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Abstract

Training foundation models, such as GPT-3 and PaLM, can be extremely expensive,
often involving tens of thousands of GPUs running continuously for months. These
models are typically trained in specialized clusters featuring fast, homogeneous
interconnects and using carefully designed software systems that support both
data parallelism and model/pipeline parallelism. Such dedicated clusters can be
costly and difficult to obtain. Can we instead leverage the much greater amount of
decentralized, heterogeneous, and lower-bandwidth interconnected compute? Pre-
vious works examining the heterogeneous, decentralized setting focus on relatively
small models that can be trained in a purely data parallel manner. State-of-the-art
schemes for model parallel foundation model training, such as Megatron and Deep-
speed, only consider the homogeneous data center setting. In this paper, we present
the first study of training large foundation models with model parallelism in a
decentralized regime over a heterogeneous network. Our key technical contribution
is a scheduling algorithm that allocates different computational “tasklets” in the
training of foundation models to a group of decentralized GPU devices connected
by a slow heterogeneous network. We provide a formal cost model and further
propose an efficient evolutionary algorithm to find the optimal allocation strategy.
We conduct extensive experiments that represent different scenarios for learning
over geo-distributed devices simulated using real-world network measurements. In
the most extreme case, across 8 different cities spanning 3 continents, our approach
is 4.8× faster than prior state-of-the-art training systems.

1 Introduction

Recent years have witnessed the rapid development of deep learning models, particularly foundation
models (FMs) [1] such as GPT-3 [2] and PaLM [3]. Along with these rapid advancements, however,
comes computational challenges in training these models: the training of these FMs can be very
expensive — a single GPT3-175B training run takes 3.6K Petaflops-days [2]— this amounts to $4M
on today’s AWS on demand instances, even assuming 50% device utilization (V100 GPUs peak at
125 TeraFLOPS)! Even the smaller scale language models, e.g., GPT3-1.3B (1.3 billion parameters),
on which this paper evaluates, require 64 Tesla V100 GPUs to run for one week, costing $32K on
AWS. As a result, speeding up training and decreasing the cost of FMs have been active research
areas. Due to their vast number of model parameters, state-of-the-art systems (e.g., Megatron[4],
Deepspeed[5], Fairscale[6]) leverage multiple forms of parallelism [4, 7, 8, 9, 10, 11]. However, their
design is only tailored to fast, homogeneous data center networks.
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Figure 1: Given 1⃝ a set of computation tasklets involved in training foundation models (correspond-
ing to different micro-batches and layers), and 2⃝ a heterogeneous network between devices, the goal
is to find the optimal 3⃝ allocation of tasklets to devices.

On the other hand, decentralization is a natural and promising direction. Jon Peddie Research reports
that the PC and AIB GPU market shipped 101 million units in Q4 2021 alone [12]. Furthermore,
many of these GPUs are underutilized. Leveraging this fact, volunteer computing projects such
as Folding@Home [13] have sourced upwards of 40K Nvidia and AMD GPUs continuously [14].
Moreover, the incremental electricity and HVAC costs of running a V100 GPU for a volunteer are
50–100× lower than the spot prices for an equivalent device on AWS [15]. If we could make use
of these devices in a decentralized open-volunteering paradigm for foundation model training, this
would be a revolutionary alternative to the expensive solutions offered by data centers.

This vision inspired many recent efforts in decentralized learning, including both those that are
theoretical and algorithmic [16, 17, 18], as well as recent prototypes such as Learning@Home [19]
and DeDLOC [20]. However, efforts to-date in decentralized training either focus solely on data
parallelism [16, 17, 18, 20], which alone is insufficient for FMs whose parameters exceed the capacity
of a single device, or orient around alternative architectures, e.g., mixture of experts [19]. These
alternative architectures provide promising directions for decentralized learning, however, they are
currently only trained and evaluated on smaller datasets and at a smaller computational scale (e.g.,
MNIST and WikiText-2 in [19]) than their state-of-the-art counterparts, e.g., GLaM [21]. In this
paper, we focus on a standard GPT-style architecture, without considering any changes that might
alter the model architecture or the convergence behaviour during training.

