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Abstract

Monocular 3D estimation is crucial for visual perception.
However, current methods fall short by relying on oversimpli-
fied assumptions, such as pinhole camera models or rectified
images. These limitations severely restrict their general ap-
plicability, causing poor performance in real-world scenar-
ios with fisheye or panoramic images and resulting in sub-
stantial context loss. To address this, we present UniK3D1,
the first generalizable method for monocular 3D estimation
able to model any camera. Our method introduces a spheri-
cal 3D representation which allows for better disentangle-
ment of camera and scene geometry and enables accurate
metric 3D reconstruction for unconstrained camera models.
Our camera component features a novel, model-independent
representation of the pencil of rays, achieved through a
learned superposition of spherical harmonics. We also intro-
duce an angular loss, which, together with the camera mod-
ule design, prevents the contraction of the 3D outputs for
wide-view cameras. A comprehensive zero-shot evaluation
on 13 diverse datasets demonstrates the state-of-the-art per-
formance of UniK3D across 3D, depth, and camera metrics,
with substantial gains in challenging large-field-of-view and
panoramic settings, while maintaining top accuracy in con-
ventional pinhole small-field-of-view domains. Code and
models are available at github.com/lpiccinelli-eth/unik3d.

1. Introduction

Estimating 3D scene geometry is a fundamental task in com-
puter vision since such 3D information serves as a crucial
cue for action planning and execution [14, 89]. The scene’s
geometry 3D estimation task is vital for a wide range of ap-
plications, including autonomous navigation [56, 76] and 3D
modeling [13], where accurate spatial understanding is essen-
tial. Recent advances in generalizable monocular depth esti-
mation (MDE) [32, 63, 81] deliver impressive performance
and visual quality across various domains, but these mod-

1Pronounced “Unique-3D”, with K denoting the intrinsics matrix.
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Figure 1. UniK3D introduces a novel and versatile approach that
delivers precise metric 3D geometry estimation from a single im-
age and for any camera type, ranging from pinhole to panoramic,
without requiring any camera information. By leveraging (i) a flexi-
ble and general spherical formulation both for the radial dimension
of 3D space and for the two camera-model-dependent orientation
dimensions and (ii) advanced conditioning strategies. UniK3D out-
performs traditional models without needing camera calibration or
domain-specific tuning.

els are constrained to a relative output scale. Nonetheless,
for practical applications, a consistent and reliable metric-
scaled monocular depth estimate (MMDE) is crucial, as it
enables accurate 3D reconstruction and geometric scene un-
derstanding necessary for embodied agents.

Existing methods have made considerable strides in the
above direction of metric estimation. Earlier approaches as-
sumed known camera intrinsics at test time [24, 85], while
more recent works have relaxed this assumption [9, 60, 61].
However, these approaches still impose restrictive assump-
tions about input cameras, such as relying on a basic pinhole
camera model [9, 60] or requiring access to ground-truth
rectification parameters [85]. These simplifications substan-
tially hinder the applicability and degrade the performance
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of the above methods in real-world settings, where a wide
range of camera projection models with strong non-linear de-
formations are common, such as fisheye or panoramic lenses.
This limitation is more pronounced when estimating com-
plete metric 3D geometry instead of only depth maps, as the
former depends more heavily on the quality of camera esti-
mation. Due to the restrictive assumptions in existing mod-
els, general camera estimation can not be effectively learned,
even when models are exposed to images from varied cam-
era types. Furthermore, the output space of previous state-of-
the-art MMDE methods has inherent limitations, e.g. both
disparity and log-depth prediction become mathematically
ill-posed when the field of view (FoV) exceeds 180 degrees.

To address these challenges, we introduce UniK3D, the
first framework for monocular metric 3D scene’s geometry
estimation that generalizes across a wide variety of camera
models, from pinhole to fisheye and panoramic configura-
tions, as shown in Fig. 1. Our method proposes a novel for-
mulation for monocular 3D estimation which is spherical in
two senses. First, UniK3D leverages a fully spherical out-
put 3D space, modeling the range dimension through radial
distance instead of perpendicular depth. This approach is es-
pecially beneficial at large angles from the optical axis, ef-
fectively resolving the ill-posed nature of traditional meth-
ods at extreme fields of view. Second, while building on
the recently proposed decomposition [60] of camera predic-
tion from depth estimation, UniK3D newly presents a gen-
eral spherical harmonics basis as the direct output space of
the camera module that represents the pencil of rays. Unlike
previous works [9, 60] which predict explicit pinhole cam-
era parameters and then encode [60] induced rays using a
spherical basis, we remove the camera assumption and di-
rectly model the rays. As a result, UniK3D spans an unre-
stricted space of possible camera models, allowing for flex-
ible and accurate depth prediction regardless of camera in-
trinsics. Our assumption-free spherical camera representa-
tion, with its flexibility, ensures that our model is well-suited
for real-world deployment, where capturing scenes with non-
standard cameras is common.

Our key contribution is the first camera-universal model
for monocular 3D estimation that can accommodate any cam-
era projective geometry. We achieve this through our uni-
fied spherical output representation that supports all inverse
projection problems. By employing a fully spherical frame-
work, our method ensures a complete disentanglement of
projective vs. 3D scene geometry, as the dimension of an ob-
ject projection on the image is a univocal function only w.r.t.
radial distance and not w.r.t. depth. This disentanglement al-
lows more consistent 3D reconstructions and enhances the
stability of 3D outputs near the xy-plane, where depth ap-
proaches zero. Moreover, UniK3D models the camera rays
as a decomposition across a finite spherical harmonics basis.
This choice ensures representation generality and versatility,

and at the same time maintains an accurate and compact rep-
resentation for the resulting pencils of rays, also introducing
inductive biases such as continuity and differentiability. In
addition, we propose multiple novel strategies to ensure ro-
bust camera conditioning of our radial module such as an
asymmetric angular loss based on quantile regression, static
encoding, and curriculum learning.

We validate our approach through extensive zero-shot ex-
periments on 13 widely used metric depth datasets, where
UniK3D not only achieves state-of-the-art performance in
monocular metric depth and 3D estimation, but also general-
izes very well across various camera models, without either
preprocessing or specific camera domains during training.

2. Related Work
Monocular Depth Estimation. The introduction of end-to-
end neural networks for MDE, first demonstrated by [16],
revolutionized the field by enabling depth prediction through
direct optimization, utilizing the Scale-Invariant log loss
(SIlog). Since then, the field has evolved with increasingly
sophisticated models, ranging from convolutional architec-
tures [19, 36, 45, 58] to recent advancements using trans-
formers [6, 59, 80, 86]. While these approaches have pushed
the boundaries of MDE performance in controlled bench-
marks, they often fail when faced with zero-shot scenarios,
highlighting a persistent challenge: ensuring robust gener-
alization across varying camera and scene domains and di-
verse geometric and visual conditions.
Generalizable Monocular Depth Estimation. To address
the limitations of domain-specific models, recent research
has focused on developing generalizable and zero-shot MDE
techniques. These methods can be categorized into scale-
agnostic approaches [32, 63, 73, 81, 82], which aim to miti-
gate scale ambiguity and emphasize perceptual depth qual-
ity, and metric depth models [7, 9, 24, 28, 60, 61, 85], which
prioritize accurate geometric reconstruction. However, most
existing MDE methods fall short of achieving truly zero-shot
monocular metric 3D scene estimation. In particular, scale-
agnostic approaches often require additional information to
resolve scale ambiguities, while most of the metric-based
models depend on a known camera or assume a simplistic
pinhole camera configuration. Even the few models which
are designed for zero-shot 3D scene estimation [9, 60, 85]
remain constrained: they either explicitly assume a pinhole
camera model [9, 60] or necessitate image rectification [85],
effectively requiring test-time camera information and limit-
ing their zero-shot generalizability to pinhole cameras.

On the contrary, UniK3D addresses these limitations by
offering a unified solution that can handle any inverse pro-
jection problem. Our model can recover a coherent 3D point
cloud from any single image, regardless of camera intrinsics,
without any rectification or camera information at test time.
This generality sets UniK3D apart, enabling robust and uni-
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Figure 2. Model architecture. UniK3D utilizes solely the single input image to generate the 3D output point cloud (O) for any camera. The
projective geometry of the camera is predicted by the Angular Module. The camera representation corresponds to azimuth and polar angles
(C) of the backprojected pencil of rays on the unit sphere S3. The class tokens from the Encoder are processed by 2 Transformer Encoder (T-
Enc) layers to obtain the 15 coefficients (H) of the inverse Spherical transform F−1

B {H} defined by a finite basis (B) of spherical harmonics
up to degree 3 with no constant component. Stop-gradient is applied to the angular information which conditions the Radial Module,
simulating external information flow. The “static encoding” refers to sinusoidal encoding which matches the internal feature dimensionality.
The Radial Module is composed of Transformer Decoder (T-Dec) blocks, one for each input resolution, which is utilized to condition
the Encoder features on the bootstrapped camera representation. This conditioning injects prior knowledge on scene scale and projective
geometry. The radial output (Rlog) is obtained by processing the camera-aware features via a learnable upsampling module. The final output
is the concatenation of the camera and radial tensors (C||Rlog). A closed-form coordinate transform is applied to obtain the Cartesian 3D
output, but supervision is applied directly on angular coordinates, with our asymmetric angular loss LAA, and radial coordinates.

versal monocular metric 3D estimation that is required in di-
verse and challenging real-world applications.
Camera Calibration. Camera calibration is essential for
estimating intrinsic parameters like focal length, principal
point, and distortion coefficients to model the mapping
from 3D world points to 2D image coordinates. Traditional
parametric models, such as the pinhole model, Kannala-
Brandt [30], Mei [49], Omnidirection [64], Unified Cam-
era Model (UCM) [22], Enhanced UCM [33], and Double
Sphere [69] models are effective for narrow- and wide-angle
lenses but require controlled environments for accurate cali-
bration. As models grow more complex, the risk of errors
or divergence increases, especially under varying lighting or
sensor noise. Additionally, each model has inherent limita-
tions, e.g. UCM cannot represent tangential distortion, and
Kannala-Brandt struggles beyond a 210◦ FoV.

By contrast, we take a different approach and model the
camera backprojection as a linear combination of spherical
basis functions, i.e. via an inverse spherical harmonics trans-
formation, where the model simply infers the scalar expan-
sion coefficients and the spherical domain boundaries.

