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TECHNICAL APPENDIX
DM-CODEC: DISTILLING MULTIMODAL
REPRESENTATIONS FOR SPEECH TOKENIZATION

Anonymous authors
Paper under double-blind review

A RESOURCES

We provide the code for training DM-Codec, trained model checkpoint, and Dockerfile for a repro-
ducible code environment. The links are shared anonymously for the double-blind review process.
We will publicly share all resources after the completion of the review timeline.

• DM-Codec codebase: Codebase
• Trained model checkpoints for inference: Model-checkpoints
• Dockerfile for reproducible environment: Docker

B MODEL COMPONENTS

Encoder Decoder. The encoder-decoder architecture in DM-Codec is based on SEANet (Tagliasac-
chi et al., 2020), leveraging the successful design employed in recent speech tokenization models
(Zhang et al., 2024a; Défossez et al., 2022; Zeghidour et al., 2021). The architecture is designed to
efficiently process and reconstruct speech signals while maintaining high fidelity. The Encoder E
consists of a 1D convolution layer with C channels and a kernel size of 7, followed by B residual
convolutional blocks. Each block contains a strided convolutional downsampling layer with kernel
size K (where K = 2S , and S represents the stride), paired with a residual unit. The residual unit
comprises two convolutional layers with a kernel size of 3 and a skip connection, while the number
of channels is doubled at each downsampling stage. This is followed by a two-layer BiLSTM and
a final 1D convolutional layer with D output channels and a kernel size of 7. The Decoder D mir-
rors the encoder’s structure but replaces BiLSTM with LSTM, strided convolutions with transposed
convolutions, and employs reversed strides for up-sampling. The final audio output is reconstructed
from D. For the experiments, we use the following configuration: C = 32, B = 4, and S = (2, 4, 5,
8).

Residual Vector Quantizers. The Residual Vector Quantizer (RVQ) plays a central role in our
tokenization process, quantizing the encoder’s outputs. Our implementation is inspired by the train-
ing procedures described in Encodec (Défossez et al., 2022) and SpeechTokenizer (Zhang et al.,
2024a). The RVQ projects input vectors to the most similar entry in a codebook, and the residual is
calculated and processed in subsequent quantization steps, each utilizing a different codebook. The
codebook entries are updated using an exponential moving average (EMA) with a decay rate of 0.99
for the matched item, while unmatched entries are replaced by candidates from the current batch. To
ensure proper gradient flow during training, we employ a straight-through estimator. A commitment
loss is also computed and added to the total training loss to promote stability. In our experiments,
we utilize a codebook size of 1024 and 8 quantization levels.

Discriminators. We incorporate a trio of discriminators to enhance the quality and realism of the
generated speech: the Multi-Scale Discriminator (MSD), the Multi-Period Discriminator (MPD),
and the Multi-Scale Short-Time Fourier Transform (MS-STFT) discriminator. The MS-STFT dis-
criminator follows the implementation outlined in (Défossez et al., 2022), operating on the real and
imaginary components of multi-scale complex-valued STFTs. It begins with a 2D convolutional
layer, followed by 2D convolutions with increasing dilation rates in the time dimension (1, 2, and
4) and a stride of 2 across the frequency axis in each sub-network. A final 2D convolution with a
kernel size of 3 × 3 and a stride of (1, 1) is applied to produce the prediction. The MSD and MPD
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discriminators follow the architectures introduced in (Kong et al., 2020), with adjustments to the
channel numbers to align the parameter count more closely with the MS-STFT discriminator. This
ensemble of discriminators works in concert to provide comprehensive feedback on various aspects
of the generated speech, contributing to the overall quality and naturalness of the output.

C RELATED WORK

Tokenization Techniques in Speech. Tokenization in speech processing can be broadly catego-
rized into two main approaches: (i) speech encoder-based and (ii) language-based. In the speech
encoder-based tokenization approach, a pretrained speech encoder serves as a teacher model, pro-
viding semantically rich audio representations. These representations are then used to guide the
training model, either through an alignment network (Messica & Adi, 2024) or by optimizing spe-
cific losses (Zhang et al., 2024a; Liu et al., 2024). Language-based tokenization approach involves
processing audio through a speech encoder to obtain discrete representations or using the corre-
sponding text to feed into a language model. The representations from the language model are then
utilized either to learn a tokenizer for speech (Turetzky & Adi, 2024) or to reconstruct speech (Has-
sid et al., 2024; Zhang et al., 2024b; Wang et al., 2024). Besides, (Zhang et al., 2024b) proposed
SpeechLM where two discrete tokenizers were introduced and learned in an unsupervised way and
converted the speech and text in a shared discrete space.

