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A PROOF OF THEOREM 1

Lemma 1 (McMahan & Streeter (2010)). For any Q ∈ Sd+ and convex feasible set F ⊂ Rd, suppose
u1 = minx∈F ‖Q1/2(x−z1)‖ and u2 = minx∈F ‖Q1/2(x−z2)‖ then we have ‖Q1/2(u1−u2)‖ ≤
‖Q1/2(z1 − z2)‖.

Proof. We provide the proof here for completeness. Since u1 = minx∈F
∥∥Q1/2(x− z1)

∥∥ and
u2 = minx∈F

∥∥Q1/2(x− z2)
∥∥ and from the property of projection operator we have the following:

〈z1 − u1, Q(z2 − z1)〉 ≥ 0 and 〈z2 − u2, Q(z1 − z2)〉 ≥ 0.

Combining the above inequalities, we have

〈u2 − u1, Q(z2 − z1)〉 ≥ 〈z2 − z1, Q(z2 − z1)〉 . (3)

Also, observe the following:

〈u2 − u1, Q(z2 − z1)〉 ≤ 1

2
[〈u2 − u1, Q(u2 − u1)〉+ 〈z2 − z1, Q(z2 − z1)〉] .

The above inequality can be obtained from the fact that

〈(u2 − u1)− (z2 − z1), Q((u2 − u1)− (z2 − z1))〉 ≥ 0 as Q ∈ Sd+
and rearranging the terms. Combining the above inequality with Equation 3, we have the required the
result.

Proof. For simplicity, vectors is also denoted in common lowercase in the proof. We begin with the
following observation:

xt+1 = ΠF,diag(η−1
t )(xt − ηt � gt) = min

x∈F
‖η−1/2t � (x− (xt − ηt � gt))‖.

Furthermore, as F is closed and convex, we can get x∗ = arg minx∈F
∑T
t=1 ft(x). Using Lemma 1

with u1 = xt+1 and u2 = x∗, we have the following:

‖η−1/2t � (xt+1 − x∗)‖2 ≤ ‖η−1/2t � (xt − ηt � gt − x∗)‖2

= ‖η−1/2t � (xt − x∗)‖2 + ‖η1/2t � gt‖2 − 2〈gt, xt − x∗〉.
Rearranging the above inequality, we have

〈gt, xt − x∗〉 ≤
1

2

[
‖η−1/2t � (xt − x∗)‖2 − ‖η−1/2t � (xt+1 − x∗)‖2

]
+

1

2
‖η1/2t � gt‖2. (4)

We now use the standard approach of bounding the regret at each step using convexity of the function
ft in the following manner:

T∑
t=1

ft (xt)− ft (x∗) ≤
T∑
t=1

〈gt, xt − x∗〉

≤ 1

2

T∑
t=1

[
‖η−1/2t � (xt − x∗)‖2 − ‖η−1/2t � (xt+1 − x∗)‖2 + ‖η1/2t � gt‖2

]

=
1

2

[
T∑
t=2

[
‖η−1/2t � (xt − x∗)‖2 − ‖η−1/2t−1 � (xt − x∗)‖2

]

+ ‖η−1/21 � (x1 − x∗)‖2 − ‖η−1/2t � (xt+1 − x∗)‖2 +

T∑
t=1

‖η1/2t � gt‖2
]

=
1

2

[
T∑
t=2

d∑
i=1

(xt,i − x∗i )2(η−1t,i − η
−1
t−1,i) +

d∑
i=1

η−11,i (x1,i − x
∗
i )

2

−
d∑
i=1

η−1t,i (xt+1,i − x∗i )2 +

T∑
t=1

d∑
i=1

g2t,iηt,i

]
.

(5)
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The first inequality is due to the convexity of functions {ft}. The second inequality follows from the
bound in Equation 4. For further bounding this inequality, we need the following intermediate result.

Lemma 2. For the parameter settings and conditions assumed in Algorithm 1, we have
T∑
t=2

∣∣η−1t,i − η−1t−1,i∣∣ ≤ 2

η(1− λ)3

[
(5− 4λ)

√
T + 2λ− 1

]
.

