Appendix for Noise-Aware Algorithm for Heterogeneous
differentially private federated learning

A EXPERIMENTAL SETUP
In this section we provide more experimental details that are deferred in the main paper.

A.1 DATASETS AND MODELS

MNIST and FMNIST datasets: We consider a distributed setting with 20 users. In order to create
anon-i.i.d. dataset, we follow a similar procedure as in [1]: first we split the data from each class into
several shards. Then, each user is randomly assigned a number of shards of data. For example, in
some experiments, in order to guarantees that no user receives data from more than 6 classes, we split
each class of MNIST/FMNIST into 12 shards (i.e., a total of 120 shards for the whole dataset), and
each user is randomly assigned 6 shards of data. By considering 20 users, this procedure guarantees
that no user receives data from more than 6 classes and the data distribution of each user is different
from each other. The local datasets are balanced—all users have the same amount of training samples.
The local data is split into train and test sets with percentage of 80%, and 20%, respectively. In this
way, each user has 2400 data points for training, and 600 for testing. We use a simple 2-layer CNN
model with ReLU activation, the detail of which can be found in Table 3. To update the local models
at each user using its local data, unless otherwise is stated, we apply gradient descent.

Table 3: CNN model for classification on MNIST/FMNIST datasets

Layer Output Shape  # of Trainable Parameters  Activation Hyper-parameters
Input (1,28,28) 0

Conv2d (16,28, 28) 416 ReLU kernel size =5; strides=(1, 1)
MaxPool2d (16,14, 14) 0 pool size=(2, 2)
Conv2d (32,14,14) 12,832 ReLU kernel size =5; strides=(1, 1)
MaxPool2d (32,7,7) 0 pool size=(2, 2)
Flatten 1568 0

Dense 10 15,690 ReLU

Total 28,938

CIFAR-10 dataset: We consider a distributed setting with 20 users, and split the 50,000 training
samples and the 10,000 test samples in the dataset among them. In order to create a non-i.i.d. dataset,
we follow a similar procedure as in [1]: first we sort all data points according to their classes. Then,
they are split into 100 shards, and each user is randomly assigned 5 shards of data. We use the residual
neural network (ResNet) defined in [44], which is a large model with 11,181, 642 parameters. To
update the local models at each user using its local data, we apply stochastic gradient descent (SGD).
In the reported experimental results, all users participate in each communication round.

A.2 ALGORITHMS TO COMPARE AND TUNING HYPERPARAMETERS
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| Distribution || Parameter setting

Distl Gaussian distribution N'(2.0, 1.0)

Dist2 mixture of A/(0.2,0.01), M'(1.0,0.1) and N (5.0, 1.0) with weights (0.2,0.6, 0.2)
Dist3 Uniform distribution U[0.2, 5]

Dist4 mixture of A(0.2,0.01), N (0.5,0.1) and N(2.0, 1.0) with weights (0.2, 0.6,0.2)
Dist5 Uniform distribution U[0.2, 2]

Dist6 mixture of A/(0.2,0.01), N'(0.5,0.1) and N'(1.0,0.1) with weights (0.3,0.5,0.2)
Dist7 Uniform distribution U[0.2, 1]

Dist8 mixture of N'(0.2,0.01) and N'(0.5,0.1) with weights (0.6, 0.4)

Dist9 Uniform distribution U[0.2, 0.5]

Table 4: Distribution of privacy preferences.

Algorithm 2: WeiAvg [19]

Input: Initial parameter 8°, Clients batch sizes {b1,...,b,}, Clients dataset sizes
{Ny,...,N,}, Clients noise scales {z1, ..., 2, }, gradient norm bound ¢, local epochs
{Ki,...,K,}, global round E, privacy parameter §, number of model parameters p,

privacy accountant PA.
Output: Op, {c1,...,€,}
1 Initialize 6y randomly.
2 fore € [E] do
3 sample a set of clients S¢ C {1,...,n}
4 for each client i € S€ in parallel do
5 Aef (—DPSGD(Ge,bi,NZ‘,K,’,Zi,C)
€5 PA(]%,zi,Ki,e)