Discrete Speech Representation. There are two well-known methods for discrete speech represen-
tation: semantic tokens and acoustic tokens. Semantic tokens are derived through self-supervised
learning (SSL) techniques for speech (Baevski et al., 2019; Hsu et al., 2021; Chung et al., 2021)
and capture abstract, high-level features that relate to general, symbolic aspects of speech, while
omitting details related to speaker identity and acoustic characteristics. In contrast, acoustic tokens
are obtained using neural audio codecs (Zeghidour et al., 2021; Défossez et al., 2022; Yang et al.,
2023) and focus on delivering precise reconstructions of acoustic features. However, recent models
(Turetzky & Adi, 2024; Liu et al., 2024; Shi et al., 2024) have shown that speech models based
on self-supervised learning (SSL) are effective at extracting acoustic representations where LMs be
employed to refine these models further, enhancing their ability to extract more nuanced semantic
representations.

Textual Language Models in Speech. Research on speech models, including works by (Nguyen
et al., 2023), (Borsos et al., 2023), and (Kharitonov et al., 2022), has focused on utilizing raw audio
to extract prosodic features, identify speaker characteristics, and generate audio without depend-
ing on textual features or supervision from textual LMs. In contrast, many newer methods have
started using audio encoders to transform audio signals into discrete tokens, which can be processed
by textual LMs. TWIST method introduced by (Hassid et al., 2024) initializes the weights of the
SpeechLM using a pre-trained text LM, showing that this combination significantly improves per-
formance. Similarly, the SELM model developed by (Wang et al., 2024) leverages GPT (Radford,
2018; Radford et al., 2019) as its foundation due to its enhanced parallel processing capabilities
and capacity. However, text-based LLMs such as GPT-3 (Brown, 2020) and Llama (Touvron et al.,
2023) are essential for speech modeling. Once discrete audio representations are obtained, these
large text models are trained to align with or enhance the original text embedding space, as explored
in studies by (Zhang et al., 2023), (Fathullah et al., 2023), (Shu et al., 2023), and (Rubenstein et al.,
2023). This trend of integrating textual LMs into speech modeling has become increasingly popular
in recent research.

D RECONSTRUCTED SPEECH COMPARISON

We plot the Mel-Spectrogram of the original speech and the reconstructed speech from DM-Codec
and compare them with the reconstructed speech of EnCodec, SpeechTokenizer, and FACodec. Fine-
grained differences may not be readily apparent in the Mel-Spectrogram visually; therefore, we
encourage readers to click on the respective play button in Figure 1 for a hyperlink to the playable
audio file.
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(a) Original Speech 1

(b) DM-Codec Speech 1

(c) EnCodec Speech 1

(d) SpeechTokenizer Speech 1

(e) FACodec Speech 1

(f) Original Speech 2

(g) DM-Codec Speech 2

(h) EnCodec Speech 2

(i) SpeechTokenizer Speech 2

(j) FACodec Speech 2

Figure 1: Reconstructed speech examples with clickable play buttons above each Mel-spectrogram.
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Table 1: Significance Analysis and Comparison of DM-Codec (D), EnCodec (E), SpeechTokenizer
(S), and FACodec (F). Results reveal DM-Codec consistently achieves significantly better scores. ✓
indicates significantly better, a ★ denotes significant dominance, and a ✗ means no significance in
comparison. Avg and Std mean the average and standard deviation of each score.

