearization of a non-linear
function using the first-order Taylor series approximation were
the first sub-optimal nonlinear filter developed for BOT. Later
various other nonlinear filters such as the cubature Kalman
filter (CKF), unscented Kalman filter (UKF), Gauss-Hermite
filter (GHF) etc. [16]–[18] were applied in it.

In another approach, sequential Monte Carlo based filter-
ing technique is implemented for BOT which shows good
performance but it is computationally very expensive [16].
Very recently, a new filtering technique named as the shifted
Rayleigh filter (SRF) [19] is formulated particularly for BOT
problems. It assumes the prior and posterior density functions
are Gaussian and compute the first two moments for the
bearing-only measurement. Its performance is comparable
with PF [20] as showed in [21], [22]. The main advantage of
SRF is its computation efficiency and accuracy as compared
to existing filters.

As no optimal filter for BOT exists, there are continuing ef-
forts to develop a computationally efficient nonlinear filter that
can provide a better estimation accuracy for the BOT problem.
The range parameterization technique has been introduced in
the estimators to further improve the estimation accuracy [17],
[23]. It uses a number of same filters that run parallelly with
different initial ranges. Finally, these filters are weighted based
on the likelihood of the measurement received to estimate the
posterior mean and covariance of the relative state vector [24].
Range parameterized EKF [23] and range parameterized CKF
[17] show better performance than EKF [23], [25] and CKF
[17] respectively.

In this paper, we formulate a range parameterized SRF
(RP-SRF) for the BOT problem in order to further improve
the accuracy of the SRF. In this formulation, more than one
independent SRF are implemented in parallel, each with a
different initial range. The final estimate will be the weighted
average of the estimates obtained from all the filters. We
implement the proposed filter for an underwater target tracking
scenario, where the target moves in a nearly straight-line
path with a constant velocity and the own ship maneuvers
smoothly in order to make the system observable. To estimate
the position and velocity of the target, we implement the
proposed RP-SRF along with the CKF, SRF, and RP-CKF. We
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compare the filtering performance in terms of root mean square
error (RMSE), percentage of track loss, and computation time.
We also use Cramer-Rao lower bound (CRLB) to compare
the results of the estimators with that of best achievable
performance. From the simulation results, it is observed that
the proposed RP-SRF provides more accurate tracking than
the CKF, SRF, and RP-CKF.

II. PROBLEM FORMULATION

The state space equation for a two dimensional engagement
scenario is developed in Cartesian coordinates. The state vector
for target dynamics is X tark =

[
xtark ytark ẋtark ẏtark

]T
.

Likewise the state vector for observer dynamics is X obsk =[
xobsk yobsk ẋobsk ẏobsk

]T
. So, the relative state vector be-

tween target and observer can be defined as Xk , X tark −
X obsk =

[
xk yk ẋk ẏk

]T
. The dynamics of the target

assuming a near constant velocity in discrete time domain can
be expressed as [16], [17]

Xk = FXk−1 + wk−1 − fk−1,k, (1)

where F is the state transition matrix, calculated as:

F =


1 0 ∆ 0
0 1 0 ∆
0 0 1 0
0 0 0 1

 , (2)

where ∆ is the sampling interval. fk−1,k is a vector of inputs
that accounts for observer acceleration is

fk−1,k =


u1

u2

u3

u4

 =


xobsk − xobsk−1 −∆ẋobsk−1

yobsk − yobsk−1 −∆ẏobsk−1

ẋobsk − ẋobsk−1

ẏobsk − ẏobsk−1

 (3)

and wk−1 ∼ N (0, Qk−1) is the process noise with covariance

Q =


∆3

3 0 ∆2

2 0

0 ∆3

3 0 ∆2

2
∆2

2 0 ∆ 0

0 ∆2

2 0 ∆

 q̄, (4)

where q̄ is the process noise intensity.
The sensors mounted to own ship, measure the direction

of the target location with respect to the true north. Such
measurements can be expressed as

Yk = tan−1xk
yk

+ νθk , (5)

where νθk is the noise in bearing measurement which is
assumed to be zero mean, white, Gaussian with standard
deviation σθ i.e. νθk ∼ N (0, σ2

θ). For such measurements the
system becomes unobservable [16], [17] and the estimation
of target state is only possible when the own ship starts
maneuvering.