To fulfill the potential of decentralization for the training of FMs, we need to be able to (1) take
advantage of computational devices connected via heterogeneous networks with limited bandwidth
and significant latency, and (2) support forms of parallelism beyond pure data parallelism. In this
paper, we tackle one fundamental aspect of this goal — how can we assign different computational
“tasklets”, corresponding to a micro-batch and a subset of layers, to a collection of geo-distributed
devices connected via heterogeneous, slow networks? This is not an easy task — even for fast and
homogeneous data center networks, such assignments are still an open ongoing research challenge [22,
23, 24, 25, 26]. For the heterogeneous setting, it becomes even more challenging as the size of the
search space increases dramatically. In the homogeneous setting, the homogeneity of the edges in the
communication graph reduces the search space into many equivalent classes representing allocation
strategies with the same communication costs, enabling efficient polynomial runtime algorithms [23,
24, 22, 25, 26]; however, in the heterogeneous setting, one has to consider potentially exponentially
many more distinct allocation strategies — as we will see later, because of the heterogeneity of the
communication matrix, even the sub-problem of finding the best pipeline parallelism strategy equates
to a hard open loop travelling salesman problem [27].

In this paper, we focus on this challenging scheduling problem of decentralized training of FMs over
slow, heterogeneous networks, and make the following contributions:

• We study the problem of allocating distributed training jobs over a group of decentralized GPU
devices connected via a slow heterogeneous network. More specifically:

– To capture the complex communication cost for training FMs, we propose a natural, but
novel, formulation involving decomposing the cost model into two levels: the first level is
a balanced graph partitioning problem corresponding to the communication cost of data
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parallelism, whereas the second level is a joint graph matching and traveling salesman
problem corresponding to the communication cost of pipeline parallelism.

– We propose a novel scheduling algorithm to search for the optimal allocation strategy given
our cost model. Developing a direct solution to this optimization problem is hard; thus, we
propose an efficient evolutionary algorithm based on a collection of novel heuristics, going
beyond the traditional heuristics used in standard graph partitioning methods [28].

• We carefully designed and implemented a collection of system optimizations to hide communi-
cation within the computation to further reduce the impact of slow connections.2

• We conduct extensive experiments that represent different scenarios of collaborative decentral-
ized learning, simulated by using network measurements from different geographical regions of
AWS. In the worldwide setting with 64 GPUs across 8 regions (Oregon, Virginia, Ohio, Tokyo,
Seoul, London, Frankfurt, Ireland), we show that our system is 3.8-4.8× faster, in end-to-end
runtime, than the state-of-the-art systems, for training GPT3-1.3B, without any difference in
what is computed or convergence dynamics. In addition, we also provide careful ablation studies
to show the individual effectiveness of the scheduler and system optimizations.

• We shed light on the potential of decentralized learning — our prototype in the global heteroge-
neous setting is only 1.7-3.5× slower than Megatron/Deepspeed in data centers even though its
network can be 100× slower. We hope this paper can inspire future explorations of decentralized
learning for FMs, over geo-distributed servers, desktops, laptops, or even mobile devices.

Limitations and Moving Forward. In this paper, we tackle one foundational aspect of decentralized
learning but leave as future work many problems that are important for a practical system. We assume
that communication between devices is relatively stable for a reasonable amount of time and that all
devices are always online without failure or eviction. Note that we also do not train a full system to
full convergence, instead running partial training to confirm intermediate result equivalence across
regimes. Scheduling over a dynamic, heterogeneous environment and providing fault tolerance,
potentially with checkpointing, while training to convergence are directions for future exploration.

2 Decentralized Training of Foundation Models: Problem Formulation
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We first introduce concepts, technical terms, and the proce-
dure of decentralized training. Then we formally define the
scheduling problem this paper tackles.

