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A The proof of Theorem 1

Theorem 1. Let Pi represent the distribution of all seen training samples (including all previous
batches) drawn from S at Ti. Let hPi

= argminh∈H R(h,Pi) and hMi
= argminh∈H(h,PMi

)
represent the ideal classifiers for Pi and PMi

, respectively. We derive a risk bound between Pi and
PMi

as :
R
(
h,Pi

)
≤ R

(
h, hMi

,PMi

)
+ Ld̂

(
PX
i ,PX

Mi

)
+ η

(
Pi,PMi

)
, (1)

where η(·, ·) is the optimal combined error defined as :

η
(
Pi,PMi

)
= R(hPi

, hMi
,Pi) +R(hPi

, h⋆
Pi
,Pi) , (2)

where R(hPi
, hMi

,PMi
) = Ex∼PMi

[L(hPi
(x), hMi

(x))] and h⋆
Pi

is the true labeling function for
Pi.

Proof. Firstly, we consider R(h,Pi) ≡ R(h, h∗
Pi
,Pi). We adopt similar derivations to those used for

Domain Adaptation theory [12]. We consider fixing the classifier h ∈ H. According to the triangle
inequality property of R(·, ·) and R(·, ·, ·) and Definition 5 from the paper, see the discrepancy
distance Ld(·, ·) from equation (2) from the paper, we have:

R(h, h⋆
Pi
,Pi) ≤ R(h, hMi

,Pi) +R(hMi
, hPi

,Pi) +R(h⋆
Pi
, hPi

,Pi)

≤ R(h, hMi ,PMi) +R(hMi , hPi ,Pi) +R(hPi , h
⋆
Pi
,Pi) + Ld(PX

i ,PX
Mi

)
(3)

By considering the discrepancy distance (Definition 5 of the paper), we rewrite Eq. (3) as :

R
(
h,Pi

)
≤ R

(
h, hMi

,PMi

)
+ Ld

(
PX
i ,PX

Mi

)
+ η

(
Pi,PMi

)
, (4)

In addition, from Corollary 1 of the paper, we have :

Ld(PX
i ,PX

Mi
) ≤ Ld(P̂X

i , P̂X
Mi

)

+ 4q

(
ReUPX

i

(H) + ReUPXMi

(H)

)

+ 3M

√
log

(
4
δ

)
2mPX

i

+

√√√√ log
(
4
δ

)
2mPX

Mi

 .

(5)

where UPX
i

and UPX
Mi

represent samples of sizes mPX
i

and mPX
Mi

, drawn independently from PX
i

and PX
Mi

. P̂X
i and P̂X

Mi
represent the empirical distributions of UPX

i
and UPX

Mi

. Then we replace

Ld

(
PX
i ,PX

Mi

)
of Eq. (4) by the right-hand side of Eq. (5), resulting in :

R
(
h,Pi

)
≤ R

(
h, hMi ,PMi

)
+ η

(
Pi,PMi

)
+ Ld(P̂X

i , P̂X
Mi

)

+ 4q

(
ReUPX

i

(H) + ReUPXMi

(H)

)

+ 3M

√
log

(
4
δ

)
2mPX

i

+

√√√√ log
(
4
δ

)
2mPX

Mi

 . ,

(6)

This proves Theorem 1.

B The proof of Theorem 3

Theorem 3. For a given data stream S , we assume that G = {G1, · · · , Gc} has learned n components
at Ti. Let K = {Tk1

, · · · , Tkc
} be a set of training steps where each Tkv

represents the training step
that Gv was finished on training. We derive a GB for G as :

1

i

∑i

j=1
{R(h,P(i,j))} ≤ 1

i

∑i

j=1
{FS

(
P(i,j),G

)
} (7)
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where FS(·, ·) is the selection function, defined as :

FS

(
Pi,G

)
= min

v=1,··· ,c

{
R
(
h, hMki

,PMkv

)
+ Ld̂

(
PX
i ,PX

Mkv

)
+ η

(
Pi,PMkv

)}
,

(8)

where PMkv
represents the memory distribution at Tkv . However, we usually perform the model

selection in a batch of samples instead of the whole seen training samples. In the following, we con-
sider Pi to be a mixture distribution and its density form is expressed by p(1:i)(x) =