3. UniK3D

Generalizable depth or 3D scene estimation models often
face significant challenges when adapting to diverse camera
configurations. Existing methods typically rely on rigid and
camera-specific assumptions, such as the pinhole model or
equirectangular models, or require extensive preprocessing

steps like rectification. These constraints limit their applica-
bility to real-world scenarios with non-standard camera pro-
jective geometries. By contrast, our model, UniK3D, intro-
duces a novel framework that enables monocular 3D geome-
try estimation for any scene and any camera setup.

We begin by introducing the design of our 3D out-
put space and the internal representation of the camera in
Sec. 3.1. Our representation is intentionally formulated to
be as general as possible, allowing to handle all inverse pro-
jection problems. Through our preliminary studies, we ob-
served a consistent issue: the network predictions contracted
to a reduced FoV, even when trained on a diverse set of cam-
era types including large FoVs. Simple data re-balancing
strategies proved insufficient to address this phenomenon.
To overcome this, we have developed a series of architectural
and design interventions, detailed in Sec. 3.2, aimed at pre-
venting the backprojection contraction. In Sec. 3.3, we de-
scribe the architecture of our model, our optimization strat-
egy, and the specific design and loss functions underpinning
our approach. Fig. 2 displays an overview of our method.

3.1. Representations
Output Space. The output representation of UniK3D is de-
signed to be universally compatible with any scene and cam-
era configuration, providing a direct metric 3D scene esti-
mate for each input image. Drawing from the disentangle-
ment strategy presented in [60], our approach separates cam-
era parameters from scene geometry. Specifically, we rep-
resent the camera using a dense tensor C = θ||ϕ, where θ
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is the polar angle and ϕ is the azimuthal angle, consistent
with standard spherical coordinates. However, we use the
Euclidean radius (distance from the camera center) as the
scene range component within a fully spherical framework,
instead of relying on traditional perpendicular-depth-based
representations. This design choice ensures that dimensions
of projected objects in the image vary univocally with radius,
a property that does not characterize the depth representation
and renders the latter much harder to learn. Furthermore,
the spherical framework enhances numerical stability when
handling points near the xy-plane, a region where previous
methods typically face challenges due to large gradients. We
convert the spherical representation to Cartesian coordinates
using a bijective transformation, accurately capturing the 3D
geometry of the scene as the output 3D point cloud O.
Camera Internal Space. In UniK3D, the dense pencil of
rays which represents the viewing directions for the various
pixels is expressed through a basis decomposition, providing
a flexible and comprehensive angular representation. As
shown in Fig. 2, our Angular Module predicts a tensor of
coefficients H, which is derived from the encoder’s class
tokens, denoted as T. These coefficients correspond to a
predefined basis: the Spherical Harmonics (SH) basis. We
reconstruct the pencil of rays from H as follows:

C = F−1
B {H} =

L∑
l=0

l∑
m=−l

HlmBlm(θ, ϕ), (1)

where C represents the reconstructed angular field and F−1
B

denotes the inverse transform from the coefficient space to
the angular space, using the SH basis B. Blm(θ, ϕ) are the
SH basis functions, i.e. Legendre polynomials, and Hlm are
the predicted coefficients. Here, l and m index the degree
and order of the harmonics, respectively. This inverse trans-
form is implemented as an inner product that maps from
Rn×S3 to S3. The SH basis domain is defined by 4 parame-
ters: the generalized “principal point” of the reference frame,
i.e. the pole, and the horizontal and vertical FoVs. This for-
mulation allows us to describe complex ray distributions
compactly and implicitly, while ensuring important proper-
ties of the output, such as continuity and differentiability.

Additionally, the SH basis offers high sparsity, requiring
only 15 harmonics for a 3rd degree basis without constant
component and an equal number of coefficients to accurately
represent intrinsics for most camera types. By leveraging this
SH-based representation and defining the domain through
the pole and FoV parameters, UniK3D achieves a robust
and flexible framework that can handle virtually any camera
geometry with only 19 parameters.

3.2. Preventing Distribution Contraction
Asymmetric Angular Loss. Neural networks tend to regress
towards the most frequent modes in the training data, often

neglecting the distribution tails. In our case, this bias would
cause UniK3D to underrepresent wide-FoV angles in its out-
puts, since most visual datasets are heavily skewed towards
small-FoV pinhole cameras. This leads to poor performance
in scenarios requiring accurate wide-angle predictions. To
overcome this issue, we introduce an asymmetric angular
loss based on quantile regression, inspired by robust statisti-
cal estimators and decision theory principles, i.e. type-I and
type-II errors [51]. Our loss function is defined as:

Lα
AA(θ̂, θ

∗) = α
∑
θ̂>θ∗

∣∣∣θ̂ − θ∗
∣∣∣+(1−α)

∑
θ̂≤θ∗

∣∣∣θ̂ − θ∗
∣∣∣ , (2)

where 0 ≤ α ≤ 1 is the target quantile, θ̂ is the predicted
angle, and θ∗ is the ground-truth angle. This formulation
adjusts the weighting of over- and underestimations of the
polar angle θ. When α = 0.5, the loss degenerates to the
standard Mean Absolute Error (MAE), but by tuning α, we
can emphasize underrepresented angles and balance the re-
gression more effectively. Unlike naive dataset rebalancing–
which would alter the underlying 3D scene diversity and in-
troduce significant complexity, especially across multiple
datasets–our loss addresses the angular imbalance directly
and efficiently. By using quantile regression, we minimize
the complexity to a simple search over the interval [0, 1] for
α, making our method well-suited for large-scale and diverse
training scenarios. This quantile-based strategy allows us to
address the angular distribution bias without sacrificing sim-
plicity and diversity, making it a robust and scalable solution.
Enhancing Camera Conditioning. In our initial experi-
ments, we observed that our model struggled to effectively
utilize camera conditioning following previous works [60],
even when explicitly supplied with ground-truth camera rays
during both training and testing. This issue was subtle for
small-FoV pinhole cameras, but it became significant for
large-FoV configurations. The root of the problem lies in
weak conditioning: the model fails to disentangle camera pa-
rameters from geometric features, causing it to route local
aberrations back to the encoder features’ space, without inte-
grating essential FoV information. As a result, even when
prompted with accurate camera parameters at test time, the
model might ignore, or be misled by, this information.

To address this, we hypothesize that camera data must be
clear and explicitly structured from the beginning of train-
ing. To this end, we implement in UniK3D a static (non-
learnable) encoding of camera rays and adopt a curriculum
learning strategy, transitioning gradually from feeding GT
camera parameters to predicted ones to the Radial Module.
In particular, the GT camera is fed to the Radial Module
with probability 1− tanh( s

105 ), where s is the current opti-
mization step. To reinforce external conditioning, we detach
gradients from the camera output that is fed to the Radial
Module, hence preventing the model from relying on feed-
back mechanisms that could undermine the conditioning on
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Figure 3. Qualitative comparisons. Each pair of consecutive rows represents one test sample. Each odd row displays the input RGB
image and the 2D error map, color-coded with the coolwarm colormap based on absolute relative error (for panoramic images, the error is
computed on distance rather than depth). To ensure a fair comparison, errors are calculated on GT-based shifted and scaled outputs for all
models. Each even row shows the ground truth and predictions of the 3D point cloud. The last column displays the specific colormap ranges
for absolute relative error. Key observations for each rows pair: (1) competing methods are limited to only positive depth and heavily distort
the scenes for larger FoV; (2) in the case of representable but large FoV (180◦), UniK3D output is the only one that does not suffer from
pronounced FoV contraction; (3) for moderate-FoV images but with strong boundary distortion, e.g. fisheye, UniK3D can maintain planarity
and overall scene structure; (4) our approach also delivers accurate 3D estimates for standard pinhole images.

the camera. Additionally, we disable learnable gains, such
as LayerScale [68], in the cross-attention layers of the Ra-
dial Module’s transformer decoder, to avoid shortcuts of the
conditioning. These strategies ensure that the model effec-
tively leverages camera information to adjust its encoder fea-
tures, enhancing the robustness of 3D predictions.

3.3. Network Design
Architecture. Our network consists of an Encoder Back-
bone, an Angular Module, and a Radial Module, as illus-
trated in Fig. 2. Our encoder is ViT-based [15] and we extract
dense features F ∈ Rh×w×C×4–where (h,w) = (H14 ,

W
14 )–

along with class tokens T. The Angular Module processes
these class tokens, projecting them onto 512-channel rep-
resentations that are split into 3 domain parameters and 15

spherical coefficient prototypes. These tokens pass through
two layers of a Transformer Encoder (T-Enc) with 8 heads
and are then projected onto scalar values. The values for the
3 domain parameters define the principal point (2) and the
horizontal FoV (1), determining the intervals for the harmon-
ics. We assume square pixels and thus do not learn an ex-
tra, fourth parameter for the vertical FoV, but rather compute
this fourth parameter directly from the horizontal FoV. The
15 spherical coefficients undergo an inverse SH transforma-
tion according to (1), using a 3-degree SH basis. The gradi-
ent flowing from the Angular Module to the class tokens is
multiplied by 0.1, as the magnitude of the camera-induced
gradient for the encoder weights was empirically found to
be ca. 10x higher than the radial-induced gradient.

5



Table 1. Comparison on zero-shot evaluation for diverse camera domains. Validation sets: S.FoV includes NYU, KITTI, IBims-1,
ETH-3D, nuScenes, and Diode Indoor; S.FoVDist includes IBims-1, ETH-3D, and Diode Indoor with synthetic distortion; L.FoV includes
ADT, ScanNet++ (DSLR), and KITTI360; Pano uses Stanford-2D3D. All models use a ViT-L backbone. Missing values (-) indicate the
model’s inability to produce the respective output. Metric3D and Metric3Dv2 cannot be evaluated on panoramic images as focal lengths are
undefined. †: Requires ground-truth (GT) camera for 3D reconstruction. ‡: Requires GT camera for 2D depth map inference.