Proof. For simplicity, we ignore subscript i in this lemma. Let ηt+1 = ηt+∆t, ct = gtmt

|git|max(|mt|)+ε
,

bt = λtct and at = 1√
t
, thus we have

ηt =
η√
t
(1 + bt),

∆t

η
=
ηt+1 − ηt

η
=

1√
t+ 1

(1 + bt+1)− 1√
t

(1 + bt)

=

(
1√
t+ 1

− 1√
t

)
+ at+1bt+1 − atbt

= at+1 (bt+1 − bt) + (1 + bt) (at+1 − at) .

We observe that,

|at+1 (bt+1 − bt)| =
∣∣λt+1ct+1 − λtct

∣∣
√
t+ 1

≤ λt+1 |ct+1|+ λt |ct|√
t+ 1

≤ 2λt√
t
.

Also, observe the following:

|(1 + bt) (at+1 − at)| ≤ (1 + λ)

(
1√
t
− 1√

t+ 1

)
≤ 2

t
√
t
.

The above inequality can be obtained from the fact that |1 + bt| ≤ 1 + |bt| ≤ 1 + λ |ct| ≤ 1 + λ.

Hence, we have,
|∆t|
η
≤ 2√

t
(
1

t
+ λt)

By definition,

η
1− λ√

t
≤ ηt ≤ η

1 + λ√
t

And then, ∣∣η−1t+1 − η
−1
t

∣∣ =

∣∣∣∣ηt+1 − ηt
ηt+1ηt

∣∣∣∣ ≤ |∆t| (t+ 1)

η2(1− λ)2
≤

2(t+ 1)( 1
t + λt)

√
tη(1− λ)2

.

Finally, we have,
T∑
t=2

∣∣η−1t,i − η−1t−1,i∣∣ ≤ 2

η(1− λ)2

[
T∑
t=2

t

t− 1

1√
t− 1

+

T∑
t=2

λt−1
t√
t− 1

]

≤ 2

η(1− λ)2

[
2

T∑
t=2

1√
t− 1

+

T∑
t=2

λt−1 +

T∑
t=2

λt−1
√
t− 1

]

≤ 2

η(1− λ)3

[
(5− 4λ)

√
T + 2λ− 1

]
.

The last inequality is due to the following upper bound:
T∑
t=1

1√
t
≤ 1 +

∫ T

t=1

dt√
t

= 2
√
T − 1.
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We now return to the proof of Theorem 1. Using the D∞ bound on the feasible region and making
use of the above property in Equation 5 and Lemma 2, we have

T∑
t=1

ft (xt)− ft (x∗)

≤ 1

2

[
T∑
t=2

d∑
i=1

(xt,i − x∗i )2
∣∣η−1t,i − η−1t−1,i∣∣+

d∑
i=1

η−11,i (x1,i − x
∗
i )

2 +

T∑
t=1

d∑
i=1

g2t,iηt,i

]

≤ D2
∞d

η(1− λ)3

[
(5− 4λ)

√
T + 2λ− 1

]
+

D2
∞d

2η(1− λ)
+G2

2dη(2
√
T − 1).

It is easy to see that the regret of AdaRem is upper bounded by O(
√
T ).

B EXPERIMENT DETAILS

B.1 HYPER-PARAMETERS GRID SEARCH

We run all experiments with cosine learning rate without a warmup stage and train for 100 epochs
with a minibatch size of 1024 on 16 GPUs.

B.1.1 ADAPTIVE OPTIMIZERS’ PERFORMANCE ON DEEP CONVOLUTIONAL NETWORK

We set the base learning rate of 0.4 for SGDM just as (He et al., 2019), AdaRem and AdaRem-S.
For Adam, we set the base learning rate as 0.004, and choose the EMA parameter of the second
momentum of gradient β2 from {0.99,0.999}. For AdamW and AdaBound, we adopt the same
hyper-parameters as Adam. For AdaBound, we choose the final_lr from {0.1,0.4}. For RMSProp, we
choose the base learning rate from {0.04,0.004,0.0004}, and β2 from {0.99,0.999}. The momentum
parameter β of AdaRem is set as 0.999. Weight decay parameter is choosen from {0.0001,0.0003}
for all methods. Additional details can be seen in the Table 4.