1
i

∑i
j=1 pi(x),

where each pi(x) is the density function for a batch of samples. R
(
h,Pi

)
can be expressed as the

integral form
∫
pi(x)L(h, fPi) dx. When we take the mixture density form into this integral, we

have :
1

i

∑i

j=1

∫
pj(x)L(h, fPi

) dx (9)

Let P(i,j) be the distribution of pj(x). Since fPi
is the true labelling function for Pi, we decompose

fPi
into j functions {fP(i,1)

, · · · , fP(i,i)
} where each fP(i,1)

is the true labelling function for P(i,j),
Then we can rewrite Eq. (9) as :

1

i

∑i

j=1

∫
pj(x)L(h, fP(i,j)

) dx (10)

Then we rewrite Eq. (10) as the expectation form 1
i

∑i
j=1{R(h,P(i,j))}. Then we derive GB for

this expectation from as :

1

i

∑i

j=1
{R(h,P(i,j))} ≤ 1

i

∑i

j=1
{FS

(
P(i,j),G

)
} (11)

This proves Theorem 3.

C Theoretical analysis for the diversity between components

According to Lemma 2 of the paper, we have the following GB for a dynamic expansion model.

CT
t∑

j=1

{Cb
t,j∑

d=1

R
(
h,PT

t,j(d)
)}

≤
CT

t∑
j=1

{Cb
t,j∑

d=1

FS

(
PT
t,j(d),G

)}
. (12)

where we assume that G = {G1, · · · , Gc} trained c components at Ti. If some of the components in
G learn similar underlying data distributions while c = CT

t , then G would not capture the information
for all target sets {DT

t,1, · · · ,DT
t,CT

t
}, thus deteriorating the performance. On the other hand, as the

number of components c in G increases, G would learn more knowledge about each target set, which
leads to a tight GB in Eq. (12).

A good trade-off between the model’s complexity and generalization performance, observed from
Eq. (12), is allowing each component to learn the underlying data distribution of a unique target
set. Such a mechanism can maintain the model’s performance while minimizing the number of
components used. To implement this mechanism, we have two main learning goals : (1) Proposing a
new approach to detect the data distribution shift in the data stream, providing better signals for the
model’s expansion. (2) Encouraging the diversity between trained components such that each one
models a non-overlapped underlying data distribution. The proposed ODDL-S can satisfy these two
learning goals by proposing a new expansion criterion to detect the data distribution shift and a new
sample selection to encourage the diversity between components.

In the following, we theoretically prove that the diversity of trained components relieves not only
forgetting but also achieves a good generalization performance.

Assumption 1. For a given dynamic expansion model G = {G1, · · · ,Gc} that has learnt c components
at Ti, let K = {Tk1 , · · · , Tkc} be a set of training steps where each Tkj represents the training step
that Gj was trained on. By satisfying the ideal selection process (Eq.(22) of the paper) and also
considering that each component Gt finished the training on Mkt

at Tkt
, we assume that the dynamic
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expansion model G can be seen as a single model h trained on all previously learnt memories
{Mk1 , · · · ,Mkc−1} and the current memory Mi at Ti, where Mkc = Mi. This assumption
is reasonable since the selection process (Eq.(22) of the paper) can always choose a component
with the minimal risk. Let P⋃kc−1

t=k1
{Mt}⊗Mi

represent the distribution of all finished memories

{Mk1 , · · · ,Mkn−1} and the current memory Mi at Ti.

Theorem 4. For a given data stream S , we assume that G = {G1, · · · , Gc} has trained c components
at Ti. Let Pi represent the distribution of all visited samples at Ti. Based on Assumption 1. we derive
a GB as :

R
(
h,Pi

)
≤ R

(
h, h⋃kc−1

t=k1
{Mt}⊗Mi

,P⋃kc−1
t=k1

{Mt}⊗Mi

)
+ Ld̂

(
PX
i ,PX⋃kc−1

t=k1
{Mt}⊗Mi

)
+ η

(
Pi,P⋃kc−1

t=k1
{Mt}⊗Mi

)
,

(13)

Remark. We have several observations from Theorem 4 :

• The forgetting of h on Pi relies on the discrepancy distance between Pi and
P⋃kc−1

t=k1
{Mt}⊗Mi

. Since P⋃kc−1
t=k1

{Mt}⊗Mi
represents the information from all learnt memo-

ries and the current memory, the diversity between these memorizes play an important role.
For instance, if several memories would capture overlapping underlying data distributions,
then this would require to create and add more components to the mixture in order to capture
all modes of the statistical data representation Pi. On the other hand, if each memory cap-
tures a non-overlapped underlying data distribution, then P⋃kc−1

t=k1
{Mt}⊗Mi

would capture

more modes of Pi using a minimal number of components c.
• Compared with Theorem 3 from the paper, Theorem 4 theoretically proves that the proba-

bilistic diversity between trained components in a mixture model is crucial for relieve=ing
forgetting.

