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This supplementary document is arranged as follows:
(1) Sec. A illustrates more qualitative results across Scan-
Net200 [13], our ScanNet200-Fine50, ScanNet++ [16] and
KITTI-360 [8];
(2) Sec. B reports the results on Matterport3D [1];
(3) Sec. C discusses an augmented version of using prompt
propagation across 2D frames;
(4) Sec. D provides more ablation studies of our method;
(5) Sec. E integrates several variants of SAM [4, 6, 18] into
our framework;
(6) Sec. F elaborates our method implementations and
dataset constructions;
(7) Sec. G introduces a supplementary evaluation scheme
when lacking fine-grained GT annotations.

A. More Qualitative Results
A.1. On ScanNet200

Following the main paper, Fig. I presents more qualita-
tive comparisons on the ScanNet200 validation set, where
our method is compared with SAM3D [15], Mask3D [14],
and the original annotations of ScanNet200 [13]. Note that
Mask3D does not treat floor and wall as instances, resulting
in the absence of these two labels in its results.

Consequently, our method consistently achieves remark-
able 3D scene segmentation results across diverse scenes
and objects, from holistic views to focused perspectives.
Notably, our approach significantly outperforms SAM3D in
terms of segmentation quality and diversity. When com-
pared to Mask3D (trained and evaluated both on Scan-
Net200), our method demonstrates competitive or superior
segmentation quality and diversity. Importantly, our results
not only match the quality of human annotations but also
exhibit greater diversity in many cases.

We provide an animated visualization of the qualitative
comparison in a visually appealing video format, where we
simulate the moving camera in the segmented 3D scene.
You may refer to the supplementary file folder and ac-
cess the video file named qualitative comparison.mp4, to
have a clear view of our impressive qualitative results. In
this video, the first 2 minutes and 12 seconds showcase a
qualitative comparison across different indoor scene areas.
Specifically, the segment from the beginning to 1 minute

and 16 seconds compares our method with SAM3D, while
the segment from 1 minute and 17 seconds to 2 minutes and
12 seconds compares our method with Mask3D (trained
and evaluated both on ScanNet200). Starting from the 2
minutes and 12 seconds mark until the end, the video simu-
lates a complete camera moving throughout an entire indoor
room. From 2 minutes and 12 seconds to 2 minutes and 43
seconds, the comparison is made with SAM3D, and from 2
minutes and 44 seconds to the end, the comparison is made
with Mask3D.

A.2. On ScanNet200-Fine50

We have introduced a fine-grained test set called
ScanNet200-Fine50. In Fig. II, we provide more qualita-
tive comparisons among the predictions from our method,
SAM3D [15], and Mask3D [14], as well as the original an-
notations from ScanNet200 [13] and the fine-grained an-
notations from our ScanNet200-Fine50. Here, we mainly
show focused views, aiming to highlight the segmentation
performance specifically for fine-grained instances.

In comparison to the initial annotations in ScanNet200,
our ScanNet200-Fine50 test set offers significantly more
finely detailed annotations of high quality. Further-
more, our method’s predictions exhibit better alignment
with ScanNet200-Fine50 when compared to SAM3D and
Mask3D, demonstrating the fine-grained segmentation ca-
pability of our approach.

B. Results on Matterport3D
As mentioned in the main paper, we also applied our
method to the Matterport3D dataset [1]. In this dataset,
the RGB frames exhibit larger view changes compared to
ScanNet [2] and ScanNet++ [16], which presents additional
challenges when performing segmentation solely on 2D
frames. We follow [11] to use undistorted images in the
official Matterport3D repo ∗ and test on 160 classes of the
validation set.

As shown in Tab. I, our method outperforms both
SAM3D [15] and SAI3D [17] on Matterport3D dataset,
which is further supported by the qualitative results in
Fig. III. This further proves the robustness of our method
on novel 3D scenes.

* https://github.com/niessner/Matterport
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Figure I. The qualitative comparison of our method, SAM3D [15], Mask3D [14] and ScanNet200’s annotations [13], across various
scenes in the ScanNet200 validation set, from holistic to focused view. Note that Mask3D does not treat floor and wall as instances,
resulting in the absence of these two labels in its results.
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Figure II. The qualitative comparison among the predictions from our method, SAM3D [15], and Mask3D [14], as well as the original
annotations from ScanNet200 [13] and the fine-grained annotations from our ScanNet200-Fine50, across diverse scenes from focused
views. Note that Mask3D does not treat floor and wall as instances, resulting in the absence of these two labels in its results.