7 for i € S do
8 ws =
L ¢ 2jese €

o | 0 0°+ ) g wiADS
Output: 0F {eF ... £}

6

Algorithm 3: Principal Component Pursuit by Alternating Directions [24]

Input: matrix M, shrinkage operator S, [x] = sgn(z) max(|z| — 7, 0), singular value
thresholding operator D, (UXV*) = US,(X)V*

1 Initialize So = Yy =0, > 0.

2 while not converged do

3 | compute L1 =D,-1(M — Sy — p~'Yy)

4 | compute Syy1 =Sy, (M — Lyy1 + = Y%)

5 compute Y41 = Yy + (M — L1 — Sky1)
Qutput: L, S

Table 5: The learning rates used for training with each algorithm on MNIST dataset

™ dist ‘ Distl Dist2 Dist3 Dist4 Dist5 Dist6 Dist7 Dist8 Dist9
WeiAvg [19] ‘ le-2 1le-2 1le-2 5e-3 5e-3 1e-3 1le-3 1le-3 1le-3
PFA [19] | le-=2 le-2 le-2 1le-2 le-2 2e-3 2e-3 2e-3 2e-3

DPFedAvg [38] | 5e-3 1le-3 1le-3 1le-3 le-3 5e-4 le-3 1le-3 le-3

minimume[19]‘5e—4 5e-4 5e-4 5e-4 1le-3 1le-4 1e-3 5e-4 1le-3

Robust-HDP ‘1e—2 le-2 1le-2 1le-2 5e-3 2e-3 2e-3 2e-3 2e-3
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Table 6: The learning rates used for training with each algorithm on FMNIST dataset

™ dist ‘ Distl Dist2 Dist3 Dist4 Dist5 Dist6 Dist7 Dist8 Dist9
WeiAvg [19] | 5e-3 5e-3 5e-3 5e-3 2e-3 5e-4 b5e-4 5e-4 5e-4
PFA [19] \ 5e-3 5e-3 5e-3 5e-3 5e-3 5e-3 1le-3 1le-3 1le-3

DPFedAvg [38] | 2e-3 1le-3 1le-3 1le-3 le-3 5e-4 5e-4 5e-4 5e-4

minimume[19]‘1e—3 5e-4 5e-4 5e-4 5e-4 1le-4 5e-4 5e-4 5e-4

Robust-HDP ‘5e—3 5e-3 5e-3 5e-3 5e-3 1le-3 1le-3 1le-3 1le-3

Table 7: The learning rates used for training with each algorithm on CIFAR-10 dataset

alg dist Distl Dist2 Dist3 Dist4 DistS5 Dist6 Dist7 Dist8  Dist9
WeiAvg [19] 2e-3 1le-3 1le-3 5e-4 5e-4 2e-4 2e-4 le-4 1le-4
PFA [19] 5e-3 2e-3 2e-3 2e-3 1le-3 b5e-4 5e-4 2e-4 2e-4

minimum € [19] | 2e-3 1e-3 1le-3 5e-4 5e-4 2e-4 2e-4 le-4 1le-4

|
|
DPFedAvg [38] | 2e-3 1le-3 1le-3 5e-4 5e-4 2e-4 2e-4 le-4 1le-4
|
|

Robust-HDP 5e-3 2e-3 2e-3 2e-3 le-3 5e-4 5e-4 2e-4 2e-4
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Figure 6: Plot of z v.s. ¢ obtained from Moments Accountant [14] in a centralized setting with
E = 200. Hence, z increases sub-linearly with ¢ (or equivalemntly with b).
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Figure 7: Comparison between the performance of PFA with different projections dimensions. The

results are for Dist9. In this case, the total number of clients in the public cluster was 4. Therefore
maximum dimension for projection was 4. We keep using 1 as the projection dimension (as in [19]).
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B DERIVATIONS

B.1 COMPUTATION OF g2

©,g°

WHEN GRADIENT CLIPPING IS INEFFECTIVE:

We know that the two sources of randomness (i.e. minibatch sampling and Gaussian noise) are
independent, thus the variance is additive. Assuming that £[g;;(0)] is the same for all j and is G;(8),

we have:
~ 1 do?
oty = var (@) = var (3 3 55(0)) + 5
! jent i
1/ 0 _ %7 dc?22(e;, 05, i, K;, E)
ARl Hgael)- 225
¢ - jent - JjEBY ¢
1 r B 2 dc?2?(e;, 6, qi, Ki, E
2 <E Z gi;O)|| | — > + b2 )
g -l jent - Jer
1 [ _ *] 2 2 dczzZ(eia6i7Qi,KiaE)
= bz(E Z Gij - bZHGZ(G)H ) + 2 (13)
[ L jGBf d i
(14)
We also have:
2 2
B| S0 | - L el + X 28 |mn 010
JjEB! JjEB: m#neB!
-
= Z |:Hgm ] + Z 2K |:gim(0)] E[Qin(a)}
jeBt m#nEBL
b;
:bic2+2<2)||Gi(9)H2, (15)

where the last equation has used eq. (2) and that we clip the norm of sample gradients g;;(6) with an
“effective” clipping threshold c. We can now rewrite eq. 13 as:

_ 1 _ 2 dc®2%(e;,6;, i, K;, E)
07 g = Var(g:(9)) = ()2<E{ Z 9i;(0) } = b;[|Gi(0)]| ) L2 (16)

1 ]EB;K 7
1 brL dC Z 62,5iaQi7KiaE)

_ b?(bic2 + (2(2) _b§>y|a )| ) 0 a7

= (b - o) A 5
2 ) 2 2.2(, S o I

_ C HGZ(O)H + dcz (625512aQZ7K27E) (19)

b b
2.2(,. 8. o. .
- dc*z (el,izz,q“K“E) 20)
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C ASSUMPTIONS AND LEMMAS

In this section, we formalize some definitions and lemmas, which we will use in our proofs.

Assumption 1 (Lipschitz continuity, 5-smoothness and bounded gradient variance). {f;} ;
are Lo-Lipschitz continuous and 3-smooth: ¥ 6,0" € RP i : || f;(0) — f:(0")|| < Lo||@ — 6’| and
IV f:(0) =V 1:(0)| < 8|6 — €’||. Also, the stochastic gradient g;(0) is an unbiased estimate of
V fi(0) with bounded variance: V0 € R? : E:[g;(0)] = V fi(0), Ep: [llg:(0)=V fi(0)|I?] < o2,
We also assume that for every i, j € [n], f; — f; is o-Lipschitz continuous: ||V f;(6) — V f;(0)] < o.
Assumption 2 (bounded sample gradients). There exists a clipping threshold C such that for all
i,5:

193 (0)ll2 == [[VE(h(xij, 0), ij)[[2 < C 1)
Note that this condition always holds if ¢ (cross-entropy loss) is Lipschitz continuous or if h is
bounded.

Lemma 2 (Relaxed triangle inequality). Let {vy,...,v,} be n vectors in RY. Then, the followings is
true:

o flvi + 0512 < @+ a)llvil* + (L + Dllsll* (for any a > 0)
1305 vill* < n 32y flval?

Proof. The proof for the first inequality is obtained from identity:

o+ 2512 = (14 @) + (L+ )y = I+~ | (22)
The proof for the second inequality is achieved by using the fact that h(z) = ||z||? is convex:
15 Sl < 5 3 ol @3)
i i
O
Lemma 3. Let {vy,...,v,} be n random variables in R%, with E[v;] = &; and E[||v; — &]?] = 2.