Table 4: Hyper-parameters’ setting of various optimization methods for ResNet18 on ImageNet. The
bold number indicates the best one of the hyper-parameters to be selected and ε is a term to improve
numerical stability. β1 is the EMA parameter of the first momentum of gradient and β2 is the EMA
parameter of the second momentum of gradient.

Model Hyper-parameter
lr β1 β2 weight_decay ε final_lr

SGDM 0.4 0.9,0.999 ∼ 0.0001,0.0003 ∼ ∼
Adam 0.004 0.9,0.999 0.99,0.999 0.0001,0.0003 1e-8 ∼

AdamW 0.004 0.9,0.999 0.999 0.0001,0.0003 1e-8 ∼
AdaBound 0.004 0.9,0.999 0.999 0.0001,0.0003 1e-8 0.1,0.4
RMSProp 0.04,0.004,0.0004 ∼ 0.99,0.999 0.0001,0.0003 1e-8 ∼
AdaRem 0.4 0.9,0.999 ∼ 0.0001,0.0003 1e-8 ∼

B.1.2 ADAREM-S VS. SGDM ACROSS VARIOUS ARCHITECTURES

For AdaRem-S, we choose momentum parameter from {0.995,0.999} of ResNet50, and the sphere
radius from {10,100} of MobileNetV2. MobileNetV2-0.5 and MobileNetV2-1.0 employ the same
hyper-parameter’s setting. Additional details can be seen in the Table 5.
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(a) Top-5 Error for MobileNetV2
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(b) Top-5 Error for ResNet18
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(c) Top-5 Error for ResNet50

Figure 6: Top-5 error of three networks on ImageNet.

Table 5: Hyper-parameters’ setting of AdaRem-S and SGD for ResNet-18, ResNet-50 and Mo-
bileNetV2 on ImageNet. The bold number indicates the best one of the hyper-parameters to be
selected.

Model optimizer Hyper-parameter
lr momentum weight_decay R ε

ResNet-18 SGDM 0.4 0.9 1e-4 ∼ ∼
AdaRem-S 0.4 0.999 1e-4 10 1e-8

ResNet-50 SGDM 0.4 0.9 1e-4 ∼ ∼
AdaRem-S 0.4 0.995,0.999 1e-4 10 1e-8

MobileNetV2 SGDM 0.4 0.9 1e-4,4e-5 ∼ ∼
AdaRem-S 0.4 0.999 1e-4,4e-5 10,100 1e-8

ShuffleNetV2 SGDM 0.4 0.9 1e-4,4e-5 ∼ ∼
AdaRem-S 0.4 0.999 1e-4,4e-5 10,100 1e-8

B.2 OTHER EXPERIMENTAL RESULTS

Table 6: Top-5 accuracy of various networks on the ImageNet dataset. The bold number indicates the
best result.

Model Top-5 Accuracy(%)
SGDM AdaRem-S

ResNet50 92.9 92.92
ResNet18 89.74 89.87

MobileNetV2-1.0 89.81 90.34
MobileNetV2-0.5 84.66 85.30
ShuffleNetV2-1.0 87.68 87.96
ShuffleNetV2-0.5 80.23 81.77

Table 7: Train loss of various networks on the ImageNet dataset. The bold number indicates the best
result.

Model Train Loss
SGDM AdaRem-S

ResNet50 0.932 0.823
ResNet18 1.331 1.148

MobileNetV2-1.0 1.462 1.343
MobileNetV2-0.5 1.965 1.887
ShuffleNetV2-1.0 1.340 1.337
ShuffleNetV2-0.5 1.839 1.744
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