In the following, we derive a GB to theoretically prove that the diversity between trained components
in G is also important for the generalization performance.

Theorem 5 For a given data stream S =
⋃j

CS
t
DS

t,j consisting of samples from DS
t , we have a set of

target sets {DT
t,1, · · · ,DT

t,CT
t
}. Let PT

t represent the distribution of all target sets {DT
t,1, · · · ,DT

t,CT
t
}.

Based on Assumption 1, we derive a GB as :

R
(
h,PT

t

)
≤ R

(
h, h⋃kc−1

t=k1
{Mt}⊗Mi

,P⋃kc−1
t=k1

{Mt}⊗Mi

)
+ Ld̂

(
PT,X
t ,PX⋃kc−1

t=k1
{Mt}⊗Mi

)
+ η

(
PT,X
t ,P⋃kc−1

t=k1
{Mt}⊗Mi

)
,

(14)

From Eq. (14), we can observe that as the number of training steps Ti increases, G would gain
more knowledge and thus gradually improve its generalization performance, as empirically shown
in Fig. 2-b from the paper. Since the target distribution PT

t involves several different underlying
data distributions, the diversity between components in G helps P⋃kc−1

t=k1
{Mt}⊗Mi

to capture these

underlying data distributions with a reasonable number of components.

D Forgetting analysis of other methods

In this section, we apply the proposed theoretical framework to analyze the forgetting behaviour of
the existing CL methods. To our best knowledge, this paper is the first work to propose a forgetting
analysis for continual learning. Moreover, this paper is the first work to bridge the gap between the
theory and the existing memory-based approaches for TFCL.

D.1 Memory-based approaches

Memory-based approaches typically employ a small memory buffer to store a few past samples and
replay them when training incoming models. Maximal Interfered Retrieval (MIR), [1] is one of
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the most popular memory-based approaches, which uses a memory buffer with a sample selection
criterion. We derive the GB from Theorem 1 of the paper for analyzing the forgetting behaviour of
MIR :

R
(
h,Pi

)
≤ R

(
h, hMi

,PMi

)
+ Ld̂

(
PX
i ,PX

Mi

)
+ η

(
Pi,PMi

)
. (15)

Since the memory buffer in MIR has fixed capacity (the maximum number of stored samples), MIR
can obtain a tight GB at several initial training steps (i is small and not larger than the maximum
memory size). The main idea of the sample selection in MIR is to encourage storing diverse samples.
Since Pi would involve several underlying data distributions as the number of training steps (i)
increases, the diversity in the memory plays an important role to ensure a tight GB in Eq. (15).
The results of Eq. (15) can also explain the importance of the memory diversity in other memory-
based approaches, including the Gradient Sample Selection (GSS) [2] and the Continual Prototype
Evolution (CoPE) [4].

D.2 Generative replay mechanism

We extend the proposed theoretical framework to analyze the forgetting behaviour for the generative
replay mechanism based models. Firstly, we introduce several notations as follows.

Definition 8. (Generative replay mechanism (GRM).) Let G be single model which consists of a
classifier h ∈ H and a VAE model v. Let hi and vi represent the classifier and VAE model updated
at the training step Ti. Let Pvi represent the distribution of generative samples {x, hi(x)},x ∼ vi

drawn from vi and hi. In the following, we derive the GB for GRM-based models based on the
results of Theorem 1 :

R
(
h,Pi

)
≤ R

(
h, hvi ,Pvi

)
+ Ld̂

(
PX
i ,PX

vi

)
+ η

(
Pi,Pvi

)
. (16)

where hvi = argminh∈H(h,Pvi) represents an ideal classifier for Pvi . From this GB (Eq. (16)), we
observe that the quality of generative samples plays an important role for reducing the forgetting. If the
generator v can produce more realistic samples such that the discrepancy distance term Ld̂(P

X
i ,PX

vi)
is small, then the classifier h tends to have a small gap between the target and source risk, thus
maintaining the performance on all previously visited samples. In practice, GRM would perform a
number of generating processes in which the quality of the data samples generated by the generator
retrained on its generations would deteriorate during the following training steps [15, 14], with a
higher probabilistic deterioration when the generator is used more often for GRM.