Then, we have the following inequality:
E[D il <D _&l2+n) ol (24)
i=1 i=1 i=1

Proof. From the definition of variance, we have:

B will) = I &l + Bl Y (o — £)I) eS)

1=

n n
<D &P +n) Bl — &) (26)
i=1 i=1
=D &l +n) at, 27)
i=1 i=1
(28)
where the inequality is based on the lemma 2. O
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D PROOFS

Lemma 1 (Precision of Robust-HDP). Let s; ; in matrix S represent the true value of noise in the
i-th element of AG; (j € S¢). Then, assume that S’ is the matrix computed by Robust-HDP at
the server with bounded elements si?; < U, where E[s] ;| = rs; j, for some constant v > 0, and

E[|s; ; — rsi;|°] < o (i.e., on average, Robust-HDP is able to estimate the true noise values s; j up
to a multiplicative factor r). Then:
~2

Pr(|6; — (r? 0 +aj D) >e€) <207 T . 9

Proof. We have E[s?j] = Var(s] ;) + (E[s] ;])* = oF 4+ (rE[s;;])* = oF 4+ r?07. Hence,

S; J 1,7
sh2. as+r s'2.
E[%] = % (for all rows 7). Also, from s Qj < U, we have % < %. Therefore, by
/2
applying Hoeffding’s inequality to the sum 0]2 =37, m
Pr(|67 — (r’o? + )| > €) < 2e 2 (29)

O

Property 1 (Parallel Composition [45]). Assume each of the randomized mechanisms M; : D; — R
fori € [n] satisfies (€;,;)-DP and their domains D; are disjoint subsets. Any function g of the form
g(My, ..., M,) satisfies (max; €;, max; d;)-DP.

Theorem 1. For each client i , there exist constants c1 and co such that given its number of steps
E - E;, forany € < c1¢?E - E;, the output model of Robust-HDP satisfies (e;, ;) —DP with respect to

qi\/E-E; logé
D; forany 6; > 0if z; > @7

The algorithm also satisfies (€nax, Omax)-DP, where (€max, Omax) = (max({e;}7_;), max({d; }1_,)).

where z; is the noise scale used by the client i for DPSGD.

Proof. The proof for the first part follows the proof of DPSGD algorithm [14]. Also, in Robust-
HDP, each client ¢ runs DPSGD locally to achieve (¢;, d;)-DP independently. Hence, it satisfies
heterogeneous DP with the set of preferences {(e;,d;)}" ;. Also, the clients datasets {D;}" ,
are disjoint. Hence, as Robust-HDP runs RPCA on the clients models updates, it satisfies
(max({ € ), max({(Si}?:l)) -DP, according to parallel composability property above. O

Theorem 2 (Robust-HDP). Assume that Assumption I holds, and for every i, learning rate n; satisfies:
m < ﬁ and n; < 1 . Then, we have:

12ﬂ\/(1+z?:1 B) (2, BY)

e 12 f(8%) — f* Z;E 01<\IJ6 +9)
omin E[[VF( |2 < (11Em_7)< Em A ) (4

where E" = min; E; and

n n n n
1
Vo = 65707 (1+ ) Ei) (22 Ejo®+ 3 ZEfU?,g> +Bm Yy Bl
=1 i=1 =1 =1
8L2 n n n
v ( ZE?E (w§ = NI+ AP Y BB - u;)ﬂ),where po, =Y wiBi. (1)
=1 i=1

Proof. From our assumption 1 and that we use cross-entropy loss, we can conclude that Assumption
2 also holds for some C. When we use a ineffective clipping threshold C, we have:

ZJEBE Gij (Ot) UZde z2dp

gz(et) = b; +N(Ov b2 I ) = gi(gt) +N(07 b2

Ip) (30)

17



Therefore:
Ec[g:(60)] = Ec[g:(0)] = V f:(6 ) (31)

2
~ po z F~i,dp 2 pai,dp
Var(§i(9)) = Var(s,(60) + 5 < oF; 1= oF, + T, (32)
(2

i.e., the assumption of having unbiased gradient with bounded variance still holds (with a larger
bound o2 5> due to adding DP noise). Consistent with the previous notations, we assume that the set
of participating clients in round e are S, and for every client i ¢ S¢, we set w§ = 0. Using this, we
can write the model parameter at the end of round e as:

%

ot = ZwZ ¢ B (33)

where { E;}"_; is the heterogeneous number of gradient steps of clients (depending on their dataset
size and batch size). From 65, = 05, | — m§:(05,_,), we can rewrite the equation above as:

E; n E;
O =0 —m > wiD G605, 1) =0°—m > wi> G0, ). (34)
=1 k=1

i€Se k=1
Note that the second equality holds because we assumed above that if client ¢ is not participating

in round e (i.e., i ¢ S°), we set wf = 0. From S-smoothness of {f;}? ;, and consequently
[-smoothness of f, we have:

FO°) < 1(0°) + (V5(6°), 07 —0) + ot — o

n Ei—l |
= 1O — (V6,3 wt S Gu(650)) 5”! IS Z 505 |F 39)
=1 k=0 i=1 k=0

Now, we use identity g;(05 ;) = V f(0°) + §:(65 ;) — V f(8°) to rewrite the equation above as:

E; n E;—1
FO°T) < £(0°) —m(Vf(6°) Zw Z VO%)) —m(VF(0°),D> wi D> (3:(65,) — VI(6)))
=1 =1 k=0
57” HZ Z — V£(69)) +Zw6EVf(06)||
1= =1
(36)
Hence,
i n E;—1
F(6°+) < f(6°) —m(Vf(O Zw ZW 0°)) —m(Vf(6),> wi > (g - V£(6%)))
=1 i=1 k=0
57“ HZw Z (3:(65.4) = VI(09))|* + 5”1 Zw B2V 69|
=1 k=0 .
Ee
+ Bt Zw“EVf (6°) Z Z — V£(6%)). 37)

i=1

Note that we denote Zz;l w¢E; with E° from now on. With doing some algebra we get to:
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FO°4) < 1(8%) — mE* (L~ Dy )|V f 06>||2

—~

—m(1 = BE)(VF(6°), ) ws (65 1) — V£(6°)))
i=1

k=0

Pﬁ

2

B
o (38)

Sug 3 (3:065,) - VA(6°))
k=0

i=1

By taking expectation from both side and using Cauchy-Schwarz inequality, we have:

5771

E[f(0°T)] <E[f(6°)] - mE“(1 — —~E°)E[|Vf(6°)]?]

o
>out 3 (A0 - Vi)

(L = B EY)E [nw (6] x
=1 k=0

B}
2l
T

2
] . (39)

n E;—1
> we > (565 ,) — VF(6))
=1 k=0

Now, we use the inequality ab < 1 (a® + b?) for the second line to get:

O e E (1950

]

2
] (40)

E[f(0)] <E[f(6°)] + (%771(1 — BmE®) —mE(1 -

o 11E€—6
<—-m =T

n E,j—l

S we Y (Vi(65,) — VI(6°))

1 _
+ 5771(1 - BmEe)E{
=1 k=0

5”[ ]E|:

Z 2 3:(05)) — Vf(6°))

i=1

where the constant inequality in the first line is achieved from our assumption that n; < ﬁ (and

consequently: 7, < & BEC):
1 = . _ _ 1
5771(1 — BmE®) —mE(1 - ?Ee) < -m (Ee 5 ’Bm EhE + 577 Ee)
11E° -6 Ee
< -m ( TR 57712 >
11E° —6
< My 41)
Therefore,
11E° -6
E[f(6=)] <E[f(6°)] - nzTE[IIVf(Ge)IIQ]
1 2
+5m(l = B E°)E [ ;w Zj Vfi(67k) = V£(69)) ]
ﬂ E;—1 2
U ]E{ Zw Z A(65),) — V£(69)) } (42)

i=1 k=0
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Now, we use the relaxed triangle inequality ||a + b|> < 2(||a||* + ||b]|?) for the last line above:

11E° —6
12

E;—1 2
Zw > (V£i(65,) - W(ee))‘ ]
k=0

E[f(0)] <E[f(6°)] —m E[|V£(6°)I]

1
+ 5771(1 — By E*) [

=1
B
n E;—1 2 E;—1 2
+5n?E[ S g 3 (3:065,) - VA(65,) }wnm[ St Y (VAL - VHE) ]
=1 k=0 =1 k=0
A B

(43)

Now, we bound each of the terms A and 15 separately:

(Zw Z 19:(65 1) sz’(gf,k)H)Q} SE{Z X;<Z [9:(0%5) = V1l H>}

=1 =1

4z
= flwy (EZ loot) - wscesa) | =[S (3 f DUARIICRN

} ZEQ o3 (44)

9i(05 ) — V i

where in the first inequality, we used triangle inequality and in the second and third inequalities, we
used Cauchy-Schwarz inequality.