Decentralized setting. We assume a group of devices
(GPUs) participating in collaborative training of a foundation
model. Each pair of devices has a connection with potentially
different delay and bandwidth. These devices can be geo-
distributed, as illustrated in Figure 1, with vastly different
pairwise communication bandwidth and latency. In decen-
tralized training, all layers of a model are split into multiple
stages, where each device handles a consecutive sequence
of layers, e.g., several transformer blocks [29]. In addition,
since the input for foundation model pre-training is huge, e.g., a few millions of tokens, it is also split
into multiple micro-batches that can be handled in parallel.

Problem definition. We define tasklets as a collection of computational tasks in foundation model
training — Tasklet ti,j is the forward and backward computation for a stage j with a micro-batch i of
training data in a training iteration. We aim to design an effective scheduler to assign each tasklet to a
particular device so that the training throughput is maximized in decentralized training.

Parallelism. The above setting involves two forms of parallelism, pipeline and data. In pipeline
parallelism, the compute in multiple stages is parallelized — each device handles activation or
gradient computation for different micro-batches in parallel and the results can be communicated or
passed to subsequent stages. Data parallelism means that devices compute the gradient for different
micro-batches independently, but need to synchronize these gradients through communication. In
a decentralized environment, the training procedure is communication-bounded. The scheduling
problem is to accelerate the communication procedure by allocating tasklets that require high
communication volumes between them to devices with faster connections.

2Our code is available at: https://github.com/DS3Lab/DT-FM.
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Figure 2: (a) Communication graph G; and (b, c, d, e) an illustration of the cost model given G.

Formalization of the scheduling problem. Formally, our scheduling problem is as follows.

• Let D = {d1 . . . dN} be a set of N devices; A ∈ RN×N
+ and B ∈ RN×N

+ be the communication
matrix between these devices describing the delay and bandwidth respectively, where the delay
and bandwidth between device d and d′ is αd,d′ and βd,d′ .

• Given the communication matrix A and B, we construct a communication graph G (Figure 2(a))
— each device corresponds to a node in G and each edge between d and d′ is labeled with the
average latency and bandwidth between d and d′: ((αd,d′ + αd′,d)/2, (βd,d′ + βd′,d)/2). Even
though A and B are asymmetric (i.e., upload and download speeds might be different), the
communication graph G is symmetric because in our workloads all communications between
two devices happen to involve the same amount of upload and download.

• The number of stages that a micro-batch needs to go through is DPP (noted as pipeline parallel
degree); the number of batch partition that needs to run model gradient synchronization is DDP

(noted as data parallel degree); we have DDP ×DPP = N , i.e., the total number of devices.
• cPP (resp. cDP) represent the number of bytes of activations for a micro-batch (resp. parame-

ters/gradients for a stage) communicated in pipeline parallelism (resp. data parallelism).
• We denote a training tasklet as ti,j , where i ∈ {1, ..., DDP} and j ∈ {1, ..., DPP}, each of which

corresponds to one specific micro-batch i and pipeline stage j.
• An assignment strategy σ ∈ DDDP×DPP assigns, for each tasklet ti,j , a device σi,j ∈ D, which

means that device σi,j runs the training tasklet ti,j . A valid assignment needs to be unique, i.e.,
∀(i, j) ̸= (i′, j′): σi,j ̸= σi′,j′ . We use Σ to denote the set of all valid assignments.

• An optimal assignment strategy is an assignment σ that minimizes the communication cost

σ∗ = argmin
σ∈Σ

COMM-COST (σ)

Challenges and Goals. Our goal is to find the optimal assignment strategy, which involves two
challenges: (1) How to effectively model the communication cost COMM-COST(σ) for a given
assignment σ under a heterogeneous network environment? and (2) How to effectively search for the
optimal assignment strategy that minimizes such a cost? We tackle these two questions in Section 3.