Method S.FoV S.FoVDist L.FoV Pano
δSSI1 ↑ FA ↑ ρA ↑ δSSI1 ↑ FA ↑ ρA ↑ δSSI1 ↑ FA ↑ ρA ↑ δSSI1 ↑ FA ↑ ρA ↑

DepthAnything [81] 92.2 - - 94.3 - - 47.5 - - 10.4 - -
DepthAnythingv2 [82] 92.4 - - 88.9 - - 48.7 - - 11.3 - -
Metric3D†‡ [85] 86.4 43.1 - 88.0 36.7 - 58.7 26.0 - - - -
Metric3Dv2†‡ [28] 91.1 59.7 - 89.4 47.1 - 69.2 24.7 - - - -
ZoeDepth† [7] 88.9 53.3 - 90.3 40.1 - 65.3 6.4 - 32.7 9.9 -
UniDepth [60] 94.9 59.0 85.0 94.0 43.0 70.5 68.6 16.9 19.8 33.0 2.0 1.7
MASt3R [39] 88.0 37.8 80.8 89.9 35.2 77.1 67.1 29.7 25.1 32.3 3.7 2.1
DepthPro [9] 87.4 56.0 79.6 80.6 29.4 71.7 64.5 26.1 32.1 31.8 1.9 1.9

UniK3D-Small 94.3 61.3 85.7 95.1 48.4 73.8 84.5 55.5 70.1 81.3 72.5 53.7
UniK3D-Base 95.5 64.9 86.1 96.5 50.2 75.1 87.4 67.7 79.9 83.6 73.7 53.7
UniK3D-Large 96.1 68.1 89.4 97.3 54.5 78.8 91.2 71.6 81.9 81.4 80.2 57.1

Table 2. Zero-shot comparison with equirectangular-specialized
methods. All methods are zero-shot tested on Stanford-2D3D [2].
Competing methods are all trained on equirectangular images. Our
training set includes Matterport3D [11] with 2% sampling.

Method Train δ1 ↑ A.Rel ↓
BiFuse† [71] Matterport3D 86.2 12.0
BiFuse++† [72] Matterport3D 91.4 10.7
UniFuse† [29] Matterport3D 91.3 9.42

UniK3D Ours 96.8 8.01

The Radial Module first processes the dense encoder fea-
tures F through a Transformer Decoder (T-Dec) with 4 par-
allel layers, one for each resolution, and 1 head. These lay-
ers condition F on the sine-encoded angular representation
C (cf. supplement for details). The conditioned features are
then projected onto a 512-channel tensor, forming radial fea-
tures D ∈ Rh×w×512. These radial features are afterwards
upsampled to the input resolution using residual convolu-
tional blocks and learnable upsampling techniques, i.e. bilin-
ear upsampling followed by a single 1× 1 convolution. The
radial log-scale output Rlog ∈ RH×W is computed from the
upsampled features and transformed to R via element-wise
exponentiation. The final 3D spherical output O = C||R
is converted to a Cartesian point cloud O ∈ RH×W×3 us-
ing a spherical-to-Cartesian coordinate transformation. Also,
we predict a confidence map (Σ) for the radial outputs by
including a second projection head fed with upsampled D
features, besides the first head of the Radial Module which
computes Rlog.
Optimization. The optimization process is defined by three
different losses. The angular loss LAA is applied on θ and ϕ
separately, with L0.7

AA and L0.5
AA for θ and ϕ, respectively. The

final angular loss can be expressed as

LA(Ĉ,C∗) = βL0.7
AA(θ̂, θ

∗) + (1− β)L0.5
AA(ϕ̂, ϕ

∗), (3)

with (̂·) and (·)∗ serving as prediction and GT identifiers, re-
spectively, and β = 0.75. It is worth noting that L0.5

AA corre-
sponds to the standard, symmetric L1-loss, as the azimuthal
dimension ϕ w.r.t. the principal point is not affected by pre-
diction contraction. Our radial loss is the L1-loss between
the predicted and GT log-radius obtained by the GT camera
and depth: Lrad =

∥∥∥R̂log −R∗
log

∥∥∥
1
. The confidence loss is

the L1-loss between the detached radial loss and the inverse
predicted confidence, Σ: Lconf =

∥∥∥|R̂log −R∗
log| −Σ

∥∥∥
1
.

The loss is a linear combination of the three losses: LA +
ηLrad + γLconf, with η = 2 and γ = 0.1.

4. Experiments
Training Datasets. The training dataset accounts for 26 dif-
ferent sources: A2D2 [23], aiMotive [48], Argoverse2 [77],
ARKit-Scenes [5], ASE [17], BEDLAM [8], Blended-
MVS [83], DL3DV [44], DrivingStereo [79], Dynami-
cReplica [31], EDEN [37], FutureHouse [42], HOI4D [46],
HM3D [62], Matterport3D [11], Mapillary-PSD [1],
MatrixCity [40], MegaDepth [41], NianticMapFree [3],
PointOdyssey [88], ScanNet [12], ScanNet++ (iPhone) [84],
TartanAir [75], Taskonomy [87], Waymo [67], and Wil-
dRGBD [78]. More details are given in the supplement.
Zero-shot Testing Datasets. We evaluate the generalizabil-
ity of models by testing them on 13 datasets not seen dur-
ing training, grouped in 4 different domains which are de-
fined based on their camera type: 1) small FoV (S.FoV), i.e.
FoV < 90◦, 2) small FoV with radial and tangential distor-
tions (S.FoVDist), 3) large FoV (L.FoV), i.e. FoV > 120◦,
and 4) Panoramic (Pano) with 360◦ viewing angle. More
specifically, the S.FoV group corresponds to the validation
splits of NYU-Depth V2 [50], KITTI Eigen-split [21] and
nuScenes [10], and the full IBims-1 [34], ETH-3D [65], and
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Table 3. Ablation on data. Data indicates whether training images
include strongly distorted cameras, either from real data or synthe-
sized from pinhole cameras. Output representation: depth.

Model Data S.FoV S.FoVDist L.FoV Pano
FA ↑ ρA ↑ FA ↑ ρA ↑ FA ↑ ρA ↑ FA ↑ ρA ↑

1 Pinhole ✗ 55.1 79.2 31.7 60.0 41.2 35.1 8.4 4.2
2 Pinhole ✓ 56.1 81.1 40.4 58.2 44.9 43.1 5.9 3.0
3 SH ✗ 56.1 79.1 34.5 60.2 47.1 56.7 11.3 16.1
4 SH ✓ 56.2 79.4 42.1 62.7 48.5 60.8 10.9 14.8

Diode Indoor [70]; the S.FoVDist is composed by images
artificially distorted from IBims-1, ETH-3D, and Diode In-
door (more details in the supplement); L.FoV is the mix of
ADT [55], ScanNet++ (DSLR) [84], and KITTI360 [43]; and
Panoramic (Pano) is to the full Stanford-2D3D [2] dataset.

Evaluation Details. All methods have been re-evaluated
with a fair and consistent pipeline. In particular, we do not ex-
ploit any test-time augmentations and utilize the same set of
weights for all zero-shot evaluations. We use the checkpoint
corresponding to the zero-shot model for each method, i.e.
not fine-tuned on KITTI or NYU. The metrics utilized in the
main experiments are δSSI1 , FA, and ρA. Further metrics are
reported in the supplement. δSSI1 measures scale- and shift-
invariant depth estimation performance. FA is the area under
the curve (AUC) of F1-score [54] up to 1/20 of the datasets’
maximum depth and evaluates monocular 3D estimation. ρA
evaluates the camera performance and is the AUC of the av-
erage angular error of camera rays up to 15◦, 20◦, 30◦ for
S.FoV, L.Fov, and Pano, respectively. We avoid parametric
evaluations, such as those based on focal length or FoV, be-
cause they lack generality across diverse camera models. In-
stead, our chosen metrics ensure applicability to any cam-
era type, preserving fairness and consistency in evaluation.
The supplement shows the fine-tuning ability of UniK3D by
training the final checkpoint on KITTI and NYU-Depth V2
and evaluating in-domain, as per standard practice.

Implementation Details. UniK3D is implemented in Py-
Torch [57] and CUDA [52]. For training, we use the
AdamW [47] optimizer (β1 = 0.9, β2 = 0.999) with an ini-
tial learning rate of 5×10−5. The learning rate is divided by
a factor of 10 for the backbone weights for every experiment
and weight decay is set to 0.1. We exploit Cosine Annealing
as learning rate scheduler to one-tenth starting from 30% of
the whole training. We run 250k optimization iterations with
a batch size of 128. The training time amounts to 6 days
on 16 NVIDIA 4090. The dataset sampling procedure fol-
lows a weighted sampler, where the weight of each dataset
is its number of scenes. Our augmentations are both geomet-
ric and photometric, i.e. random resizing and cropping for
the former type, and brightness, gamma, saturation, and hue
shift for the latter. We randomly sample the image ratio per
batch between 2:1 and 9:16. Our ViT [15] backbone is initial-
ized with weights from DINO-pre-trained [53] models. For
the ablations, we run 100k training steps with a ViT-S back-
bone, with training pipeline as for the main experiments.

Table 4. Ablation on camera model. Model corresponds to the
type of camera model for output rays and internal conditioning:
pinhole, Zernike-polynomial coefficients, SH coefficients, or non-
parametric, i.e. predicting one ray per pixel. All experiments are
with full data, augmentation, model components, and radial output.

Model S.FoV S.FoVDist L.FoV Pano
FA ↑ ρA ↑ FA ↑ ρA ↑ FA ↑ ρA ↑ FA ↑ ρA ↑

1 Pinhole 55.5 79.9 52.5 73.8 45.2 47.9 24.6 16.4
2 Zernike 56.6 80.9 39.9 51.3 49.9 54.6 31.8 17.9
3 Non-Parametric 56.4 81.0 45.2 62.8 42.0 42.8 51.7 20.1
4 SH 57.3 79.8 44.6 59.3 53.5 64.8 58.6 26.3

Table 5. Ablation on output representation. Output refers to
the type of the 3rd dimension of the predicted output space: either
Cartesian z-axis depth or spherical radius, i.e. distance. All experi-
ments are with full data and augmentation.

Model Output S.FoV S.FoVDist L.FoV Pano
FA ↑ ρA ↑ FA ↑ ρA ↑ FA ↑ ρA ↑ FA ↑ ρA ↑

1 Pinhole depth 56.1 81.1 40.4 58.2 44.9 43.1 5.9 3.0
2 Pinhole radius 56.0 81.1 39.5 57.6 44.4 48.9 10.1 4.9
3 SH depth 56.2 79.4 42.1 62.7 48.5 60.8 10.9 14.8
4 SH radius 56.8 76.7 35.0 43.7 51.8 61.1 53.8 22.0

4.1. Comparison with The State of The Art

Table 1 presents a comprehensive comparison of UniK3D
against existing SotA methods across various FoV and im-
age types. Our model consistently outperforms prior models,
especially in challenging large-FoV and panoramic scenar-
ios. For instance, in the L.FoV domain, UniK3D achieves a
remarkable δ1SSI of 91.2% and FA of 71.6%, outperforming
the second-best method by more than 20% and 40%, respec-
tively. This substantial improvement underscores the robust-
ness of our unified spherical framework in handling wide
FoVs. In the Pano category, our model’s δ1SSI and FA scores
of 71.2% and 66.1% also set the new SotA, demonstrating
its ability to effectively reconstruct 3D geometry even un-
der extreme camera setups. These results validate that our
design choices, including the SH-based camera model and
radial output representation, are crucial for maintaining high
performance in complex and diverse camera settings.