Model AP AP50 AP25

SAM3D [15] 10.1 19.4 36.1
SAI3D [17] 21.5 38.3 59.1
Ours 24.3 42.1 65.4

Table I. The quantitative comparison on Matterport3D [13].

C. An Augmented 2D Propagation
In Sec. 1 and Fig. 2 (c) of the main paper, we discuss
achieving prompt consistency by using automatic-SAM [5]
on an initial frame to generate pixel prompts which can be
propagated to subsequent frames, similar to SAM-PT [12]
for video tracking. However, prompts generated on initial
frames of 3D scenes cannot cover newly emerged instances
in other frames, leading to the absence of segmentation for
many instances.

In this section, we evaluate an alternative scheme. In-
stead of performing automatic-SAM only once on an initial
frame, we check if any areas lack segmentation masks in
a frame, indicating the presence of newly emerged objects.

Model AP AP50 AP25

Augmented 2D propagation 20.3 38.6 59.7
Ours 26.3 47.2 68.6

Ours+HQ-SAM [4] 28.5 47.9 69.8
Ours+Mobile-SAM [18] 20.9 40.8 61.3

Table II. The quantitative results on ScanNet200 [13].
“Augmented 2D propagation” is detailed in Sec. C. “+HQ.” and
“+Mob.” respectively indicate incorporating HQ-SAM [4] and
Mobile-SAM [18] in our framework.

In such cases, we reapply automatic-SAM to make prompts
cover these objects.

As depicted in Fig. IV, although the augmented version
of 2D propagation improves the completeness of 3D seg-
mentation results, it still falls short in terms of both seg-
mentation quality and diversity. Its deficiency is further
highlighted by the comparison of mAP scores in Tab. II.
The primary reason behind this inferior performance is that
the augmented scheme only aligns pixel prompts within a
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Figure III. The qualitative results of our method on Matterport3D
[1], from holistic to focused view. The results are arranged in pairs
where the left is the input and the right is our output.

Module Impact Initial Prompts θretain Selection
w/o Sel. w/o Con. 1% 1.5% 2% 5% 0.3 0.4 0.5 0.6 0.7 0.8 soft top-k

Normal 43.2 42.6 46.7 47.8 48.1 44.2 40.7 47.9 48.1 47.9 47.3 42.5 47.5 47.7
Small 25.6 25.1 29.1 30.1 30.3 26.1 25.6 29.2 30.3 30.1 29.9 25.7 30.0 29.8
Tiny 22.9 22.5 24.3 25.3 25.6 23.7 23.2 24.1 25.6 25.4 24.9 23.0 25.2 25.0

Table III. The quantitative ablation studies on our ScanNet200-
Fine50 test set. We report AP50 across different mask sizes of our
GT annotations (Normal, Small, Tiny). “w/o Sel.” and “w/o Con.”
respectively denote discarding prompt selection and consolidation.
We also evaluate our method using different ratios (1%, 1.5%, 2%,
5%) of input points as our initial prompts. θretain is the threshold
in prompt selection. “soft” and “top-k” are two voting schemes
used during prompt selection.

limited range, from the frame where automatic-SAM is ap-
plied to the next time reapplying it. Consequently, the mask
consistency is restricted to a few frames. In contrast, our
3D prompts globally align pixel prompts across all frames,
resulting in comprehensive frame-consistent pixel prompts
and 2D masks, as well as superior 3D segmentation results.

D. More Ablation Studies
D.1. The Ablation Results on ScanNet200-Fine50

Following the main paper, we conduct similar ablation stud-
ies on our ScanNet200-Fine50 test set and report the result
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Figure IV. The qualitative comparison between our method and
the augmented 2D propagation, across various scenes in the
ScanNet200 [13] validation set, from holistic to focused view.

in Tab. III. Similar to the conclusions in the main paper,
removing prompt selection or consolidation leads to a per-
formance drop across different mask sizes. Besides, using
5% initial prompts or setting θretain = 0.3, 0.8 results in
worse performance.