III. FILTERING METHODS

A. Shifted Rayleigh filter

The shifted Rayleigh filter is a moment matching algorithm
that exploits nonlinearities in bearing-only tracking, resulting
in a more exact conditional mean and covariance after the
current measurement update assuming the prior and posterior
density to be Gaussian. The approximation used in this filter is
that the posterior density is replaced by an equivalent Gaussian
density at the end of each measurement update.

In the SRF, the measurement model of Eq. (5) is trans-
formed into an augmented measurement as

Zk = HXk + wk, (6)

where

H =

[
1 0 0 0
0 1 0 0

]
(7)

and wk ∼ N (0, Rk) is an augmented noise vector with mean
zero and covariance Rk. Following [19], [21] and [26], the
expression of Rk can be written as,

Rk = σ2
θE[||HXk||2 |b1, ..., bk−1]I2×2

= σ2
θ(x̂k|k−1 + ŷk|k−1 + σ2

x̂k|k−1
+ σ2

ŷk|k−1
)I2×2, (8)

where σ2
x̂k|k−1

and σ2
ŷk|k−1

are obtained from the predicted
error covariance Pk|k−1.

Now, we define a transformed measurement vector for a
2-D scenario as,

bk =
Zk
||Zk||

=

[
sin(Yk)
cos(Yk)

]
. (9)

Geometrically it is the projection of the augmented measure-
ment onto the unit circle i.e. the direction cosine of the bearing
measurement. The prior mean and error covariance for SRF are
evaluated in the prediction step with Eqs. (16) and (17). The
posterior mean and covariance are evaluated in the correction
step with Eqs. (20) and (23) which are mentioned in the
Algorithm 1.

B. Range parameterized shifted Rayleigh filter

Range parameterized method was proposed in [23] in the
context of the EKF where several independent EKFs were
initialized with different x positions and y positions. Each
time step the filters are updated, and they are weighted for
consistency with respect to the measured bearing [23]. After
this process is continued for some time steps, the weights
of some filters’ estimate go below a threshold value, after
which they are no longer processed. The number of time steps
after which only one filter shall be processed depends on the
observer target scenario. So, the range parameterized tracking
is more computationally expensive than running a single filter.

Suppose, Nf number of filters are initialized with different
initial ranges and their standard deviations, which are evalu-
ated by dividing Nf sub-intervals of the interval (rmin, rmax).
The tracking performance of a filter depends on the coefficient
of variation of the estimated range, Cr. As mentioned in [23]

Authorized licensed use limited to: AALTO UNIVERSITY. Downloaded on October 11,2024 at 11:53:57 UTC from IEEE Xplore.  Restrictions apply. 



and [27], Cr = σrn/r̂n, where r̂n is the mean of a sub-interval
and σrn is the standard deviation of that sub-interval. For each
filter, the mean and the standard deviation can be calculated
as

r̂n = rmin
ξn−1 + ξn

2
, and σrn = rmin

ξn + ξn−1

√
12

, (10)

where n = 1, · · · , Nf and the common ratio, ξ =
(rmax/rmin)1/Nf .

The estimated state of each filter is combined using
weighted averaging method [23], [27]. Initially the weight
of each filter is considered to be the same i.e. 1/Nf as no
prior information of the truth is available at the first time step.
Later the weights are updated using Bayes’ theorem assuming
that the predicted and the measured bearing follows Gaussian
distribution. The weights are calculated as [23], [27]

ωnk =
p(Znk )ωnk−1

Σ
Nf

i=1p(Zik)ωik−1

, (11)

where p(Znk ) is the likelihood of augmented measurement Zk
of the nth filter. It can be calculated as

p(Znk ) =

1

2π
√
|V nk |

exp(−1

2
(Zk − Ẑnk|k−1)T (V nk )−1(Zk − Ẑnk|k−1)),

(12)

where Ẑnk|k−1 = HX̂nk|k−1 and Zk is the augmented measure-
ment as in Eq. (6) is the augmented angle predicted by the
nth filter at kth time step and V nk is the innovation covariance
of the measurement for the nth filter at the kth time step and
evaluated as

V nk = HPnk|k−1H
T +Rnk . (13)

The weighted average of the mean and the covariance of
the Nf independent SRFs are expressed as

X̂k|k =

Nf∑
i=1

ωikX̂ ik|k (14)

and

Pk|k =

Nf∑
i=1

ωik[P ik|k + (X̂ ik|k − X̂k|k)(X̂ ik|k − X̂k|k)T ] (15)

respectively. To implement the RP-SRF, a pseudo-code is
presented in Algorithm 1.