GRM-based approaches for TFCL usually combine the GRM and the memory for the sample replay,
such as Maximal Interfered Retrieval (MIR), [1].

Definition 9. (The joint distribution of the GRM and the memory.) Let M be a memory buffer up-
dated at the training step Ti. We can form a joint distribution Pvi⊗Mi

from the sampling process
{x, hi(x),x′, y′},x ∼ vi,x′ ∼ Mi at Ti.
From Definition 9, we derive the GB for MIR at Ti :

R
(
h,Pi

)
≤ R

(
h, hvi⊗Mi

,Pvi⊗Mi

)
+ Ld̂

(
PX
i ,PX

vi⊗Mi

)
+ η

(
Pi,Pvi⊗Mi

)
, (17)

where hvi⊗Mi
= argminh∈H(h,Pvi⊗Mi

) is an ideal classifier for Pvi⊗Mi
. From Eq. (17), we

observe that the forgetting process of MIR relies on the discrepancy distance between Pi and Pvi⊗Mi

at Ti. Although, the GRM adapted in MIR would provide infinite replay samples that relieve the
memory limit problem, the quality of generative examples drawn from the GRM is also important for
the resulting performance.

D.3 Dynamic expansion models

Dynamic expansion models (DEMs) have achieved remarkable performances in TFCL. The main
advanced properties of DEMs over a single model can be summarized into two aspects. Firstly, DEMs
do not suffer from the negative knowledge transfer when choosing a reasonable expansion criterion.
However, a single model is prone to degrading the performance if the memory would lose previously
visited samples. Secondly, DEMs is scalable for learning an infinite number of data streams.

The existing DEMs [13, 10] evaluate the variance of the loss values as the expansion signals, which
has no theoretical guarantees. These approaches also do not analyse the trade-off between the model’s
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complexity and generalization. Firstly, we derive the GB from Theorem 3 from the paper to analyse
the forgetting behaviour of existing DEMs :

1

i

i∑
j=1

{
R
(
h,P(i,j)

)}
≤ 1

i

i∑
j=1

{
FS

(
P(i,j),G

)}
, (18)

FS

(
P(i,j),G

)
= min

v=1,··· ,c

{
R
(
h, hMkv

,PMkv

)
(19)

+ Ld̂

(
PX
(i,j),P

X
Mkv

)
+ η

(
P(i,j),PMkv

)}
,

We only consider an ideal model selection case in Eq. (19). From Eq. (18), it can be observed that by
increasing the model’s complexity (by increasing the number of components) would lead to a tight
GB because more components can capture more information about Pi during the training. Therefore,
the model selection (Eq. (19)) can lead to an appropriate number of components providing minimal
risks. In the following, we also investigate the generalization performance of the existing DEMs
under TFCL. We derive the GB from Lemma 2 of the paper as :

CT
t∑

j=1

{Cb
t,j∑

d=1

R
(
h,PT

t,j(d)
)}

≤
CT

t∑
j=1

{Cb
t,j∑

d=1

FS

(
PT
t,j(d),G

)}
. (20)

From Eq. (20), it can be observed that additional components would provide better generalization
performance on all target distributions because the DEMs capture the underlying data distributions
of most target sets {DT

t,1, · · · ,DT
t,CT

t
}. The best configuration for DEMs allows one component to

capture the underlying data distribution of a unique target set. In this case, the DEM would achieve a
tight GB while minimizing the number of components used. To our best knowledge, this paper is the
first research study to provide the theoretical analysis for the forgetting behaviour of DEMs and the
trade-off between the model’s complexity and its performance.

E Additional information for ODDL

The detailed learning procedure of the proposed ODDL-S is presented in Fig. 1 and the algorithm is
provided in Algorithm 1.