However, the fine-grained segmentation results (Small,
Tiny) also slightly degrade when using 1% initial prompts
or setting θretain = 0.4. One possible reason is that when
selecting fewer prompts, prompts may have a lower prob-
ability of being accurately scattered onto fine-grained in-
stances, as this kind of instance only occupies a small area.
In this scenario, prompts may tend to be located on large-
sized instances, resulting in the absence of segmentation for
fine-grained instances.

D.2. Frame Gaps

In the context of performing SAM [5] on 2D image frames,
an alternative approach is to skip frames with a certain gap.
Fig. V illustrates the qualitative results obtained by skip-
ping frames with different gap numbers. Fig. VI depicts the
quantitative results on the ScanNet200 validation set [13],
considering both segmentation AP50 and time cost.

The results indicate that the segmentation accuracy re-
mains satisfactory with a gap of 5, while there is a degra-
dation when using a gap of 10 or 20. Besides, according to
Fig. V, our framework stably maintains good segmentation
diversity across different gap settings. It’s also worth men-
tioning that our method consistently outperforms SAM3D
[15] in view of both segmentation accuracy and efficiency
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Figure V. The qualitative results of using different frame gaps in
our method.
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Figure VI. The quantitative results (AP50 on ScanNet200 and time
costs) of using different frame gaps in our method. We also com-
pare them against SAM3D [15].

under different frame gaps, as indicated in Fig. VI. To sum-
marize, increasing the number of frame gaps reduces the
number of frames on which SAM is applied, resulting in
lower time costs. Therefore, one can choose a suitable
frame gap that strikes a balance between segmentation qual-
ity and efficiency.

E. Integrating Variants of SAM

Our method can serve as a general framework to integrate
the models based on SAM [5]. We first integrate HQ-
SAM [4] and Mobile-SAM [18] into our framework. As
depicted in Fig. VII and Tab. II, their impact on 2D im-
ages seamlessly translates to the improved performance in
our method. These experimental results not only validate
the versatility of our method but also support a fundamental
concept driving our motivation, which is to directly transfer
the power of SAM or its variants into 3D without sophis-
ticated training. This insight highlights the importance of
considering the holistic system rather than solely focusing
on pure 3D data representation in future research endeavors.

In addition, Semantic-SAM [6] recently brought seman-
tic awareness to SAM. By integrating Semantic-SAM into
our framework, we can also achieve 3D semantic under-
standing. In this scheme, each point prediction from SAM
can be enhanced with the semantic label that is assigned by
Semantic-SAM across 2D frames the most number of times.
Fig. VIII shows some pilot results.
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Figure VII. The qualitative result of incorporating HQ-SAM [4]
and Mobile-SAM [18] into our framework.
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Figure VIII. The qualitative result of integrating Semantic-SAM
[6] into our framework.

F. Implementation Details
Details of running SAM. When performing SAM [5]
segmentation on all 2D frames, we use the PyTorch [10]
code provided in the original SAM repository †. Following
this code, we begin by converting all the projected pixel co-
ordinates into batched torch tensors represented as an array
(BxNx2), where each element corresponds to the (u, v) co-
ordinates in pixels. Next, we pass these tensors to the SAM
predictor to process all the pixel prompts in parallel. For
this process, we consider all pixel prompts as foreground
pixels and assign them a label of 1. We employ the ViT-
H SAM [5] model, which is the default public model of
SAM. We resize each RGB image frame to a resolution of
240×320. Through experimentation, we found that this res-
olution is adequate for SAM to deliver satisfactory results.
Therefore, we choose this resolution to optimize efficiency
in our pipeline.

Details of View-Guided Prompt Selection. As men-
tioned in Sec. 3.2 of the main paper, the first step of View-
Guided Prompt Selection is to select prompts on each in-
dividual frame. In detail, this selection process on indi-
vidual frames involved three steps which are based on the
strategy proposed in automatic-SAM [5]. Firstly, to elimi-
nate overlapped masks, we employed standard greedy box-
based non-maximal suppression (NMS) and cut the masks
with a box IoU smaller than 80.0. Secondly, we retained
only confident masks by applying a threshold of 70.0 to the
model’s predicted IoU scores. Finally, we focused on stable
masks by comparing pairs of binary masks derived from the

† https : / / github . com / facebookresearch / segment -
anything

https://github.com/facebookresearch/segment-anything
https://github.com/facebookresearch/segment-anything


same soft mask. We kept the prediction (i.e., binary mask
resulting from thresholding logits at 0) if the IoU between
its pair of -1 and +1 thresholded masks was 60.0 or higher.