WER WIL ViSQOL STOI
DM-Codec

Avg Std E S F Avg Std E S F Avg Std E S F Avg Std E S F
0.053 0.113 ✓ ✓ ✓ 0.082 0.157 ✓ ✓ ✓ 3.258 0.184 ★ ✓ ✓ 0.937 0.019 ✓ ✓ ✗

EnCodec
Avg Std D S F Avg Std D S F Avg Std D S F Avg Std D S F

0.061 0.131 ✗ ✗ ✗ 0.090 0.158 ✗ ✗ ✗ 3.078 0.201 ✗ ✗ ✗ 0.920 0.017 ✗ ✗ ✗

SpeechTokenizer
Avg Std E D F Avg Std E D F Avg Std E D F Avg Std E D F

0.060 0.139 ✓ ✗ ✗ 0.089 0.166 ✓ ✗ ✗ 3.087 0.190 ✓ ✗ ✗ 0.923 0.021 ✓ ✗ ✗

FACodec
Avg Std E S D Avg Std E S D Avg Std E S D Avg Std E S D

0.057 0.123 ✓ ✓ ✗ 0.086 0.163 ✓ ✓ ✗ 3.129 0.250 ✓ ✓ ✗ 0.949 0.923 ✓ ✓ ✓

E LIMITATIONS AND BROADER IMPACT

Limitations. In this work, we present the effectiveness of our proposed method, DM-Codec, based
on the LibriSpeech dataset. Future research could investigate its performance across a variety of
datasets and domains. Additionally, exploring the capabilities of DM-Codec in multilingual contexts
would be valuable. Another limitation of our work is the absence of experiments with emerging
LLMs. Currently, we focus solely on masked language models to derive representations. Further
investigation into these decoder-based LLMs’ impact on DM-Codec can be studied and addressed.

Broader Impact. The integration of language models in speech processing has traditionally focused
on model-specific implementations or specific training objectives. In this work, we propose a novel
approach by leveraging language models during the tokenization phase through our model, DM-
Codec. By incorporating language-specific representations from the corresponding text, DM-Codec
enhances the quality of discrete speech representations. This method bridges the gap between lan-
guage and speech models, offering a more unified approach to multimodal representation learning.
DM-Codec provides a robust framework for generating high-quality audio representations, with
potential applications in various domains, including multilingual speech processing, low-resource
languages, and other audio-related tasks. Our findings pave the way for more effective and contex-
tually aware speech processing models, contributing to advancements in the broader field of speech
and language technologies.

F SIGNIFICANCE ANALYSIS AND COMPARISON

To compare the significance of speech reconstruction results between our proposed DM-Codec and
baselines EnCodec (Défossez et al., 2022), SpeechTokenizer (Zhang et al., 2024a), and FACodec
(Ju et al., 2024), we follow the approach of Dror et al. (2019) and measure the stochastic dominance
at α = 0.05. We compute the inverse cumulative distribution functions (CDFs) for individual WER,
WIL, ViSQOL, and STOI scores obtained for 300 randomly sampled speech from the LibriSpeech
test clean subset. Significance was evaluated using the ϵ value, indicating dominance. Scores were
categorized as: significantly better when 0.0 < ϵ ≤ 0.5, significantly dominant when ϵ = 0.0, and
not significantly better when ϵ > 0.5.

Table 1 shows the full significance analysis, comparing between DM-Codec (D) and the baselines:
EnCodec (E), SpeechTokenizer (S), and FACodec (F). The significance of DM-Codec is indicated
by it outperforming all baselines across most metrics with better average and standard deviation.
Among the baseline, however, FACodec achieves improved results over EnCodec and SpeechTok-
enizer, whereas SpeechTokenizer surpasses EnCodec in performance.
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Zalán Borsos, Raphaël Marinier, Damien Vincent, Eugene Kharitonov, Olivier Pietquin, Matt Shar-
ifi, Dominik Roblek, Olivier Teboul, David Grangier, Marco Tagliasacchi, et al. Audiolm: a
language modeling approach to audio generation. IEEE/ACM transactions on audio, speech, and
language processing, 31:2523–2533, 2023.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Yu-An Chung, Yu Zhang, Wei Han, Chung-Cheng Chiu, James Qin, Ruoming Pang, and Yonghui
Wu. W2v-bert: Combining contrastive learning and masked language modeling for self-
supervised speech pre-training. In 2021 IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU), pp. 244–250. IEEE, 2021.

Rotem Dror, Segev Shlomov, and Roi Reichart. Deep dominance - how to properly compare deep
neural models. In Anna Korhonen, David Traum, and Lluı́s Màrquez (eds.), Proceedings of the
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