�1

��

��

�1

��

Expand the network 
Architecture

Perform the sample 
selection

Discrepancy

Discrepancy

�1

��

���{�1, . . . . , ��} ≥ �

Figure 1: The learning process of the proposed ODDL-S, which consists of three phases. At the
initial training phase, we train both G1 and Ge. Then we only train Ge when the memory is full
while we also check the expansion by using Eq.(18) of the paper. If satisfy the expansion criterion,
then we perform the expansion while clearing up the current memory, otherwise, we perform the
sample selection (Eq.(20) of the paper).

In addition, we provide supplemental information for the equations (Eq.(16) and Eq.(18)) of the paper.
Since Eq.(16) and Eq.(18) of the paper require to access previously learnt memory distribution PX

Mk1

which is not available during the current training session, we approximate it by using the auxiliary
distribution PX

vj
1

formed by the samples drawn from vj1 of Gj
1. It notes that the number of generative

samples matches the number of stored samples in the current memory.
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Algorithm 1: Training of ODDL-S
1 Input:S, n (Number of training steps);

1: for i < n do
2: {Xb

i ,Y
b
i} ∼ S ;

3: Initial training stage;
4: if (k == 2) then
5: if (|Mi| < MMax) then
6: Train the classifiers of G1 and G2 on Mi using Lclass(G1,Mi) and Lclass(G2,Mi);
7: Train the VAEs of G1 and G2 on Mi using LV AE(G1,Mi) and LV AE(G2,Mi);
8: end if
9: else

10: Evaluator training stage;
11: if (|Mi| < MMax) then
12: Train the classifier of Ge on Mi using Lclass(Ge,Mi);
13: Train the VAE of Ge on Mi using LV AE(Ge,Mi);
14: else
15: Calculate the discrepancy distance using Eq.(21) of the paper;
16: if (satisfy Eq.(22) of the paper then
17: G = Ge ∪ G Add the auxiliary component;
18: Ge = Gk+1 Build a new component;
19: k = k + 1 (Number of components);
20: else
21: Sample selection stage;
22: {x1, · · · ,xMMax} ∼ Mi;
23: {Ls

d(G,x1), · · · ,Ls
d(G,xMMax)} (Eq.(23) of the paper)

24: Mi =
⋃|M′

i|−b
j=1 M′

i[j];
25: end if
26: end if
27: end if
28: end for

F Additional information for the experiment

The release of the code. We have provided the detailed implementation of the proposed approach.
We will organize the source code of the ODDL-S model for the sake of easy understanding and for
facilitating the re-implementation and we will release it publicly on https://github.com/ if the paper is
accepted.

F.1 Experiment setting

The hyperparameter configuration and GPU hardware. To perform the density estimation task, we
use Adam [7] with a learning rate of 0.0001 and its default hyperparameters. To perform the
generative modelling task, we use the Adam with a learning rate of 0.00005. We set the batch size
and the number of epochs for each training step as 64 and 100, respectively. The GPU used for the
experiments was GeForce GTX 1080. The operating system considered for experiments was Ubuntu
18.04.5.

The detained information for the dataset. Split MNIST divides MNIST [9] containing 60k training
samples, into five tasks according to pairs of digits in increasing order [4]. Split CIFAR10 splits
CIFAR10 [8] into five tasks where each task consists of samples from two different classes [4].
Split CIFAR100 divides CIFAR100 into 20 tasks where each task has 2500 samples from 5 different
classes [11].

The configuration of the network architecture for MNIST. We adapt the network architecture from
[3] where two fully connected layers implement the inference and generator models. Each layer has
200 hidden units. The shared modules use the expansion mechanism as a single fully-connected
neural network with a layer (200 hidden units). A single layer also implements each individual
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(a) Thresholds of ODDL. (b) Thresholds of ODDL-S.

Figure 2: The performance change of the proposed approach when varying the threshold.

component with 200 hidden units for both the generator and inference models. We implement the
classifier by using an MLP network with 2 hidden layers of 400 units [4] for Split MNIST.

The configuration of the network architecture for CIFAR10 and CIFAR100. The shared encoder is
implemented using a fully connected network with three layers of processing units [2000, 1500, 1000],
and the component encoder uses a fully connected network with three layers [600, 300, 200]. The
shared decoder is implemented by a fully connected network with three layers [200, 300, 600] and the
component encoder is implemented by a fully connected network with three layers [1000, 1500, 2000].
The dimension of the latent variable is 200. We adapt ResNet 18 [5] as the classifier for Split CIFAR10,
Split CIFAR100, and Split MINI-ImageNet.