3 Scheduling in Heterogeneous Environments
Scheduling in the heterogeneous setting is a challenging task, as the size of the search space increases
dramatically compared to that of the homogeneous case. In the homogeneous data-center case, the
network delay can be usually ignored (e.g., A = 0) and the bandwidth B are assumed to be formed
by just a few constants — e.g., the communication bandwidths between different machines on the
same rack are assumed to be same [23, 24, 22, 22, 26]. This significantly constrains the search
space — one can ignore the influence of communication given uniform connections [23, 24, 22], or
organize the device with a hierarchical structure [22, 26], making the scheduling problem solvable in
polynomial time in terms of the number of machines.

In contrast, in the fully heterogeneous scenario the communication matrix A and B consists of
distinct values, which can make the search space grows exponentially. In this section, we describe
our scheduler that searches for an optimal strategy in the complex search space.

3.1 Overview of the scheduler

We carefully design a bi-level scheduling algorithm based on extended balanced graph partition
problem (see Figure 2), and solve this problem by an evolutionary algorithm with a carefully designed
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local search strategy. Given an assignment strategy σ = {σi,j} for all tasklets {ti,j}, we first
model its communication cost. During the training of FMs, the communication costs come from
two different sources: (1) Data parallel: All devices that are assigned with the tasklets dealing
with the same stage j (handling the same layers) of different micro-batches need to communicate
within themselves to exchange gradients of these layers. For layer j, we call these devices its
data parallel group: Cj = {σi,j | ∀i ∈ [DDP]}. We can implement the communication using
different primitives, e.g., AllReduce [30], ScatterGatter [31], or other decentralized average
protocols [16]. (2) Pipeline parallel: All devices that are assigned with the tasklets dealing with the
same micro-batch i of different stages need to form a pipeline, communicating within themselves to
exchange activations and backward gradients. For micro-batch i, these devices are Pi = {σi,j | ∀j ∈
[DPP]}. Because these devices need to form a linear pipeline, any permutation over Pi corresponds
to one strategy of how these machines can conduct pipeline parallelism within them.

Scheduling Problem. The goal of our scheduler is to minimize both costs. One design decision that
we made is to decompose this complex optimization problem into two levels. At the first level, we
consider the best way of forming Cj’s, incurring data parallel communication costs within them. At
the second level, we consider the cost of pipeline parallelism given an layout from the first level:

min
C1...CDPP

COMM-COST (C1...CDPP
) :=DATAP-COST(C1...CDPP

)

+ PIPELINEP-COST(C1...CDPP
)

s.t. |C1| = .... = |CDPP
| = DDP,∀j, j′ : Cj ∩Cj′ = ∅,C1 ∪ ... ∪CDPP

= D

(1)

where computing PIPELINEP-COST(C1...CDPP
) involves finding the optimal pipeline structure.

In Section 3.2 and Section 3.3, we provide details on COMM-COST (C1...CDPP
). Notice that this

modified objective makes our problem different from the textbook graph partition problem; thus, we
need a carefully designed evolutionary algorithm for finding such a solution introduced in Section 3.4.

3.2 Modelling data parallel communication cost

Given the communication graph G forming data parallel groups C1...CDPP
corresponds to a partition

of G— In Figure 2(b), different colors correspond to devices in the same Cj . The data parallel
cost within Cj only relies on all communication channels (edges in the communication graph)
connecting devices in Cj . If we assume a colocated sharded parameter server [31] implementation
for communicating within each Cj , and recall that cDP represents the total amount of data (in bytes)
that needs to be exchanged during gradient aggregation — each device in Cj needs to manage
cDP/DDP bytes of parameter shard. Once the gradient is ready, each device needs to send each of its
local shards to the corresponding device; next, each device can aggregate the gradients it receives
from all other devices in Cj ; and finally, each device will send the aggregated gradient shard to all
other devices. Therefore, we can model the data parallel cost for Cj as follows:

DATAP-COST(Cj) = max
d∈Cj

∑
d′∈Cj−{d}

2 ·
(
αd,d′ +

cdp

DDPβd,d′

)
. (2)

Here, the total cost is bounded by the slowest device (maxd∈Cj
), which needs to exchange data with

all other machines (
∑

d′∈Cj−{d}). Because the communication of these different data parallel groups
C1...CDPP

can be conducted in parallel and we are only bounded by the slowest data parallel group.
This allows us to model the total communication cost for data parallelism as:

DATAP-COST(C1...CDPP
) = max

j∈[DPP]
DATAP-COST(Cj)

3.3 Modeling pipeline parallel communication cost

Given C1...CDPP
, to model the communication cost of pipeline parallelism, we need to consider

two factors: (1) each permutation π of {C1...CDPP
} corresponds to a specific pipeline strategy —

devices in Cπj
and devices in Cπj+1

communicates to exchange activations (during forward pass) and
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gradients on activations (during backward pass); and (2) devices in Cπj and devices in Cπj+1 need
to be “matched” — only devices that are dealing with the same micro-batch needs to communicate.
This makes modeling the cost of pipeline parallel communication more complex.

To model the cost of pipeline parallel communication, we first consider the best possible way that
devices in Cj and Cj′ can be matched. We do this by creating a coarsened communication graph
(Figure 2(c)). A coarsened communication graph ĜC1...CDPP

is a fully connected graph, and each
partition Cj in the original communication graph G corresponds to a node in ĜC1...CDPP

.

In the coarsened graph Ĝ, the weight on an edge between Cj and Cj′ corresponds to the following
— if Cj and Cj′ need to communicate in a pipeline, what is the communicate cost of the optimal
matching strategy between devices in Cj and devices in Cj′? Recall that cPP represents the amount
of data between two devices for pipeline parallel communication, we can model this cost by

min
M

max
(d,d′)∈M

2

(
αd,d′ +

cPP

βd,d′

)
(3)

where M is a perfect matching between Cj and Cj′ — (d, d′) ∈ M means that device d ∈ Cj will
communicate with device d′ ∈ Cj′ (i.e., they deal with the same micro-batch). Computing this value
is similar to the classical minimal sum weight perfect matching problem (MinSumWPM) in bipartite
graphs [32], with the only difference being that we compute the max instead of the sum. As we will
show in the supplementary material, similar to MinSumWPM, Eq 3 can also be solved in PTIME.

The coarsened communication graph captures the pipeline parallel communication cost between two
groups of devices, assuming they become neighbors in the pipeline. Given this, we need to find an
optimal permutation of C1...CDPP

, corresponds to the structure of the pipeline. This becomes the
open-loop traveling salesman problem [27] over this condensed graph (Figure 2(e)). Formally, we
have the following definition of the pipeline parallel cost:

PIPELINEP-COST (C1...CDPP
) = OPENLOOPTSP

(
ĜC1...CDPP

)
(4)

where ĜC1...CDPP
is the coarsened graph defined above.

3.4 Searching via hybrid genetic algorithm

The scheduling problem solves the optimization problem in Eq 1, which corresponds to a balanced
graph partition problem with a complex objective corresponding to the communication cost. Balanced
graph partition problem is a challenging NP-hard problem [33]. Over the years, researchers have been
tackling this problem via different ways [34, 35, 36]. We follow the line of research that uses hybrid
genetic algorithm [37, 28] since it provides us the flexibility in dealing with complex objective.

Hybrid Genetic Algorithm. A hybrid genetic algorithm for balanced graph partition usually follows
a structure as as follows. The input is a set of candidate balanced graph partitions which serves as the
initial population. The algorithm generates the next generation as follows. It first generates a new
“offspring” o given two randomly selected “parents” p1 and p2. One popular way is to randomly swap
some nodes between these two parents (we follow [28]). Given this offspring o, we then conduct local
search starting at o to find a new balanced partitioning strategy o∗ that leads to better cost. We then
add o∗ to the population and remove the worst partition candidate in the population if o∗ has a better
cost. As suggested by [37], the combination of heuristic-based local search algorithms and genetic
algorithm can accelerate convergence by striking the balance between local and global optimum.