IV. SIMULATION RESULTS

A. Target-observer scenario

Here, we consider an underwater target tracking scenario
[17], where the target moves in a nearly straight line with
constant velocity and the own ship maneuvers as shown in
Fig. 1. To track the target, we implemented here the CKF,
SRF, RP-CKF, and the proposed RP-SRF. Parameters used in
the simulation are listed in Table I. The sampling time, ∆ is
considered here to be 1min with an observation period of 30
minutes.

Algorithm 1: Pseudo code for RP-SRF
Step 1: Initialization
• Initialize each filter with X̂n0|0 and Pn0|0.

Step 2: Prediction step
Prior estimate of nth filter,

X̂nk|k−1 = F X̂nk−1|k−1 − fk−1,k. (16)

Prior error covariance,

Pnk|k−1 = FPnk−1|k−1F
T +Qk. (17)

Innovation covariance,

V nk = HPnk|k−1H
T +Rnk . (18)

Step 3: Correction step
The Kalman gain,

Kn
k = Pnk|k−1H

T (V nk )−1. (19)

Posterior estimate of nth filter,

X̂nk|k = (I −Kn
kH)X̂nk|k−1 + γnkK

n
k bk, (20)

where
γnk = (bTk (V nk )−1bk)−

1
2 ρ(unk ), (21)

where

unk = (bTk (V nk )−1bk)−
1
2 bTk (V nk )−1(HX̂nk|k−1). (22)

Posterior error covariance,

Pnk|k = (I −Kn
kH)Pnk|k−1 + δnkK

n
k bkb

T
k (Kn

k )T , (23)

where

δnk = (bTk (V nk )−1bk)−1(2 + ukρ(unk )− ρ2(unk )). (24)

Step 4: Range parameterization

• Calculate the likelihood of the augmented measurement
with the Eq. (12).

• Evaluate weights for each SRF as shown in Eq. (11).
• Posterior estimate of RP-SRF, X̂k|k =

∑Nf

i=1 ω
i
kX̂ ik|k.

• Posterior error covariance of RP-SRF,
Pk|k =

∑Nf

i=1 ω
i
k[P ik|k + (X̂ ik|k − X̂k|k)(X̂ ik|k − X̂k|k)T ].

B. Initialization of filters

The initialization of all filters is done as per [16]. The
position components of the relative state vector are initialized
based on the prior initial target range and the first bearing
measurement. The estimated initial range of the target is
considered as r̄ ∼ N (r, σ2

r), where r is the true initial
range and σr is its standard deviation. The initial bearing
measurement is θ̄ ∼ N (θ, σ2

θ), where θ is the true bearing and
σθ is its standard deviation. Likewise, using prior knowledge
of the target speed, the initial speed estimate is s̄ ∼ N (s, σ2

s),
where s is the true initial target speed. Assuming that the target
is moving towards the observer, the initial course estimate is
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TABLE I: Parameters of the scenario

Parameters Values
Initial range (r) 5km

Target speed (s) 4knots

Target course −140o

Observer speed 5knots

Observer initial course 140o

Observer final course 20o

Observer maneuver From 13th to 17thmin

Initial range standard deviation (σr) 2km

Initial target speed standard deviation (σs) 2knots

Initial bearing standard deviation (σθ) 1.5o

Initial course standard deviation (σc) π/
√

12

Process noise intensity (q̄) 1.944× 10−6km2/min3

0 1 2 3 4 5 6 7 8

X (km)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Y
 (

k
m

)

Start

Start

Start

Observer

Truth target

Estimated RP-SRF

Observer at 18th min

RP-SRF at 18th min

Fig. 1: Target and own ship trajectories along with the
RP-SRF estimation

c̄ = θ̄ + π.