Similarly, we can bound B:

= [Zw Z Vi(65y) = VF(6°)) } [Zw Zw; ) fjwaiIVf<0)2]
puar = pur i

n E;—1
(wa Vfiwf,k)) U V(6°)

i=1 k=0

- -

where ¢, is the weighted average of number of local steps { E; }, obtained from weights {w¢}. Let
us define A§ := w{ — A, to be the difference between the aggregation weight of client 7 in round e
(w§) and its corresponding aggregation weights in the global objective function f(8) (A;). With this
definition, we have:

]

} +2]E[H(;)\ Z Vfi(65 ) ) - (ix\mivﬁ(@e))

c D

Zw ZVfZ %) ZwE V1(6°)
=1

(45)

B:E[H(Zl im ,k) (Z:A ZVfZ )—(iZlAimfiw@))

> AS Z__jl Vi

=1

1

(46)

<2
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Now, we bound each of the terms C and D, separately:

E;—1

—2]E{ ZAEZVL ‘r) }
" E;—1 2 n 2
< | Soar S (v - vae)| | +aa[| X marvae)
=1 k=0 1=1
n n FE;—1 n
ZE )82 D AR08, — 07 + 4nLy Y | EZ|AL]?
=1 k=0 =1
n FE;—1 n
< 48%( Z ) D 165, — %1% + 4nLy Y | EZE[AL]). (47)
=1 1=1 k=0 =1
Similarly:
n E;—1 2
Dzzﬁ{ Z&»( ) wezk)—mfiwﬁ)) }
i=1 k=0

S2ANPIE[| D VO, — 4,V (69
=1 =0

]

n r Ei—1 2
NS E|| S (Va6 - A0O) + (B us)Vi6°) }
=1 -1 k=0

<AINPD R D VSi(65,) — V£i(6°)
=1 k=0

2

BB — )] uwmﬂ
—_——

<L

< 4B%|A|? ZE ZE 165 — 6°||"] + LA S E[(E; — u,)?). (48)
=1

i=1

Hence, by plugging the bounds above into eq. (46), we get:

n n E;—1
B§462(1+2Ei)<ZEi > E[||65, — 6°|° >+4L2< ZE2|A6|2+||A|| ZE
=1 k=0

i=1
(49)
By plugging the bounds above on A and 5 into eq. (43), we get:
11E° -6
E[f(6°")] <E[f(6%)] - UZTE[HVf(ee)HQ]
; 2
+/3n?E[ Zw Z 3i(65 ) — V£:(65)) }
=1 k=0
A
1 n Eifl 2
+(6m2+2m(1—ﬁmEe))]E[ > wg > (V05 ,) — V(6°)) ] (50)
i=1 k=0
<%7h 5
where from the assumption 7; < ¢ ﬁ 7> We get to A 77’ < i%. Hence:
1 i Ec. m_ B} mo_omo_ 2m
2 - _ € _ Ad < 7l i i Ris -_n
B + 5m(l = pmE) = (1= =) + 5 < 2+2,12+2<3. (51)
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Therefore, we have:

B[7(6°+)] < E[1(69] - n = SB[ 1(6)) + oot ZE 2,
SCEXIES SN0 oD S —eerﬁ))

=1 k=0
+( m( ZE2 (A7) + A% ZE )) (52)

We now have the following lemma to bound local drift of clients during each communication round e:

Lemma 4 (Bounded local drifts). Suppose Assumption 1 holds. The local drift happening at client i
during communication round e is bounded:

E;—1
£ = Z E[||65 06}| | < (cte—2)Ein} (0; 42 + 6E;0> + 6EE[|V(09)]%]), (53)
k=0
where cte is the mathematical constant e.