Existing Local Search Strategy. The key in designing this algorithm is to come up with a good local
search strategy. For traditional graph partitioning task, one popular choice is to use the Kernighan-Lin
Algorithm [38]. Which, at each iteration, tries to find a pair of nodes: d in partition Cj and d′ in
partition Cj′ , to swap. To find such a pair to swap, it uses the following “gain” function:

GAINKL((d,Cj) ↔ (d′,Cj′)) =
∑

d′′∈Cj′

wd,d′′ −
∑

d′′∈Cj−{d}

wd,d′′

+
∑

d′′∈Cj

wd′,d′′ −
∑

d′′∈Cj′−{d′}

wd′,d′′ − 2wd,d′
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where wi,j corresponds to the weight between node i and j in the graph. However, directly applying
this local search strategy, as we will also show in the experiment (Section 4) does not work well.
Greedily following GAINKL does not decrease the communication cost of foundation model training.
Therefore, we have to design a new local search strategy tailored to our cost model.

Improving Local Search Strategy. Our local search strategy is inspired by two observations:

1. Removing the device d1 with a fast connection (say with d2) within partition Cj will not tend to
change the data parallel cost within Cj , since it is only bounded by the slowest connections.

2. Once d1 is moved to Cj′ , highly likely the pipeline parallel matching between Cj and Cj′ will
consist of the link d1 ↔ d2, since it is a fast connection.

Therefore, in our local search strategy we only consider the fastest connection within Cj : d1 ↔ d2
and the fastest connection within Cj′ : d′1 ↔ d′2 and generate four swap candidates: d1 ↔ d′1,
d1 ↔ d′2, d2 ↔ d′1, d2 ↔ d′2. We use the following gain function (take d1 ↔ d′1 as an example):

GAIN((d,Cj) ↔ (d′,Cj′)) =
1

|Cj′ |
∑

d′′∈Cj′

wd1,d′′ − wd1,d2 +
1

|Cj |
∑

d′′∈Cj

wd′
1,d

′′ − wd′
1,d

′
2

where 1
|Cj′ |

∑
d′′∈Cj′

wd1,d′′ measures the expected pipeline parallel cost of connecting d1 with other
devices in Cj′ before the swap, and wd1,d2 is the cost of connecting d1 with other devices in Cj′

after the swap, assuming this fast link d1 ↔ d2 will now be used for pipeline parallelism.

Just like how Kernighan-Lin Algorithm [38] can be extended to a circular version [28] to swap
multiple nodes beyond a pair, we can also extend our method into a circular one, following procedure
as circular KL with our new gain function.

3.5 Other System Optimizations

We also have some system optimizations to further improve the performance. The most important
optimization involves pipelining of communications and computations. We divide each stage in the
pipeline into three slots: a receiving slot, a computation slot, and a sending slot. The receiving slot of
stage j needs to build connections to receive activations from the stage j − 1 in forward propagation
and to receive gradients of activations from stage j+1. The computation slot handles the computation
in forward and backward propagation. Symmetric to the receiving slot, the sending slot of stage j
needs to build connections to send activations to stage j + 1 in the forward propagation and send
gradients of activations to stage j − 1 in the backward propagations. These three slots are assigned to
three CUDA streams so that they will be further pipelined efficiently; as a result, communication will
overlap with computation. In the decentralized scenario (communication bound), computation can be
fully hidden inside the communication time.