In addition, Fig. 3 clearly shows how UniK3D can esti-
mate the 3D geometry of scenes from various and distorted
cameras. This is in contrast to other methods that fail when
facing unconventional or non-pinhole camera images, as de-
picted by the 2nd, 3rd, and 4th columns. It is important to high-
light that Metric3D, Metric3Dv2, and ZoeDepth are evalu-
ated using GT camera parameters for the FA score, while
UniK3D, UniDepth, MASt3R, and DepthPro rely on their
predicted cameras. Despite this added difficulty, UniK3D
still demonstrates superior 3D reconstruction performance,
showcasing its strength in handling real-world conditions
where precise camera information is unavailable. Interest-
ingly, our method does not sacrifice performance in more
conventional, small-FoV scenarios. UniK3D keeps its top
rank, with a δ1SSI of 94.3 in the S.FoV setting, outperform-
ing previously leading methods. This balance highlights that
our advancements in L.FoV representation do not undermine

7



Table 6. Ablation on network components. LAA indicates if our
asymmetric angular loss is used, L1-loss otherwise. Cond indicates
if our design for enhanced camera conditioning from Sec. 3.2 is
utilized. All experiments are with full data and augmentations,
radial output representation, and an SH-based camera model.

LAA Cond S.FoV S.FoVDist L.FoV Pano
FA ↑ ρA ↑ FA ↑ ρA ↑ FA ↑ ρA ↑ FA ↑ ρA ↑

1 ✗ ✗ 56.8 76.7 35.0 43.7 51.8 61.1 53.8 22.0
2 ✓ ✗ 57.7 80.9 39.5 52.1 52.9 64.2 56.1 24.4
3 ✓ ✓ 57.3 79.8 44.6 59.3 53.5 64.8 58.6 26.3

the model’s effectiveness for S.FoV tasks. FA scores remain
high in S.FoV and the ρA metric shows that our model con-
sistently provides accurate camera parameter estimation.

Moreover, UniK3D is competitive with specialized meth-
ods for equirectangular images, as demonstrated in Table 2.
This shows how our model can incorporate different scene
and camera domains at training time without compromising
any domain-specific performance.

4.2. Ablation Studies
Data. Table 3 demonstrates the effect of training on datasets
with and without large FoV and camera distortions. Incorpo-
rating images with strong camera distortions generally en-
hances performance across all domains, particularly in chal-
lenging cases such as S.FoV with distortion and L.FoV. This
underscores the importance of diverse camera geometries in
the training set to achieve better generalization. However, the
improvement on Pano is limited due to the difficulty of repre-
senting panoramic images using a log-depth representation.
Camera Model. As shown in Table 4, employing SH as the
basis for camera rays yields the best overall performance,
particularly on L.FoV and Pano. This highlights the effective-
ness of our basis function selection in capturing diverse cam-
era models. By contrast, the non-parametric model underper-
forms in FA and ρA. Since the latter formulation is purely
data-driven, we presume that it requires significantly more
data to generalize well. It tends to underrepresent the tails of
the data distribution, i.e. L.FoV and Pano, while performing
adequately on more common domains, i.e. S.FoV with or
without distortion. The Zernike-polynomial basis [18], typi-
cally used for modeling lens aberrations, struggles to repre-
sent spherical or equirectangular camera geometries due to
its inherent planar structure.
Output Space. Table 5 compares different output represen-
tations for the third dimension of the predicted space: ei-
ther the Cartesian z-axis (rows 1 and 3) or the spherical ra-
dius (rows 2 and 4). The results show that using the radius
representation improves reconstruction metrics in Pano and
L.FoV settings, as depth is less effective when dealing with
FoVs near or exceeding 180 degrees. This improvement is
realized only when the radial component is paired with a
camera model capable of representing a wide range of ge-
ometries, e.g. our SH-based model (row 4 vs. row 2). How-
ever, the radius-based output space leads to poorer recon-
struction for S.FoV with distortion (row 3 vs. row 4). This

GT Point cloud c) Final

b) Non-parametric

a) No contraction guard

RGB

Figure 4. FoV effects. The image on the left showcases the chal-
lenge of representing the full 180◦ FoV, alongside the GT point
cloud. The effect of FoV contraction occurs when no “guarding”,
i.e. asymmetric loss (LAA) and camera conditioning, is put in force,
as shown in a). The total absence of any prior may lead to impos-
sible and inconsistent backprojection, as shown in b). The final
UniK3D is depicted in c), clearly showing the ability to recover
large FoVs with a sensible camera backprojection model.

degradation occurs because the radius representation is more
sensitive to minor angular variations, which disproportion-
ately impacts accuracy in small but highly distorted views.
Components. Table 6 examines the impact of our asym-
metric angular loss (LAA) and our strategies designed to en-
hance camera conditioning. Our full model, which lever-
ages both the asymmetric loss and the improved condition-
ing (row 3), significantly outperforms those that do not, es-
pecially in distorted and L.FoV domains. This demonstrates
the efficacy of our combined strategies in preventing con-
traction in backprojection and improving angular prediction
accuracy. The overall gains are rather due to the synergy of
combining these contributions. Moreover, these strategies
aim at mitigating extreme cases, which may not be easily
represented in aggregate quantitative results, but are clearly
visible in qualitative samples as in Fig. 4.

5. Conclusion
We have presented UniK3D, the first universal framework
for monocular 3D estimation that generalizes seamlessly
across diverse camera models, from pinhole to fisheye and
panoramic. Our approach introduces strategies to prevent
FOV contraction and supports accurate metric 3D estimation
through a flexible and robust design for backprojection with
any generic camera model. While expanding the diversity
and coverage of training data could even further enhance the
robustness and applicability of UniK3D, the latter already
achieves compelling generalization to unseen cameras and
3D scene domains far beyond the capabilities of the previous
state of the art, with only a fair quantity of data.
Acknowledgment. This work is funded by Toyota Motor
Europe via the research project TRACE-Zürich.
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Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel
Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2:
Learning robust visual features without supervision. arXiv
preprint arXiv:2304.07193, 2023. 7
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Supplementary Material

This supplementary material offers further insights into
our work. In Appendix A we describe the network architec-
ture in more detail, necessarily Appendix A overlaps with
Sec. 3. Moreover, we analyze the complexity of UniK3D
and compare it with other methods in Appendix A.1. Also,
we provide further alternatives to our design choices and ab-
late them in Appendix A.2. Appendix B outlines the train-
ing pipeline and hyperparameters chosen in Appendix B.1,
altogether with training and validation data in Appendix B.2,
and the camera augmentations in Appendix B.3 for com-
pleteness and reproducibility. Furthermore, Appendix C pro-
vides a more detailed quantitative evaluation with per-dataset
evaluation in Appendix C.2 The results corresponding to
UniK3D finetuned on KITTI and NYUv2 are reported in Ap-
pendix C.1. In Appendix D, we provide answers to possible
questions that may arise. Eventually, additional visualiza-
tions are provided in Appendix E.

A. Architecture

Encoder. Our model architecture employs a Vision Trans-
former (ViT) [15] as the encoder, demonstrating its effec-
tiveness across different scales, from Small to Large. The
ViT backbones were originally developed for classification
tasks, and as such, we modify them by removing the final
three layers: the pooling layer, the fully connected layer,
and the softmax layer. We extract feature maps and class
tokens from the last four layers of the modified ViT back-
bone. These outputs are flattened and processed using Lay-
erNorm [4] followed by a linear projection layer. The lin-
ear layer maps the features and class tokens to a common
channel dimension, which is set to 512, 384, and 256 for
Large, Base, and Small ViT variants, respectively. Impor-
tantly, the normalization and linear layer weights are dis-
tinct and are not shared between the different feature resolu-
tions and the class tokens. The dense feature maps are subse-
quently passed to the Radial Module, while the class tokens
are directed to the Angular Module.
Angular Module. The four class tokens extracted from the
encoder are first projected to dimensions of 3D, 3D, 5D,
and 7D, respectively. These are then divided into chunks
based on the channel dimension d, yielding token groups of
size 3, 3, 5, and 7. These token groups serve as the initializa-
tion for domain tokens, representing the spherical harmonics
(SH) coefficients: 1st-degree, 2nd-degree, and 3rd-degree,
respectively. In total, there are 18 tokens (T), which are pro-
cessed through two layers of a Transformer Encoder. Each
Transformer Encoder layer consists of self-attention with
eight heads and a Multi-Layer Perceptron (MLP) that has a
single hidden layer of dimension 4C and uses the Gaussian
Error Linear Unit (GELU) activation function [26]. Both

self-attention and MLP layers include residual connections
to improve learning stability. Each of the 18 tokens is then
projected to a scalar dimension. The first three tokens specifi-
cally define the domain for the spherical harmonics. The first
token determines the horizontal field of view (HFov), calcu-
lated as 2π · σ(T0), where σ denotes the sigmoid function.
The second and third tokens represent the poles of the spher-
ical harmonics, i.e. the center of projection relative to the im-
age shape, computed as cx = σ(T1)W

2 and cy = σ(T2)H
2 , re-

spectively, where H and W are the image height and width.
The vertical FoV is derived under the assumption of square
pixels: HFov × H

W . Using this domain definition, we com-
pute the spherical harmonics up to the 3rd degree, exclud-
ing the constant component, yielding 15 harmonic tensors of
size RH×W×3. The pencil of rays C is then constructed as
a linear combination of these harmonics and the correspond-
ing 15 processed tokens (T3:18).
Radial Module. The sine-encoded camera rays C are used
to condition each resolution level of the dense feature maps
F via a Transformer Decoder layer. In this setup, the dense
features F serve as the query, while the sine-encoded camera
rays provide the keys and values. The cross-attention mecha-
nism includes a residual connection without any learnable
gain factors, such as LayerScale. The conditioned features
are then refined in a Feature Pyramid Network (FPN) man-
ner: the deepest features are processed through two Resid-
ual Convolution blocks [25], followed by bilinear upsam-
pling and a projection step that halves the channel dimen-
sion. These upsampled features are then combined with the
features from the next layer, which are similarly projected to
match channel dimension and upsampled using a single 2x2
transposed convolution. This process continues until all re-
maining three feature maps are consumed. The final output
features are upsampled to the input image resolution and pro-
jected to a single-channel dimension, yielding the log-radius
Rlog. The same projection, architectural-wise but with sep-
arate weights, is used to generate the log-confidence Σlog.
The final radius and confidence values are obtained by ex-
ponentiating these tensors element-wise, transforming them
from log-space to the original space.