Proof. From 020 = 6°, we only need to focus on E; > 2. We have:
E(05, — 6°1> = E[|16F ), — mgi(6 1) — 0°||°]
< E[65 1 —mV fi(6F 1) — 6°|] + 771203,5 (54)

where the inequality comes from lemma 3. The first term on the right side of the above inequality can
be bounded as:

B0y — mV (655 1) — 6°]) < <1+

) [0 1 — 0°1°] + 2B/ El|[V (05 1) II°),
(55)

2E; -1

where we have used lemma 2. Now, we bound the last term in the above inequality. We have:

V(0 k-1) = (Vi(07 1) = Vfi(0)) + (Vfi(6°) = VF(6°)) + V[(6°), (56)

By using relaxed triangle inequality (lemma 2) and Assumption 1, we get:
IV £:(0F k)II” = 3V £i(0F 1) = V.fi(0°)|I* + 3|V £:(6°) — VF(6°)|I* + 3]V £(6°)?
< 35716741 — 6°[1° + 307 + 3V (). (57)

Now, we can rewrite eq. (55) and then eq. (54):

Enezkeenk(H +6Eiﬁ2n?> E{6S, 1 — 0°I%) + 2 (6Ei0® + 02 ;) + 6EmPE|V £(6°)|

2F; — 1
<itg;
1
< (1+ )E[|07 - = 0°1%] + 0} (6Ei0” + 07 5) + GEmE[[VF(0°)]*] (58)

E;

From the inequality above and that E| 67, — 6° |2 = 0, we have:

E||0ie,1 _ 9(3”2 S v (59)
1

B0, — 0°P < (1+ )y +7 ©0
1 1

Ello¢., — ¢ 2 1 1 _ 61

1055 = 0°I7 < (1 )Py + (L )4y D

EJ6%, — 612 < (14 )5 Dy b4 (1+ —)27+ (14 =)y +7 62)

(3 Ez E E ’

(63)
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where v = 97 (6E;0% + 07 ;) + 6EsfE[||V f(6°)[|*]. By using 1 + g +---+¢" ! = q;:f, we get:

Bl 0717 < 5 (14 )" 1) (F(OB0” + o) + OBV, (6

Therefore, we have:

E;—1
\ e e 1 E; e
B0 - 6| < E( (1+=) 2) (7(6Ei0 + 02 5) + 6Em?E[| V. £(6°) )
k=0 %/1_/
<cte
< (cte = 2)E/n} (6E;0” + 075 + 6EE[|V £(6°)]%]), (65)
where E/; > 2 and cte above is the mathematical constant e. O

We can now plug the bound on local drifts into eq. (52) and get:

E[f(6°*")] <E[(6°)] —m(”E—uﬁ? 2( 1+ZE ZE4 ) [19£6%)]?]

211E1;—7
n n 1
+6ﬁ2nf’(1+ZEi)<22EfaQ+3ZE3 Zq) +5anE3 2
4 Lom( ZE E[(wf — i>2]+A||QZE[<E¢—uz>2])7 (66)
=1

where we have used the second condition on 7; in the first line to bound the multiplicative factor.
Hence, we have:
E[f(6°*h)] <

(6] — (o IV 6]

n n 1 n n
2 2 4_2 3 2 2 2
+m <65 m (1+ZE1‘)(2;E2'0 +§;Ez Ui,g) ‘f‘ﬂnleiai,g)

i=1 =1
v
8L 02/ & -
(v > e uf = 3P+ AP Y BB - i) )
=1
vy
Therefore:
11E® -7 e 112 . et+1 e e
(DRI A0 < EIFO%) — (0] + (W + T (68)

We can now replace £°, which is a weighted average of { E;}7_;, with E" = min;{E;}" , and
the inequality still holds:

1B — 7

o EIVFO°)* <E[f(6°) = £(6°"1)] + (%] + TT)m:. (69)

i (

By summing both sides of the above inequality over e = 0, ..., E — 1 and dividing by E, we get:

E-1
- e 12 F(8%) = fry | Demo (Y5 +V7)
Oggélg 1 H|Vf(0 )H ] (11Em1n _ 7) (( Enl ) + E ’ (70)
which completes the proof. O
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E DETAILED RESULTS

E.1 UTILITY COMPARISON

Table 8: Comparison of different algorithms (on MNIST, E = 200). FedAvg achieves 98.6%.

g distr ‘ Distl Dist2 Dist3 Dist4 Dist5 Dist6 Dist7 Dist8 Dist9
WeiAvg [19] | 90.08 8829 89.74 8820 8494 81.60 8443 7871 8138
PFA [19] | 8778 89.70 8623 88.67 8565 8025 8132 7934 754l
DPFedAvg [38] | 84.24 82.84 83.50 8043 83.02 7402 8571 7058 8049
minimum € [19] | 77.80 74.86 7486 7175 6842 961 7762 56.10 68.44
Robust-HDP | 90.09 90.71 89.78 89.38 87.52 85.13 8403 8119 8152

Table 9: Comparison of different algorithms (on FMNIST, E = 200). FedAvg achieves 90.28%.

distr

alg ‘ Dist]  Dist2 Dist3 Distd Dist5 Dist6 Dist7  Dist§  Dist9
WeiAvg [19] \ 77.65 7830 7592 7710 7238 64.15 66.80 66.86 64.79
PFA [19] \ 69.95 7549 62.17 7451 61.18 7127 6393 60.77 54.66
DPFedAvg [38] \ 7412  71.68 7197 68.10 7020 6246 64.15 6587 6550
minimum € [19] \ 73.15 6426 6426 6260 6435 28.66 65.13 5844 66.36
Robust-HDP \ 75.13 7625 75.04 76.19 73.80 7130 66.85 68.32 66.96

E.2 NOISE VARIANCE AFTER AGGREGATION

Table 10: Comparison of different heterogeneous DPFL algorithms (on MNIST with £ = 200)
in terms of the average noise power (eq. (7) and eq. (3)) in each parameter normalized by their

corresponding used learning rate (L

w
n;

to the projection used in PFA, computing its noise after aggregation was not possible.

201'2) in the aggregated model update (Z?:1 waéf). Due

alg dist ‘ Distl Dist2 Dist3 Dist4 Dist5 Dist6 Dist7 Dist8 Dist9
WeiAvg [19] ‘ 1.02 1.89 0.92 3.22 4.58 28.29 9.85 48.15 34.91
DPFedAvg [38] ‘ 1.27 16.94 16.28 26.87 25.64 70.71 18.50 85.70 43.20
minimum € [19] ‘ 4.68 103.91 103.91 127.18 103.91 1868.45 74.41 241.37 87.15
Robust-HDP ‘ 0.267 0.473 0.074 0.642 0.385 7.616 2.252 13.855 5.937
Optimum ‘ 0.267 0.473 0.074 0.641 0.385 7.601 2.251 13.812 5.927
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E.3 PRECISION OF Robust-HDP

BN M, Dist3 N |, Dist3
12

counts
N
counts

o]

| jl 1 1
20 40 60 80 100 o 1 2 3 4 5 6 7 8
eigen value eigen value

EEN M, Dist9

counts
=

counts
F

0 4 8 12 16 20 00 02 04 06 08 10 12 14 16
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Figure 8: Comparison of the eigen values of matrices M (left) and L (right) on MNIST dataset. The
concentration of eigen values in the right figures around 0 shows that the matrix L returned by Robust
PCA, is indeed low rank, while M is not, which is due to the noise existing in clients model updates.
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Figure 9: Weight assignment of optimum strategy (eq. (8)) (left) and Robust-HDP (right) for CIFAR10
and Dist2.
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Figure 10: Comparison of weight assignments for Dist8 and MNIST dataset.
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