4 Evaluation

We demonstrate that our system can speed up foundation model training in decentralized setting.
Specifically, (1) We show that our system is 4.8× faster, in end-to-end runtime, than the state-of-the-
art systems (Megatron and Deepspeed) training GPT3-1.3B in world-wide geo-distributed setting.
Surprisingly, it is only 1.7− 2.3× slower than these systems in data centers. This indicates that we
can bridge the gap between decentralized and data center training (up to 100× slower networks)
through scheduling and system optimization; (2) We demonstrate the necessity of our scheduler
through an ablation study. We show that with the scheduler, our system is 2.7× faster in world-wide
geo-distributed setting.

4.1 Experimental Setup.

To simulate the decentralized setting, we use 8 different AWS regions (Oregon, Virginia, Ohio, Tokyo,
Seoul, London, Frankfurt, and Ireland) and measure the latency and bandwidth between these regions
(we consider the bandwidth that we can realistically obtain using NCCL and UDP hole punching
between these regions). Given these measurements, we use 64 Tesla V100 GPUs and control their
pairwise communication latency and bandwidth for five different cases:
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Figure 3: End to end compassion of our system with Megatron and Deepspeed in 5 different scenarios.
Column (a) and (b) visualize the delay and bandwidth of 5 scenario respectively; Column (c) illustrate
the comparison of Megatron, Deepspeed and our system w and w/o scheduler.

Case 1. Data center on demand. This is a standard setting that a user can obtain to train foundation
models. we use 8 AWS p3.16xlarge nodes (each with 8 V100 GPUs); the intra-node connection
is NVLink of 300 GB/s bi-directional bandwidth (150 GB/s unidirectional), and the inter-node
connection has a bandwidth of 25 Gbps. We do not manually control latency and bandwidth here.
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Figure 4: Comparison of Search Strategies.

Case 2. Data center spot instances. Spot GPUs are cheaper in a data center, but can be located on
different types of machine. In this case, we rent 4 AWS p3.8xlarge nodes (each with 4 V100) and
32 p3.2xlarge nodes (each with 1 V100); the intra- p3.8xlarge node connection has a bandwidth
of 100 Gbps, and the inter-node connection has a bandwidth of 10 Gbps. We do not manually control
latency and bandwidth in this case.

Case 3. Multiple Data Centers. We consider two organizations, one in Ohio and another in Virginia,
each organization contributes 32 V100 GPUs; within each organization, the bandwidth is 10 Gbps,
and connections cross different campuses have a delay of 10 ms and bandwidth of 1.12 Gbps.

Case 4. Regional geo-distributed. We consider individual GPUs cross four different regions in US
(California, Ohio, Oregon, and Virginia) ; within each region, the delay is 5 ms and bandwidth is 2
Gbps; cross different regions, the delay is 10∼70ms and the bandwidth is 1.0∼1.3 Gbps.

Case 5. World-wide geo-distributed. We consider individual GPUs cross eight different regions
world-wide (Oregon, Virginia, Ohio, Tokyo, Seoul, London, Frankfurt, and Ireland); within each
region, the delay is 5 ms and bandwidth is 2 Gbps; cross different regions, the delay is 10∼250ms
and the bandwidth is 0.3∼1.3Gbps.

Metrics and Model Architecture. Since we do not introduce any optimizations that might change
the computation or convergence, we can compare all methods by its throughput, we can compare
all systems by the total number of floating point operations per second (PFLOPS), which is inverse
proportional to the runtime of each iteration (which we show in Appendix). We use the standard
GPT3-1.3B architecture [2], while also benchmarked different number of layers {24, 32, 40}, and
batch sizes {1024, 2048, 4096}.

Tuning of Megatron and Deepspeed. We did a careful grid search of different parallelism settings
and report the optimal results in each case—in Case 1, the optimal setting includes tensor model
parallelism in Megatron and ZeRO-S3 in Deepspeed; in all other cases, the optimal settings are based
on pipeline and data parallelism. We discuss more details in Appendix.