A.1. Complexity
We perform a detailed analysis of the computational cost of
UniK3D, presented in Table 7, and compare it to other state-
of-the-art methods. To ensure a fair and consistent compari-
son, we use input sizes that are as similar as possible across
all models. However, this approach introduces certain chal-
lenges. DepthPro, for instance, has an entangled and multi-
resolution architecture, which complicates tuning the input
size consistently across methods. Its architectural design
does not easily allow for adjustments, making it difficult to
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Table 7. Parameters and efficiency comparison. Comparison of
performance of methods based on input size, latency, and number
of trainable parameters. Tested on RTX3090 GPU, 16-bit precision
float, and synchronized timers. The last two rows correspond to the
Angular and Radial Modules evaluated independently. All models
are based on ViT-L backbone.

Method Input Size Latency (ms) Parameters (M)

ZoeDepth [7] 512× 512 144.8 345.9
DepthAnything v2 [82] 518× 518 78.1 334.7
UniDepth [60] 518× 518 146.4 347.0
Metric3Dv2 [28] 518× 518 135.6 441.9
MASt3R [28] 512× 512 154.7 668.6
DepthPro [9] 1536× 1536 808.1 952.0

UniK3D 518× 518 88.4 358.8
Radial Module - 21.9 38.2
Angular Module - 3.1 12.1

align with a standardized input size. Additionally, the perfor-
mance of models like DepthPro and Metric3D, as evaluated
in our main experiments in Sec. 4, shows a significant drop
when tested with image shapes that differ from those used
during training. This sensitivity highlights a fundamental
limitation: these methods are heavily optimized for specific
image resolutions, and deviations from these resolutions can
lead to substantial performance degradation. Consequently,
while we strive to measure computation under the most eq-
uitable conditions, it is essential to acknowledge that these
models are not well-suited for resolutions that differ from
their training setup. In contrast, UniK3D is designed to be
flexible w.r.t. image shape, maintaining robust performance
across different resolutions. For our experiments, we chose
the same input shape as DepthAnything v2, as it provides
a balanced trade-off between computational efficiency and
performance. Furthermore, to account for the asynchronous
nature of CUDA kernel threading, we ensure precise infer-
ence time measurements by enabling proper synchronization
and utilizing CUDA event recording. This approach guaran-
tees an accurate reflection of computational cost, avoiding
any misrepresentation caused by asynchronous operations.
As shown in Table 7, UniK3D is among the most efficient
models. The primary differences in computational cost, es-
pecially when compared to DepthAnything v2, stem from
the inclusion of our Angular Module and Scale components.
These components are essential for our model to handle ab-
solute metric depth and camera-specific adjustments, fea-
tures that relative depth estimation networks do not require.
Despite this additional complexity, our model’s efficiency re-
mains competitive, underscoring its design’s effectiveness
in addressing diverse camera geometries while maintaining
high performance.

A.2. Architectural Alternatives
Despite the camera conditioning has been proven superior
in UniDepth [60], we ablate alternative architectural choices
for both the Transformer Encoder and Decoder components.
In particular, we have chosen the most typical alternatives

Table 8. Ablation on camera conditioning design. Camera Cond.
corresponds to the type of camera conditioning employed to con-
dition the depth features with camera ones. Add refers to a simple
addition in the feature space. Cat represents a simple concatena-
tion and projection from 2C to C channel dimension. Prompt is
our attention-based conditioning.

Camera Cond. S.FoV S.FoVDist L.FoV Pano
FA ↑ ρA ↑ FA ↑ ρA ↑ FA ↑ ρA ↑ FA ↑ ρA ↑

1 Add 53.0 78.9 26.3 41.6 45.0 58.5 42.5 18.2
2 Cat 54.7 79.0 28.7 44.6 46.6 58.1 42.3 18.1
3 Prompt 57.3 79.8 44.6 59.3 53.5 64.8 58.6 26.3

Table 9. Ablation on camera tokens processing. T-Enc. indicates
if the camera tokens are processed in the Angular Module either via
the transformer encoder layer or not, in the latter case the tokens
are fed directly to the final projections.

T-Enc S.FoV S.FoVDist L.FoV Pano
FA ↑ ρA ↑ FA ↑ ρA ↑ FA ↑ ρA ↑ FA ↑ ρA ↑

1 ✗ 55.7 77.3 43.2 56.6 50.9 63.2 54.9 20.7
2 ✓ 57.3 79.8 44.6 59.3 53.5 64.8 58.6 26.3

for conditioning: a simple addition or concatenation in place.
While the camera tokens processing “alternative” involves
an identity that shortcuts the camera tokens to the final pro-
jection layers. Table 9 shows how the camera tokens process-
ing, via the encoder layer, does not present large changes,
showing how the class tokens from different layers are al-
ready informative. However, Table 8 clearly shows how the
simpler conditioning alternatives, such as addition or con-
catenation, underperform our attention-based conditioning.
This highlights how conditioning plays an important role in
final performance and how strongly designed conditioning
is paramount to achieving proper generalization.

B. Training Details

B.1. Hyperparameters.
The training parameters, i.e. those for optimization, schedul-
ing, and augmentations, are described in Table 10. The
losses utilized, with the input and corresponding weights,
are outlined in Table 11.

B.2. Data
Details of training and validation datasets are presented in
Table 12 and Table 13.
Training Datasets. The datasets utilized for training are a
mixture of different cameras and domains as shown in Ta-
ble 12. The sequence-based datasets are sub-sampled during
collection in a way that the interval between two consecutive
frames is not smaller than half a second. No post-processing
is applied. The total amount of training samples accounts
for more than 8M samples. The datasets are sampled in each
batch with a probability corresponding to the values in Sam-
pling column in Table 12. This probability is related to the
number of scenes present in each dataset. However, prob-
abilities are changed based on a simple qualitative data in-
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Table 10. Training Hyperparamters. All training hyperparame-
ters with corresponding values are presented.

Hyperparameter Value

Steps 250k
Batch Size 128
LR 5 · 10−5

LR Encoder 5 · 10−6

Optimizer AdamW [47]
(β1, β2) (0.9, 0.999)
Weight Decay 0.1
Gradient Clip Norm 1.0
Precision 16-bit Float

LR Scheduler Cosine to 0.1
start after 75k iters

EMA 0.9995
start after 75k iters

Color jitter prob 80%
Color jitter intensity [0.0, 0.5]
Gamma prob 80%
Gamma intensity [0.5, 1.5]
Horizontal flip prob 50%
Greyscale prob 20%
Gaussian blur prob 20%
Gaussian blur sigma [0.1, 2.0]
Random zoom [0.5, 2.0]
Random translation [−0.05, 0.05]

Image ratio [1 : 2, 2 : 1]

Resolution 0.28MP
[0.2MP, 0.6MP] last 50k iters

Table 11. Training Losses. Training losses with corresponding
weight and input.

Loss Inputs Weight Parameters

L1 Radius (log) 2.0 (η) -
L1-asymmetric Polar 0.75 α = 0.7
L1 Azimuth 0.25 -

L1 Confidence (log), 0.1 (γ) -Radius error (detached)

spection, such that the most diverse datasets are sampled
more. Most of the datasets involve pinhole images or recti-
fied cameras, e.g. MegaDepth [41] or NianticMapFree [3],
other datasets provide only the pinhole calibration despite
being clearly distorted, i.e. Mapillary [1], there the entire
samples are masked out in the camera loss computation.

Validation Datasets. Table 13 presents all the validation
datasets and splits them into 3 groups: small FoV, large
FoV, and Panoramic. As per standard practice, KITTI Eigen-
split corresponds to the corrected and accumulated GT depth
maps with 45 images with inaccurate GT discarded from
the original 697 images. The small FoV with distortion

Table 12. Training Datasets. List of the validation datasets: num-
ber of images, scene type, acquisition method, and sampling fre-
quency are reported. SfM: Structure-from-Motion. MVS: Multi-
View Stereo. Syn: Synthetic. Rec: Mesh reconstruction. KB:
Kannala-Brandt [30]. Equi: Equirectangular

Dataset Images Scene Acquisition Camera Sampling

A2D2 [23] 78k Outdoor LiDAR Pinhole 2.5%
aiMotive [48] 178k Outdoor LiDAR Mei [49] 0.3%
Argoverse2 [77] 403k Outdoor LiDAR Pinhole 7.6%
ARKit-Scenes [5] 1.75M Indoor LiDAR Pinhole 1.3%
ASE [17] 2.72M Indoor Syn Fisheye624 10.1%
BEDLAM [8] 24k Various Syn Pinhole 2.0%
BlendedMVS [83] 114k Outdoor MVS Pinhole 2.5%
DL3DV [44] 306k Outdoor SfM KB [30] 4.7%
DrivingStereo [79] 63k Outdoor MVS Pinhole 2.5%
DynamicReplica [31] 120k Indoor Syn Pinhole 1.3%
EDEN [37] 368k Outdoor Syn Pinhole 2.5%
FutureHouse [42] 28.3 Indoor Syn Equi 2.5%
HOI4D [46] 59k Egocentric RGB-D KB [30] 1.7%
HM3D [62] 540k Indoor Rec Pinhole 5.2%
Matterport3D [11] 10.8k Indoor Rec Equi 2.0%
Mapillary PSD [1] 742k Outdoor SfM Pinhole 2.0%
MatrixCity [40] 190k Outdoor Syn Pinhole 5.0%
MegaDepth [41] 273k Outdoor SfM Pinhole 8.0%
NianticMapFree [3] 25k Outdoor SfM Pinhole 2.0%
PointOdyssey [88] 33k Various Syn Pinhole 1.7%
ScanNet [12] 83k Indoor RGB-D Pinhole 5.0%
ScanNet++ [84] 39k Indoor Rec Pinhole 3.0%
TartanAir [75] 306k Various Syn Pinhole 5.5%
Taskonomy [87] 1.94M Indoor RGB-D Pinhole 6.0%
Waymo [67] 223k Outdoor LiDAR Pinhole 7.5%
WildRGBD [78] 1.35M Indoor RGB-D Pinhole 7.5%

Table 13. Validation Datasets. List of the validation datasets: num-
ber of images, scene type, acquisition method, and max evaluation
distance are reported. 1st group: small FoV, 2nd group: large FoV,
3rd: Panoramic. Rec: Mesh reconstruction.