Hyperparameters for Split MNIST, Split CIFAR10 and Split CIFAR100 : Following the setting from
[4], we adapt ResNet-18 [5] as the classifier for Split CIFAR10 and Split CIFAR100. We use an MLP
network with 2 hidden layers of 400 units [4] as the classifier for Split MNIST. The maximum memory
size for Split MNIST, Split CIFAR10, and Split CIFAR100 is 2000, 1000 and 5000, respectively.
During the training, we only access a small batch of samples in certain training steps where the batch
size is 10. We search λ from 0.1 to 4.0 (See Section 4.1 of the paper) and the chosen λ values are 0.2,
0.45 and 3.0 for Split MNIST, Split CIFAR10 and Split CIFAR100.

Additional information for the evaluation. All results reported in the paper are evaluated on the testing
datasets after all training steps finish.

The details of the large-scale dataset. Split MINI-ImageNet (Split MImageNet) contains 20 disjoint
tasks where each task contains the samples of five classes [1]. Permuted MNIST consists of 10 tasks,
where each task assigns a random permutation that is used in the pixel space of all images. After
Split MINI-ImageNet learning, the proposed ODDL-S and ODDL built a total six components while
CNDPM created ten components.

F.2 Ablation study

F.2.1 The effect of the threshold λ

We investigate the performance of the proposed approach when varying λ, and the results are reported
in Fig. 2. It observes that the small threshold λ leads to creating more components for ODDL
and ODDL-S while also improving the performance a little. In contrast, a large λ discourage the
expansion of components. When λ = 0.8, ODDL only has three components and suffers enormous
degenerated performance while ODDL-S does not lose much performance.

F.2.2 The effect of the memory size

In the following, we investigate the performance change of various models when varying the memory
size. We choose the memory size of 100, 200 and 500 for Split MNIST and Split CIFAR10, and the
results are presented in Fig. 3a and Fig. 3b. It observes that although the memory size is reduced,
the proposed ODDL still outperforms other baselines by a large margin. For Split CIFAR100 and
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Split MINI-ImageNet, we choose the memory size of 2000, 5000, and 10000, and the memory size
of 5000, 10000, and 20000, respectively. We report the results in Fig. 3c and Fig. 3d, which show
that the proposed ODDL achieves the best results in each case and improves the performance by
increasing the memory capacity.

(a) Split MNIST. (b) Split CIFAR10.

(c) Split CIFAR100. (d) Split MINI-ImageNet.

Figure 3: The performance change of various models when changing the memory size.

F.2.3 The effect of the sample selection in ODDL

We have compared ODDL with the same selection and without. The results are reported in Tab.
1, 2, and 3 of the paper, demonstrating that the proposed sample selection can further improve the
performance of ODDL. In addition, we also observe that the sample selection used in ODDL can
preserve the performance even if using a very tiny memory buffer, as empirically demonstrated in
Fig. 2b. We also compare ODDL with the random-replay memory buffer, namely ODDL-Random.
We report the results in Tab. 1, which show that the proposed sample selection used in ODDL
outperforms ODDL-Random in each task, demonstrating the effectiveness of the proposed sample
selection.

F.2.4 The effects of the batch size

In this section, we investigate the performance of the proposed ODDL-S when changing the batch
size. We train the proposed ODDL-S with different batch sizes on Split MNIST and the results are
shown in Fig. 4. It observes that the proposed ODDL-S does not change its performance too much
when changing the batch size.

F.2.5 Detecting the data distribution shift

In the following, we investigate whether the proposed discrepancy-based criterion can provide better
signals for the expansion of ODDL-S. We train ODDL-S under Split MNIST and Split CIFAR10
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Table 1: The classification accuracy of five indepdnent runs for various models on three datasets. *
and † denote the results cited from [4] and [6], respectively.