Thereafter, the initial estimate of the relative state vector
can be defined as

X̂0 =


x̄
ȳ
¯̇x
¯̇y

 =


r̄ sin(θ̄)
r̄ cos(θ̄)

s̄ sin(c̄)− ẋobs0

s̄ cos(c̄)− ẏobs0

 . (25)

The initial covariance is as follows [16]:

P0|0 =


Pxx Pxy 0 0
Pyx Pyy 0 0
0 0 Pẋẋ Pẋẏ
0 0 Pẏẋ Pẏẏ

 , (26)

where

Pxx = r̄2σ2
θ cos2(θ̄) + σ2

r sin2(θ̄) (27)

Pyy = r̄2σ2
θ sin2(θ̄) + σ2

r cos2(θ̄) (28)

Pxy = Pyx = (σ2
r − r̄2σ2

θ) sin(θ̄) cos(θ̄) (29)

Pẋẋ = s̄2σ2
c cos2(c̄) + σ2

s sin2(c̄) (30)

Pẏẏ = s̄2σ2
c sin2(c̄) + σ2

s cos2(c̄) (31)

Pẋẏ = Pẏẋ = (σ2
s − s̄2σ2

c ) sin(c̄) cos(c̄). (32)

The accuracy of range parameterized filters depend on the
number of parallel filters (Nf ). For a large Nf value the
estimation performance of the filter is better at the cost of
higher computation time. Here, we choose Nf = 10. The
initial estimated range and its standard deviation for each filter
are calculated as in Eq. (10), where rmin = r − 3σr and
rmax = r+3σr. If rmin < 0 then rmin is considered to be 0.1r
[17]. All the independent Nf filters are assigned equal and
normalized initial weights of ωno = 1/Nf , for n = 1, ..., Nf .

C. Performance Analysis

Performance analysis is done by comparing the RMSE plots
obtained from different filters both for position and velocity,
the percentage track loss, and the computation time of each
filter.

The position and velocity RMSE (excluding the track loss)
along with the Cramer Rao lower bound (CRLB) obtained
from 500 Monte Carlo (MC) runs, are plotted in Figs. 2a–2b,
respectively. From the Figs. 2a–2b, it can be observed that the
RMSEs of RP-SRF is lowest followed by RP-CKF, SRF and
CKF has the highest RMSEs.

We also compare the filters in terms of percentage track loss,
calculated from twenty thousand Monte-Carlo runs as shown
in Table II. We define the estimator loses its track when the
terminal range error goes beyond 1 Km. Table II exhibits that
the RP-SRF and RP-CKF have the lowest track loss (0%)
followed by SRF (0.18%), whereas the CKF has the highest
track loss (2.05%). Further, we compare the computation time
of the filters and presented in the same table. The RP-SRF is
considered as the reference hence it is denoted by unity. From
the table, we see that the computation time of the RP-SRF
is about nine times more than SRF and CKF and about 1.25
times of the RP-CKF.

TABLE II: Percentage of track loss and relative computation
time for all the implemented filters

Filters Track loss (%) Relative comp. time
CKF 2.05 0.1
SRF 0.18 0.11

RP-CKF 0 0.81
RP-SRF 0 1

V. DISCUSSION AND CONCLUSION

In this paper, to improve the tracking performance of
SRF we implement the range parameterization technique. The
proposed filter (RP-SRF) is compared with the CKF, SRF,

Authorized licensed use limited to: AALTO UNIVERSITY. Downloaded on October 11,2024 at 11:53:57 UTC from IEEE Xplore.  Restrictions apply. 



20 22 24 26 28 30
0.05

0.1

0.15

0.2

0.25

Time (in min)

P
o

s
it
io

n
 R

M
S

E
 (

in
 K

m
)

 

 

CRLB

CKF

SRF

RP−CKF

RP−SRF

(a)

20 22 24 26 28 30
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Time (in min)

V
e

lo
c
it
y
 R

M
S

E
 (

in
 K

m
/m

in
)

 

 

CRLB

CKF

SRF

RP−CKF

RP−SRF

(b)

Fig. 2: RMSE in (a) position, and (b) velocity obtained from
500 MC runs

and RP-CKF in terms of RMSE, percentage of track loss, and
relative execution time. In the simulation scenario considered
here, RP-SRF shows zero track loss percentage and better
RMSE than the other filters. We conclude that the proposed
RP-SRF performs better than its existing counterparts in BOT
problems with a caveat that comparative performance of it may
not be the best in all possible engagement scenarios.
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