Dataset Images Scene Acquisition Max Distance

KITTI [21] 652 Outdoor LiDAR 80.0
NYU [50] 654 Indoor RGB-D 10.0
IBims-1 [34] 100 Indoor RGB-D 25.0
Diode [70] 325 Indoor LiDAR 25.0
ETH3D [65] 454 Outdoor RGB-D 50.0
NuScenes [10] 3.6k Outdoor LiDAR 80.0

ScanNet++ [84] 779 Indoor Rec 10.0
ADT [55] 469 Indoor Rec 20.0
KITTI360 [43] 527 Outdoor LiDAR 80.0

Stanford-2D3D [2] 1413 Indoor Rec 10.0

presented in Sec. 3 and used for evaluation is obtained
based on synthesized cameras from ETH3D, Diode (Indoor),
and IBims-1, all distorted images and cameras are manually
checked for realism, after being generated with the pipeline
presented in Appendix B.3.

B.3. Camera Augmentations

To address the limited diversity of distorted camera data,
we augment images captured with pinhole cameras by ar-
tificially deforming them, thereby simulating images from
distorted camera models, e.g. Fisheye624 or radial Kannala-
Brandt [30]. The augmentation process involves two main
steps. First, we compute a deformation field. This starts
with unprojecting the 2D depth map obtained from a pin-
hole camera into a 3D point cloud. We then project these 3D
points onto the image plane of a randomly sampled distorted
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Table 14. Camera Sampling for S.FoVDist generation. The pa-
rameters to generate S.FoVDist images are listed. We employed dif-
ferent camera models with different parameter ranges. The sam-
pling is uniform sampling within the ranges. The seed is 13.

Model Probability Parameter Range

EUCM 0.1 α [0, 1]
β [0.25, 4]

Fisheye624 0.35
{ki}6i=1 [0.6, 0.8]
{ti}2i=1 [−0.01, 0.01]
{si}4i=1 [−0.01, 0.01]

Fisheye624 0.35
{ki}6i=1 [−0.6,−0.4]
{ti}2i=1 [−0.01, 0.01]
{si}4i=1 [−0.01, 0.01]

Fisheye624 0.2
{ki}6i=1 [−0.2, 0.2]
{ti}2i=1 [−0.05, 0.05]
{si}4i=1 [−0.05, 0.05]

Table 15. Camera Sampling for Camera Augmentation. The
parameters to generate an augmented camera during training images
are listed. We employed different camera models with different
parameter ranges. The sampling is uniform sampling within the
ranges. When some parameters are not listed, e.g. {ki}6i=4 for
Kannala-Brandt model, they are set to 0.

Model Probability Parameter Range

EUCM 0.1 α [0, 1]
β [0.25, 4]

Fisheye624 0.15
{ki}6i=1 [0.1, 0.5]
{ti}2i=1 [−0.005, 0.005]
{si}4i=1 [−0.01, 0.01]

Fisheye624 0.15
{ki}6i=1 [−0.5,−0.1]
{ti}2i=1 [−0.005, 0.005]
{si}4i=1 [−0.01, 0.01]

Kannala-Brandt 0.2 {ki}3i=1 [−0.05, 0.05]
{ti}2i=1 [−0.02, 0.02]

Kannala-Brandt 0.4 {ki}3i=1 [−0.5, 0.5]
{ti}2i=1 [−0.001, 0.001]

camera model to obtain the new 2D coordinates. The defor-
mation field is defined as the distance between the original
2D image coordinates and the newly projected 2D coordi-
nates. This flow indicates how the original image should be
warped to mimic the appearance of a distorted camera view.
Next, we warp the image using softmax-based splatting [66],
a technique that projects pixels based on the computed defor-
mation field while preserving image details. To ensure the
warping process does not create artifacts like holes, we use
an “importance” metric, which is the inverse of the depth
value for each pixel. This metric prioritizes closer points, en-
suring that details and correct parallax are maintained during
the warping. For non-synthetic images, where ground-truth
depth maps are unavailable, we generate depth predictions

Table 16. Comparison on NYU validation set. All models are
trained on NYU. The first four are trained only on NYU. The last
four are fine-tuned on NYU.

Method δ1 δ2 δ3 A.Rel RMS Log10
Higher is better Lower is better

BTS [38] 88.5 97.8 99.4 10.9 0.391 0.046
AdaBins [6] 90.1 98.3 99.6 10.3 0.365 0.044
NeWCRF [86] 92.1 99.1 99.8 9.56 0.333 0.040
iDisc [59] 93.8 99.2 99.8 8.61 0.313 0.037
ZoeDepth [7] 95.2 99.5 99.8 7.70 0.278 0.033
Metric3Dv2 [28] 98.9 99.8 100 4.70 0.183 0.020
DepthAnythingv2 [82] 98.4 99.8 100 5.60 0.206 0.024

UniK3D 98.9 99.8 100 4.43 0.173 0.019

Table 17. Comparison on KITTI Eigen-split validation set. All
models are trained on KITTI E-ign-split training and tested on the
corresponding validator split. The first are trained only on KITTI.
The last 4 are fine-tuned on KITTI.

Method δ1 δ2 δ3 A.Rel RMS RMSlog
Higher is better Lower is better

BTS [38] 96.2 99.4 99.8 5.63 2.43 0.089
AdaBins [6] 96.3 99.5 99.8 5.85 2.38 0.089
NeWCRF [86] 97.5 99.7 99.9 5.20 2.07 0.078
iDisc [59] 97.5 99.7 99.9 5.09 2.07 0.077
ZoeDepth [7] 96.5 99.1 99.4 5.76 2.39 0.089
Metric3Dv2 [85] 98.5 99.8 100 4.40 1.99 0.064
DepthAnythingv2 [82] 98.3 99.8 100 4.50 1.86 0.067

UniK3D 99.0 99.8 99.9 3.69 1.68 0.060

in an inference-only mode to compute the deformation. To
ensure these predictions are accurate enough to create realis-
tic deformations, we apply this augmentation only after the
model has been trained for 10,000 steps. By this point, the
model has learned a decently reliable (scale-invariant) depth
representation. The specific camera parameters used to sam-
ple the new random camera are listed in Table 15.
Validation datasets generation. Generating validation
datasets for testing models on distorted images with reduced
fields of view presents an additional challenge, as most dis-
tortions are typically associated with large fields of view. To
simulate this, we use synthetic camera parameters to deform
RGB images from datasets such as ETH3D [65], IBims-
1 [34], and Diode (Indoor) [70]. These datasets are chosen
because they provide nearly complete ground-truth depth
maps, making the deformation process well-posed and real-
istic. Any small gaps or holes in the depth maps are filled
using inpainting. Importantly, the 3D ground-truth data re-
mains unchanged, as it is invariant to the camera model used.
To ensure realism, we manually validate each deformed im-
age and will release both the code for data generation and
the resulting validation data.

C. Additional Quantitative Results
C.1. Fine-tuning
We evaluate the fine-tuning capability of UniK3D by resum-
ing training with either KITTI or NYU as the sole training
dataset. The fine-tuning process starts from the weights and
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optimizer states obtained after the large-scale pretraining
phase, ensuring a fair and consistent initialization. The stan-
dard SILog loss is used as the training objective, with a batch
size of 16, and the model is trained for an additional 40,000
steps. To focus the evaluation on the impact of in-domain
data, we disable all augmentations except for horizontal flip-
ping and omit the asymmetric component of the angular loss
during fine-tuning. For evaluation, we adhere to the standard
practices for both datasets to ensure comparability with prior
work. KITTI results are reported using the Garg [20] evalu-
ation crop, and the maximum evaluation depths for KITTI
and NYU are set to 80 and 10 meters, respectively mpor-
tantly, we do not apply any test-time augmentations or tun-
ing, such as varying the input size, to maintain consistency
and avoid introducing additional confounding factors. Our
results demonstrate that UniK3D benefits significantly from
in-domain fine-tuning. Table 17 highlights the model’s abil-
ity to perform exceptionally well on highly structured and
calibrated datasets like KITTI, even though UniK3D is in-
herently designed for flexibility and cross-domain general-
ization. This suggests that the model can effectively adapt to
well-structured data when fine-tuned. This fine-tuning analy-
sis highlights the adaptability of UniK3D to diverse settings
while maintaining its primary design focus on flexibility.
Similarly, Table 16 shows that UniK3D remains competitive
when fine-tuned on less structured domains like NYU, which
represent typical indoor environments. These results rein-
force the importance of in-domain data for achieving optimal
performance, particularly on datasets with distinct properties
or domain-specific challenges. In addition, the results under-
line the robustness of our model, as it achieves strong perfor-
mance across significantly different dataset characteristics.

Table 18. Comparison on zero-shot evaluation for NYUv2. Miss-
ing values (-) indicate the model’s inability to produce the respective
output. †: ground-truth camera for 3D reconstruction. ‡: ground-
truth camera for 2D depth map inference.

Method δ1 ↑ A.Rel ↓ RMSE ↓ δSSI1 ↑ FA ↑ ρA ↑
DepthAnything [81] - - - 97.8 - -
DepthAnythingv2 [82] - - - 97.7 - -
Metric3D†‡ [85] 68.1 44.2 1.23 89.0 - -
Metric3Dv2†‡ [28] 93.4 9.1 0.399 98.1 - -
ZoeDepth† [7] 94.2 8.2 0.305 98.0 - -
UniDepth [60] 98.0 7.3 0.230 99.0 83.1 99.2
MASt3R [39] 83.9 13.0 0.435 94.8 69.6 90.7
DepthPro [9] 92.2 10.1 0.357 97.2 73.0 93.1

UniK3D-Small 90.4 11.2 0.351 97.4 69.1 83.0
UniK3D-Base 93.1 10.3 0.325 97.9 75.4 89.1
UniK3D-Large 96.5 7.4 0.259 98.2 82.5 91.2

C.2. Per-dataset Evaluation
We present results for each of the validation datasets in-
dependently in Table 18 (NYUv2), Table 19 (KITTI), Ta-
ble 20 (IBims-1), Table 21 (ETH3D), Table 22 (Diode In-
door), Table 23 (nuScenes), Table 24 (IBims-1Dist), Table 25

Table 19. Comparison on zero-shot evaluation for KITTI. Miss-
ing values (-) indicate the model’s inability to produce the respective
output. †: ground-truth camera for 3D reconstruction. ‡: ground-
truth camera for 2D depth map inference.