Details of building ScanNet200-Fine50. To build our
ScanNet200-Fine50 test set, we handpicked 50 scenes from
the ScanNet200 [13] validation set. These selected scenes
predominantly feature a higher number of fine-grained in-
stances that lack mask annotations, such as multiple small
instances on tables. Subsequently, we engaged the expertise
of five experienced 3D data annotators, assigning each of
them 10 scenes for annotation. Throughout the annotation
process, they were instructed to meticulously examine each
instance and provide annotations with the utmost level of
detail possible. For instance, their annotations encompass
not only each small instance on a table but also different re-
movable parts of a chair. At present, our fine-grained anno-
tations are agnostic to specific categories and do not include
explicit category labels. Furthermore, the annotators will
cross-check the initial annotations provided by their peers
and offer feedback through an online communication sys-
tem. This process ensures the meticulous and high-quality
annotation of the data.

G. A Supplementary Evaluation Scheme
As mentioned in the main paper, different from previous
zero-shot or fully-supervised methods, our approach pre-
serves the zero-shot power of SAM, often segmenting fine-
grained instances that lack corresponding accurate Ground
Truth (GT) annotations (as in Fig. I). Consequently, as il-
lustrated in Fig. IX (“Problem”), if we directly compare
our predictions with GT annotations during mAP calcu-
lation, our successfully-segmented fine-grained instances
will be counted as False Positive, which hurts the accurate
evaluation. A similar problem occurs in the SAM paper
[5] (Tab. 5), where evaluating SAM on classical coarsely-
annotated datasets [3, 9] leads to inferior mAP results com-
pared to the fully-supervised ViTDet [7]. However, SAM
outperforms ViTDet according to the user study.

To handle this issue, we add a grouping process. We be-
gin by selecting an annotated instance g from the validation
data. We then traverse our segmentation outputs to identify
all predictions {Om|i = m, ...,M} that belonging to g by
checking if the most area (> 80%) of Om is included by g.
We group all such predictions Om into a single prediction
which is then compared with g to decide whether it is a True
Positive, as shown in Fig. IX (“Our process”). This process
is repeated for all annotated instances.

We apply the proposed grouping process when calculat-
ing the AP scores of Mask3D [14] and our method. The re-
sults on the ScanNet200 validation set are listed in Tab. IV.
First, it is evident that our grouping method has a minimal
impact on Mask3D. This is primarily because Mask3D is

1,2,3 = False Positive

Problem Our process

Annotation

Group 1,2,3

Our prediction

1 2 3
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Figure IX. Evaluation of the fine-grained predictions that lack GT
annotations. Predictions 1,2,3 (sofa cushions) are visually good.
However, if we compare them with the whole annotated sofa, they
will all be False Positive due to small IoU. Thus, we group them
for better evaluation.

AP AP50 AP25

Method w/o group w/ group w/o group w/ group w/o group w/ group

Mask3D [14] 53.3 54.0 (0.7↑) 71.9 72.7 (0.8↑) 81.6 82.2 (0.6↑)
Ours 26.3 33.7 (7.4↑)) 47.2 54.3 (7.1↑) 68.6 77.2 (8.6↑)

Table IV. Quantitative comparison with Mask3D (pretrained on
ScanNet) on ScanNet200. “w/o group” and “w/ group” denote
scores without and with our grouping process. While grouping
operation improves our scores, it has minimal impact on Mask3D
which can always find GT annotations.

pretrained on ScanNet200 training data, which possesses
similar or even finer granularity compared to the test data.
Consequently, most of Mask3D’s predictions successfully
match the corresponding GT annotations in the validation
set (as shown in Fig. I). In contrast, for our SAM-powered
model, it is common for predictions to lack annotations, so
the grouping operation leads to improved AP scores. No-
tably, our AP25 with grouping is even comparable with
fully-supervised Mask3D. This experiment indicates that
our grouping scheme not only mitigates the issue of eval-
uating predictions without annotations but also has minimal
impact on evaluating the predictions with matched annota-
tions, showcasing the fairness and rationality of our group-
ing process.
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