Methods Split MNIST Split CIFAR10 Split CIFAR100

finetune* 19.75 ± 0.05 18.55 ± 0.34 3.53 ± 0.04
GEM* 93.25 ± 0.36 24.13 ± 2.46 11.12 ± 2.48
iCARL* 83.95 ± 0.21 37.32 ± 2.66 10.80 ± 0.37
reservoir* 92.16 ± 0.75 42.48 ± 3.04 19.57 ± 1.79
MIR* 93.20 ± 0.36 42.80 ± 2.22 20.00 ± 0.57
GSS* 92.47 ± 0.92 38.45 ± 1.41 13.10 ± 0.94
CoPE-CE* 91.77 ± 0.87 39.73 ± 2.26 18.33 ± 1.52
CoPE* 93.94 ± 0.20 48.92 ± 1.32 21.62 ± 0.69
ER + GMED 82.67 ± 1.90 34.84 ± 2.20 20.93 ± 1.60
ERa + GMED 82.21 ± 2.90 47.47 ± 3.20 19.60 ± 1.50
CURL* 92.59 ± 0.66 - -
CNDPM* 93.23 ± 0.09 45.21 ± 0.18 20.10 ± 0.12

ODDL 94.85 ± 0.02 51.48 ± 0.12 26.20 ± 0.72
ODDL-S 95.75 ± 0.05 52.69 ± 0.11 27.21 ± 0.87
ODDL-Random 95.12 ± 0.13 51.68 ± 0.18 20.23 ± 0.65

50 100 150 200 250 300
Batch size

0

20

40

60

80

100

Av
er

ag
e 

ac
cu

ra
cy

Figure 4: The performance of the proposed ODDL-S when changing the batch size.

where we record the variance of tasks and the number of components in each training step. We plot
the results in Fig. 5 where "task" represents the number of tasks in each training step. It observes that
the proposed discrepancy-based criterion can detect the data distribution shift accurately, allowing
ODDL-S to expand the network architecture when seeing the data distribution shift. This also
encourages the proposed ODDL-S to uses the minimal number of components while achieving the
optimal performance, as discussed in Lemma 2 of the paper.

In the following, we also investigate the change of the number of components with respect to the data
distribution shift when varying λ. We plot the results in Fig. 6. It observes that a small λ tends to
build more components while one or two components model a unique underlying data distribution.
Therefore, the best choice of λ is 0.5 since it allows ODDL to use the minimal number of components
while achieving the optimal performance since each component learns the knowledge from a unique
target distribution (task). The reconstruction results of the proposed ODDL-S under Split MNIST is
shown in Fig. 7. These results show that the proposed ODDL-S can provide accurate reconstructions
for each task/distribution. The generation results of each component after the learning of Split MNIST
is shown in Fig. 8 where each component tends to produce different generation results, empirically
demonstrating that the proposed ODDL-S can learn a mixture of diverse components during the
training.
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(a) Results on MNIST. (b) Results on CIFAR10.

Figure 5: The investigation of the data distribution shift and the change of components in ODDL-S.

F.2.6 Results on fuzzy task boundaries

We evaluate the effectiveness of the proposed approach on the data stream with fuzzy task boundaries
[10] where we exchange the samples between two tasks. We report the results of various models in
Tab. 3. These results demonstrate that the proposed ODDL-S outperforms other baselines by a large
margin on fuzzy task boundaries.

F.2.7 Comparison with another sample selection approach in ODDL

We also compare with another sample selection approach in the proposed ODDL, including GSS
and reservoir. We apply GSS and reservoir as the sample selection approach in ODDL, namely
ODDL-GSS and ODDL-reservoir. We report the classification results in Tab. 2. These results show
that the proposed ODDL-S outperforms ODDL-GSS and ODDL-reservoir, which demonstrates the
effectiveness of the proposed sample selection approach.

Table 2: The classification accuracy of five independent runs for various models on three datasets. ,
respectively.

Methods Split MNIST Split CIFAR10 Split CIFAR100

ODDL-GSS 93.46 ± 0.16 49.26 ± 0.15 26.79 ± 0.89
ODDL-reservoir 93.16 ± 0.13 49.26 ±0.14 26.25 ± 0.67

ODDL 94.85 ± 0.02 51.48 ± 0.12 26.20 ± 0.72
ODDL-S 95.75 ± 0.05 52.69 ± 0.11 27.21 ± 0.87
ODDL-Random 95.12 ± 0.13 51.68 ± 0.18 20.23 ± 0.65

Table 3: The classification accuracy of five indepdnent runs for various models over data streams
with fuzzy task boundaries.