Method δ1 ↑ A.Rel ↓ RMSE ↓ δSSI1 ↑ FA ↑ ρA ↑
DepthAnything [81] - - - 88.5 - -
DepthAnythingv2 [82] - - - 88.4 - -
Metric3D†‡ [85] 3.3 49.8 10.35 97.0 - -
Metric3Dv2†‡ [28] 2.3 56.3 12.81 96.7 - -
ZoeDepth† [7] 93.6 8.2 3.24 96.7 - -
UniDepth [60] 98.0 4.8 2.14 98.3 85.8 97.5
MASt3R [39] 2.8 58.2 11.88 90.9 10.9 77.7
DepthPro [9] 78.2 17.2 5.27 94.8 62.4 80.9

UniK3D-Small 92.1 11.6 3.76 96.4 77.7 85.6
UniK3D-Base 93.1 12.6 3.84 97.3 76.6 82.7
UniK3D-Large 81.2 17.4 4.77 96.8 71.4 79.3

Table 20. Comparison on zero-shot evaluation for IBims-1.
Missing values (-) indicate the model’s inability to produce the
respective output. †: ground-truth camera for 3D reconstruction. ‡:
ground-truth camera for 2D depth map inference.

Method δ1 ↑ A.Rel ↓ RMSE ↓ δSSI1 ↑ FA ↑ ρA ↑
DepthAnything [81] - - - 97.0 - -
DepthAnythingv2 [82] - - - 98.0 - -
Metric3D†‡ [85] 75.1 19.3 0.633 96.2 - -
Metric3Dv2†‡ [28] 68.4 20.7 0.700 98.8 - -
ZoeDepth† [7] 49.8 21.5 0.989 95.8 - -
UniDepth [60] 15.7 41.0 1.25 98.1 30.3 76.6
MASt3R [39] 61.0 19.7 0.883 95.1 55.7 76.0
DepthPro [9] 82.3 17.0 0.573 98.0 62.8 75.9

UniK3D-Small 87.7 13.0 0.484 97.7 67.3 74.6
UniK3D-Base 87.6 12.5 0.452 98.0 67.5 73.4
UniK3D-Large 91.9 10.4 0.406 98.5 69.8 75.4

Table 21. Comparison on zero-shot evaluation for ETH3D.
Missing values (-) indicate the model’s inability to produce the
respective output. †: ground-truth camera for 3D reconstruction. ‡:
ground-truth camera for 2D depth map inference.

Method δ1 ↑ A.Rel ↓ RMSE ↓ δSSI1 ↑ FA ↑ ρA ↑
DepthAnything [81] - - - 93.2 - -
DepthAnythingv2 [82] - - - 93.3 - -
Metric3D†‡ [85] 19.7 136.8 10.45 81.1 - -
Metric3Dv2†‡ [28] 90.0 12.7 1.85 89.7 - -
ZoeDepth† [7] 33.8 54.7 3.45 86.1 - -
UniDepth [60] 18.5 53.3 3.50 93.9 27.6 42.6
MASt3R [39] 21.4 45.3 4.43 91.3 28.4 92.2
DepthPro [9] 39.7 65.2 36.31 81.1 41.2 77.4

UniK3D-Small 53.6 60.0 4.89 94.2 44.3 80.7
UniK3D-Base 68.4 28.5 3.77 95.8 53.8 82.0
UniK3D-Large 68.7 23.6 2.63 95.9 53.6 81.3

(ETH3DDist), Table 26 (Diode IndoorDist), Table 27 (Scan-
Net++ DSLR), Table 28 (ADT), and Table 29 (KITTI360).
Note that we do not report results for the “Pano” group, as
it only consists of a single dataset, Stanford-2D3D. Our re-
sults show that performance on pinhole camera models has
reached a saturation point, yet UniK3D achieves the high-
est average metric overall, even though it does not always
rank first on every individual dataset. This demonstrates the
strong generalization ability of UniK3D, attributed to its flex-
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Table 22. Comparison on zero-shot evaluation for Diode (In-
door). Missing values (-) indicate the model’s inability to produce
the respective output. †: ground-truth camera for 3D reconstruc-
tion. ‡: ground-truth camera for 2D depth map inference.

Method δ1 ↑ A.Rel ↓ RMSE ↓ δSSI1 ↑ FA ↑ ρA ↑
DepthAnything [81] - - - 97.5 - -
DepthAnythingv2 [82] - - - 97.6 - -
Metric3D†‡ [85] 40.4 61.1 2.34 91.3 - -
Metric3Dv2†‡ [28] 94.0 9.3 0.399 98.5 - -
ZoeDepth† [7] 34.9 33.6 2.07 91.8 - -
UniDepth [60] 76.2 17.2 0.954 97.2 63.0 96.1
MASt3R [39] 52.6 27.9 1.68 92.3 48.8 70.2
DepthPro [9] 67.1 19.9 0.900 93.9 50.3 71.5

UniK3D-Small 57.2 21.4 0.968 96.1 49.3 92.5
UniK3D-Base 55.1 19.6 0.859 97.4 50.1 91.2
UniK3D-Large 71.3 16.1 0.767 97.9 53.8 79.5

Table 23. Comparison on zero-shot evaluation for nuScenes.
Missing values (-) indicate the model’s inability to produce the
respective output. †: ground-truth camera for 3D reconstruction. ‡:
ground-truth camera for 2D depth map inference.

Method δ1 ↑ A.Rel ↓ RMSE ↓ δSSI1 ↑ FA ↑ ρA ↑
DepthAnything [81] - - - 79.0 - -
DepthAnythingv2 [82] - - - 79.4 - -
Metric3D†‡ [85] 75.4 23.7 8.94 64.0 - -
Metric3Dv2†‡ [28] 84.1 23.6 9.40 64.8 - -
ZoeDepth† [7] 33.8 42.0 7.41 64.8 - -
UniDepth [60] 84.6 12.7 4.56 83.1 64.4 97.7
MASt3R [39] 2.7 65.6 13.76 63.5 13.6 78.3
DepthPro [9] 56.6 28.7 11.29 59.1 46.5 79.1

UniK3D-Small 80.9 18.9 8.43 83.8 59.4 95.8
UniK3D-Base 84.9 16.7 9.15 86.7 65.5 97.8
UniK3D-Large 84.0 18.9 10.83 87.0 60.3 86.9

Table 24. Comparison on zero-shot evaluation for IBims-1Dist.
Missing values (-) indicate the model’s inability to produce the
respective output. †: ground-truth camera for 3D reconstruction. ‡:
ground-truth camera for 2D depth map inference.

Method δ1 ↑ A.Rel ↓ RMSE ↓ δSSI1 ↑ FA ↑ ρA ↑
DepthAnything [81] - - - 97.1 - -
DepthAnythingv2 [82] - - - 93.4 - -
Metric3D†‡ [85] 56.8 26.5 0.947 93.3 - -
Metric3Dv2†‡ [28] 61.3 22.1 0.940 93.3 - -
ZoeDepth† [7] 30.0 28.0 1.28 94.5 - -
UniDepth [60] 48.7 23.0 0.966 97.2 53.3 69.3
MASt3R [39] 31.8 31.9 1.30 92.8 44.1 69.7
DepthPro [9] 27.2 47.6 1.86 83.0 32.4 69.5

UniK3D-Small 67.2 17.1 0.726 97.6 62.6 71.5
UniK3D-Base 66.0 17.9 0.695 98.3 59.8 72.7
UniK3D-Large 70.9 15.0 0.615 98.6 67.9 77.3

ible design and large-scale training, which enables robust
performance across diverse domains without overfitting to
any specific one. We report additional and more typical met-
rics such as absolute relative error as A.Rel as a percentage
and root-means-squared error RSME using meter as unit.

Table 25. Comparison on zero-shot evaluation for ETH3DDist.
Missing values (-) indicate the model’s inability to produce the
respective output. †: ground-truth camera for 3D reconstruction. ‡:
ground-truth camera for 2D depth map inference.

Method δ1 ↑ A.Rel ↓ RMSE ↓ δSSI1 ↑ FA ↑ ρA ↑
DepthAnything [81] - - - 91.8 - -
DepthAnythingv2 [82] - - - 83.9 - -
Metric3D†‡ [85] 19.6 123.6 11.05 80.9 - -
Metric3Dv2†‡ [28] 42.8 104.3 9.87 83.5 - -
ZoeDepth† [7] 25.4 45.9 4.12 86.1 - -
UniDepth [60] 27.6 43.8 4.69 90.1 38.5 67.5
MASt3R [39] 14.6 51.8 5.37 87.7 32.0 78.5
DepthPro [9] 16.1 72.8 18.77 72.7 29.1 69.9

UniK3D-Small 42.1 125.3 12.14 92.9 49.9 68.4
UniK3D-Base 47.9 36.5 3.54 95.1 53.5 67.1
UniK3D-Large 67.0 22.1 2.75 95.5 63.6 83.1

Table 26. Comparison on zero-shot evaluation for DiodeDist (In-
door). Missing values (-) indicate the model’s inability to produce
the respective output. †: ground-truth camera for 3D reconstruc-
tion. ‡: ground-truth camera for 2D depth map inference.

Method δ1 ↑ A.Rel ↓ RMSE ↓ δSSI1 ↑ FA ↑ ρA ↑
DepthAnything [81] - - - 94.2 - -
DepthAnythingv2 [82] - - - 89.3 - -
Metric3D†‡ [85] 26.4 124.0 4.08 89.7 - -
Metric3Dv2†‡ [28] 34.1 35.2 1.61 91.6 - -
ZoeDepth† [7] 24.0 39.8 2.32 90.1 - -
UniDepth [60] 30.2 34.8 1.85 94.7 37.2 74.8
MASt3R [39] 20.6 46.0 2.41 89.3 29.5 83.0
DepthPro [9] 24.7 56.5 2.31 86.0 26.5 75.7

UniK3D-Small 27.6 33.4 1.48 95.0 33.0 82.6
UniK3D-Base 31.6 30.0 1.35 96.1 37.0 85.1
UniK3D-Large 26.9 30.0 1.33 97.5 36.1 85.4

Table 27. Comparison on zero-shot evaluation for ScanNet++
(DSLR). Missing values (-) indicate the model’s inability to pro-
duce the respective output. †: ground-truth camera for 3D recon-
struction. ‡: ground-truth camera for 2D depth map inference.

Method δ1 ↑ A.Rel ↓ RMSE ↓ δSSI1 ↑ FA ↑ ρA ↑
DepthAnything [81] - - - 51.4 - -
DepthAnythingv2 [82] - - - 52.3 - -
Metric3D†‡ [85] 16.5 180.5 1.83 51.2 - -
Metric3Dv2†‡ [28] 5.2 237.0 2.51 71.3 - -
ZoeDepth† [7] 2.0 158.5 1.45 71.2 - -
UniDepth [60] 0.6 162.9 1.59 71.0 9.1 20.2
MASt3R [39] 5.8 114.8 1.07 73.0 21.0 16.6
DepthPro [9] 9.6 95.8 0.928 74.1 24.4 30.9

UniK3D-Small 6.2 92.8 0.931 78.1 23.5 35.1
UniK3D-Base 55.4 33.1 0.340 86.6 53.9 65.1
UniK3D-Large 65.1 25.3 0.285 90.8 59.1 70.0

D. Q&A

Here we list possible questions that might arise after reading
the paper. We structure the section in a discursive question-
and-answer fashion.

• What is the importance of data for generalization w.r.t.
scene scale?
Data diversity is crucial for generalizing depth estimation,
especially for monocular methods that heavily rely on se-
mantic cues and are sensitive to domain gaps. Scale predic-
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Table 28. Comparison on zero-shot evaluation for ADT. Missing
values (-) indicate the model’s inability to produce the respective
output. †: ground-truth camera for 3D reconstruction. ‡: ground-
truth camera for 2D depth map inference.

Method δ1 ↑ A.Rel ↓ RMSE ↓ δSSI1 ↑ FA ↑ ρA ↑
DepthAnything [81] - - - 81.7 - -
DepthAnythingv2 [82] - - - 82.6 - -
Metric3D†‡ [85] 72.5 26.2 0.560 85.3 - -
Metric3Dv2†‡ [28] 75.6 21.9 0.433 92.4 - -
ZoeDepth† [7] 11.0 81.4 1.36 83.5 - -
UniDepth [60] 13.3 76.0 1.37 90.8 27.1 32.1
MASt3R [39] 44.8 40.1 0.717 86.7 52.5 51.4
DepthPro [9] 33.6 45.1 0.902 81.3 47.9 48.0

UniK3D-Small 89.8 13.4 0.323 93.8 82.9 92.2
UniK3D-Base 93.5 10.3 0.288 95.0 88.1 93.8
UniK3D-Large 94.6 9.3 0.275 95.6 89.5 93.7

Table 29. Comparison on zero-shot evaluation for KITTI360.
Missing values (-) indicate the model’s inability to produce the
respective output. †: ground-truth camera for 3D reconstruction. ‡:
ground-truth camera for 2D depth map inference.

Method δ1 ↑ A.Rel ↓ RMSE ↓ δSSI1 ↑ FA ↑ ρA ↑
DepthAnything [81] - - - 9.5 - -
DepthAnythingv2 [82] - - - 11.3 - -
Metric3D†‡ [85] 0.2 1366.2 34.78 39.7 - -
Metric3Dv2†‡ [28] 0.1 1655.3 40.32 43.9 - -
ZoeDepth† [7] 0.7 1200.2 24.71 41.2 - -
UniDepth [60] 29.4 152.2 4.23 44.0 14.6 7.1
MASt3R [39] 16.5 312.8 7.17 41.7 15.7 7.4
DepthPro [9] 5.5 103.8 7.35 38.0 5.9 17.5

UniK3D-Small 74.9 39.8 2.58 81.6 59.5 82.8
UniK3D-Base 73.3 33.8 2.62 80.8 61.2 80.9
UniK3D-Large 81.7 24.4 2.40 85.3 66.4 82.5

Table 30. Comparison with UniDepth. All models use ViT-S
backbone and the same training data. Test set grouping as in the
main paper. Best viewed on a screen and zoomed in.

Method Small FoV Small FoVDist Large FoV Panoramic
δSSI1 ↑ FA ↑ ρA ↑ δSSI1 ↑ FA ↑ ρA ↑ δSSI1 ↑ FA ↑ ρA ↑ δSSI1 ↑ FA ↑ ρA ↑

UniDepth [60] 89.0 54.7 77.8 92.7 35.4 45.6 71.8 41.9 48.8 34.9 1.5 1.2
UniK3D 89.1 57.3 79.8 93.1 44.6 59.3 79.8 53.5 64.8 64.3 58.6 26.3

tion in monocular metric depth estimation is inherently ill-
posed, making it highly dependent on the training domain
and its distribution coverage. Excessive diversity can hurt
performance in narrow, specialized domains like KITTI,
where models trained on large, diverse datasets often un-
derperform compared to those trained on domain-specific
data. Conversely, these models perform better in broader
domains like NYU. Scale prediction is typically noisy and
sensitive to domain shifts, but this issue can be mitigated
through in-domain fine-tuning. For example, a few hun-
dred optimization steps can largely resolve the “scale gap”
when fine-tuning on KITTI.

• The camera representation is superior to pinhole or
fully non-parametric camera model, but you did not
compare it to some common camera models, why so?
We initially experimented with explicit parametric cam-
era models but encountered significant drawbacks. Most
standard camera models rely on backprojection operations

which are not differentiable and, thus cannot be used in
a standard deep learning pipeline. Addressing this lim-
itation requires either (i) using differentiable parametric
models, such as EUCM [33] or DoubleSphere [69], (ii)
approximating polynomial inversions with differentiable
functions, or (iii) supervising only the model parameters
without direct camera supervision. All these approaches
suffer from the inherent instability of parametric models,
where parameter variations need to be considered jointly
on their actual output, namely the pencil of rays. This com-
pounding effect, where small compounded changes lead
to large output variations, often leads to unstable optimiza-
tion. Furthermore, parametric models limit the expressive-
ness of the backprojection operation and constrain appli-
cability to only those cameras the model can represent. In
contrast, our representation avoids these limitations and
provides greater flexibility and stability.

• DUSt3R / MASt3R architecture directly predicts point
maps, are they unable to work with generic cameras?
While DUSt3R and MASt3R networks can theoretically
represent any camera model, our studies revealed that fully
non-parametric approaches struggle when trained on di-
verse datasets and tested on edge cases or distribution tails.
Additionally, the test-time point cloud global alignment
technique used in DUSt3R [74] and MASt3R [39] explic-
itly requires a pinhole camera, further limiting their appli-
cability to generic cameras.

• What is the role of the confidence prediction?
Confidence prediction is included primarily for its utility
in downstream tasks and also for legacy reasons. It is
worth noting that, like most regression tasks, confidence
prediction is vulnerable to domain gaps, which can render
it unreliable in strong out-of-domain scenarios.

• What is the rationale of camera augmentations?
Camera augmentations were employed to address the lack
of diverse real-camera data. While our simple augmen-
tation pipeline resulted in minor improvements, we ob-
served that many generated cameras are unrealistic and
fall outside the distribution of real-world cameras. How-
ever, softmax-based warping proved effective in creating
realistic images. We hypothesize that a more sophisticated
camera sampling procedure, considering the realism of the
output rays instead of the singled-out parameters, could
significantly enhance the robustness and generalization
across real and practical camera models.

• What are the differences with UniDepth?
UniDepth [60] and UniK3D differ in camera modeling
and 3D representation, both ablated in Tabs. 3, 4, and 5.
UniDepth relies on the pinhole model by predicting the
calibration matrix (cf. [60, Sec. 3.2]), thus not being able
to predict any camera. In addition, [60] represents the
3rd dimension as depth (z) [60, Sec. 3.1]. These two as-
pects force [60] to model only pinhole and to output FoV

19



< 180◦. In contrast, UniK3D uses spherical harmonics
(SH) to approximate any camera model and it exploits
radial distance (r) as 3rd dimension. UniDepth projects
the predicted pinhole ray map [60, Sec. 3.1] onto a high-
dimensional space E using SH, whereas UniK3D directly
predicts the SH coefficient used to generate the ray map C
via inverse transform (L230-262). This key methodolog-
ical difference leads to modeling any camera. Table 30
(row 1 vs. row 3) shows its impact, as UniK3D consistently
outperforms [60] also when trained on identical data.

• Has someone done something similar before?
Yes, there are a few works [27, 35] which tried to remove
the pinhole assumption for depth estimation. However,
they are different for two important reasons: (i) those
works focused on single-domain scenarios, leading to a
simpler setting and (ii) the task is self-supervised depth es-
timation, where the camera is needed to define the warping-
based photometric loss, inherently needing the camera,
rather than supervised large-scale monocular 3D estima-
tion.

• We provide here the δSSI1 scores of row 3 and 4 of Tab. 5:
92.1 and 92.2, respectively. This score similarity, along
with FA and ρA drops (Tab. 5), spotlights angular module’s
role. In fact, radial- and SH-based model (row 4) overes-
timates FoV of images with lens distortions. Retraining
with stronger distortion augmentation for small FoV leads
to (FA, ρA) = (43.1, 62.3), validating our assumption.

E. Additional Qualitative Results
We provide here more qualitative comparisons, in particular
from validation domains not presented in the main paper and
with distorted cameras, namely ScanNet++ (DSLR), IBims-
1Dist, and DiodeDist (Indoor), in Fig. 5. In addition, we test
our model on complete in-the-wild scenarios, for instance,
frames from movies, TV series, YouTube, or animes. All im-
ages depicted in Fig. 6 and Fig. 7 present deformed cameras
or unusual points of view. The visualization here presented,
both from the validation sets and the in-the-wild ones are ca-
sually selected and not cherry-picked.
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RGB & GT Metric3Dv2† [28] UniDepth [60] MASt3R [39] UniK3D

Figure 5. Qualitative comparisons. Each pair of consecutive rows represents one test sample. Each odd row displays the input RGB image
and the 2D error map, color-coded with the coolwarm colormap based on absolute relative error with blue corresponding to 0% error and red
to 25%. To ensure a fair comparison, errors are calculated on GT-based shifted and scaled outputs for all models. Each even row shows the
ground truth and predictions of the 3D point cloud. All samples are randomly selected and not picked. †: GT-camera unprojection.
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Figure 6. Qualitative in-the-wild 3D results.UniK3D is fed solely each single image in the left column and it outputs the corresponding
point cloud in the right column, the point of view is slightly tilted to better appreciate the 3D. The images are video frames respectively from
Poor Things (movie), The Revenant (movie), Eminem (music video), and YouTube (egocentric GoPro). The frames present a variety of
camera types and unusual viewpoints.
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Figure 7. Qualitative in-the-wild 3D results. UniK3D is fed solely each single image in the left column and it outputs the corresponding
point cloud in the right column, the point of view is slightly tilted to better appreciate the 3D. The images are video frames respectively from
Trainspotting (movie), YouTube (doorbell camera), Naruto (anime), and Breaking Bad (TV series). The frames present a variety of camera
types and unusual viewpoints.
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