Methods Split MNIST Split CIFAR10 Split MImageNet

Vanilla 21.53 ± 0.1 20.69 ± 2.4 3.05 ± 0.6
ER 79.74 ± 4.0 37.15 ± 1.6 26.47 ± 2.3
MIR 84.80 ± 1.9 38.70 ± 1.7 25.83 ± 1.5
ER + GMED 82.73 ± 2.6 40.57 ± 1.7 28.20 ± 0.6
MIR+GMED 86.17 ± 1.7 41.22 ± 1.1 26.86 ± 0.7

ODDL 94.25 ± 0.9 50.07 ± 1.2 27.98 ± 1.3
ODDL-S 95.55 ± 1.2 52.27 ± 2.5 29.76 ± 1.6
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(a) λ = 0.1. (b) λ = 0.3.

(c) λ = 0.4. (d) λ = 0.5.

(e) λ = 0.6. (f) λ = 0.8.

Figure 6: The the change of components in ODDL-S when varying λ under Split MNIST.
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(a) Testing samples of Task 1. (b) Testing samples of Task 2. (c) Testing samples of Task 3.

(d) Testing samples of Task 4. (e) Testing samples of Task 5. (f) Reconstructions of Task 1.

(g) Reconstructions of Task 2. (h) Reconstructions of Task 3. (i) Reconstructions of Task 4.

(j) Reconstructions of Task 5.

Figure 7: The results testing samples and reconstruction results on Split MNIST, achieved by the
proposed ODDL-S.
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(a) Generations of expert 1. (b) Generations of expert 2. (c) Generations of expert 3.

(d) Generations of expert 4. (e) Generations of expert 5. (f) Generations of expert 6.

(g) Generations of expert 7.

Figure 8: The generation results by the selected expert of the ODDL-S on Split MNIST.

(a) Split MNIST. (b) Split CIFAR10.

Figure 9: The estimation of the minimal discrepancy distance under Split MNIST and Split CIFAR10.
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F.2.8 Estimation of the discrepancy distance

We also investigate the minimal discrepancy distance during the training. We train the proposed
ODDL-S under Split MNIST and Split CIFAR10, in which we estimate min{L⋆

d(PX
v
kj
j

,PMi) | j =

1, · · · , s} when checking the expansion criterion (Eq.(20) of the paper). We plot the results in Fig. 9,
which show that the minimal discrepancy distance keeps stable in a certain training session and is
suddenly becoming large in a certain training step where the incoming samples would draw from a
different underlying data distribution. Together with results from Fig. 6, the discrepancy distance has
shown to be an effective approach to detect the data distribution shift in the data stream.

F.2.9 The computational cost of the proposed model

We explain the computational complexity of the model as follows. When the memory buffer is not
full, the computational costs of ODDL are only about the training of the current expert because we do
not perform the sample selection and dynamic expansion evaluation. In contrast, when the memory
buffer is full, the sample selection and dynamic expansion evaluation are performed in each training
step, leading to additional computational costs. In addition, increasing the number of components in
the ODDL would also slightly increase the computational costs of the sample selection and dynamic
expansion evaluation. Therefore, as learning more components over time, the model would increase
the computational costs slightly. However, we can accelerate the proposed sample selection and
dynamic expansion evaluation by recording the discrepancy score for the memorized samples and
only calculating the discrepancy score for each incoming sample once.

We report the training times for ODDL-S and CNDPM in Tab. 4. These results show that the proposed
ODDL-S only requires a bit more computational cost compared with CNDPM.

Table 4: The training time (minutes) of various models.

Methods Split MNIST Split CIFAR10 Split CIFAR100

ODDL-S 1.2 22.2 33.68
CNDPM 0.9 18.6 30.23

F.3 Model’s parameters

Since only CN-DPM [10] reports the number of parameters for the classification task under TFCL,
we provide the comparison on the number of parameters in Table 5. We can observe from this Table
that the proposed approach outperforms CN-DPM while requiring fewer parameters.

Table 5: The number of parameters for the classification task. The number of parameters for CN-DPM
is reported in [10].

Methods Split MNIST Split CIFAR10 Split CIFAR100

CN-DPM [10] 524K 4.60M 19.2M
ODDL-S 490K 3.52M 16.56M

G Negative societal impact and limitation

One potential negative societal impact is that the proposed model could be applied for learning any
data streams without checking the data sources, which would lead to the data privacy issue.

One limitation of the proposed model is that the number of parameters would be linearly grown
when learning infinite data streams. However, the proposed dynamic expansion criterion and sample
selection can allow a newly created component to lean a different underlying data distribution, which
reduces the total number of parameters.
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