4.2 Results

End-to-end Comparison. Figure 3(c) shows the end-to-end comparison in terms of averaged
PFLOPS achieved across different settings and different batch sizes and number of layers. In the
world-wide geo-distributed cases, we achieve an 4.8× speedup of Megatron, (3.6× speedup of
Deepspeed). While in all other cases, our system can be 1.2− 2.5× faster. If we compare our system
in Case 5 (world-wide geo-distributed) and Megatron/Deepspeed in Case 1 (data center on demand),
it is exciting to see that the performance slowdown caused by decentralization is only 1.7− 3.5×!
This illustrates the great potential of decentralized training for foundation models. Additionally,
Figure 3(c) illustrates another interesting behavior pattern. As increasing the batch size does not
increases the communication cost of data parallelism and increasing # layers per device does not
increases the communication cost of pipeline parallelism, with a larger batch size and a deeper model,
the gap between centralized Megatron/Deepspeed and our decentralized system is even smaller.

Effectiveness of Scheduler. To evaluate the effectiveness of the scheduler, we disable it and use a
random assignment in all cases and the results are also illustrated in Figure 3(c). We see that with our
scheduler provides up to 2.7× speeds up. To evaluate our local search strategy, we also compare our
scheduler with a scheduler that uses the standard Kernighan-Lin algorithm for local search, illustrated
in Figure 4. We see that, while both outperform random, our carefully designed local search strategy
significantly outperforms Kernighan-Lin.
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5 Related Work

Foundation models. Foundation models[1] refer to models that are trained on large-scale data and
can be adapted (e.g., fine-tuned) to a wide range of downstream tasks. Current examples include
BERT [39], GPT-3 [2], and CLIP[40]. Foundation models are usually trained in a data center, where
the connection between GPUs is fast and homogeneous. ML infrastructures such as Megatron[4]
and ZeRO[10, 11] have been proposed to distribute the training of these foundation models in a data
center. Megatron uses AllReduce to synchronize activations in tensor model parallelism; ZeRO
adopts ScatterGather to dispatch sharded parameters for layer-wise data parallelism. However,
such collective communication paradigms would cause serious performance problems with slow and
heterogeneous connections (see Appendix for detailed discussions).
Decentralized optimization. Decentralized training is first proposed within the scope of data paral-
lelism, where each worker only synchronizes gradients with its neighbors (instead of all workers) to
remove the latency bottleneck [17, 41, 16, 42, 43, 44]. Recently, [20] has also modified the imple-
mentation of data parallelism to support training in an open collaborative environment. Varuna [45]
is released by Microsoft to support the training of GPT models in spot instances from a cloud service
provider, which has the potential to be extended to the open collective scenario, but there is limited
consideration with respect to the challenges of heterogeneous connections.
Volunteer computing. Distributing computationally intensive tasks over an open collaborative
environment has been advocated for a few decades since the development of BOINC[46]; for
example, the folding@home project [13] has been running simulations about protein dynamics on
volunteers’ personal computers for more than 20 years. Recently, the learning@home project[19]
starts to consider training of mixture-of-expert transformers in such a volunteer computing setting.

6 Conclusion

In this paper, we probe the opportunity to train foundation models via a decentralized training regime
with devices connected over a heterogeneous network. We propose an effective scheduling algorithm
to assign tasklets from the foundation model pre-train computation. Empirical studies suggest that, in
the worldwide geo-distributed scenario, our proposed scheduling algorithm enables a 4.8× speed-
up compared to prior state-of-the-art training systems. We believe that the decentralization and
democratization of the training of FMs can shift the balance of power positively, but also necessitate
new governance structures to help ensure the responsible development and deployment of FMs.
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A Social Impact of Decentralized Training

In this paper, we find that decentralized training shows great potential for foundation models — such
a technique would lead to significant positive social impacts. For example, decentralized training can
utilize more inexpensive computational resources, which can significantly reduce the budget for the
training of foundation models. This would increase the accessibility of foundation models for small
research and commercial institutions. In fact, if the expense would be significantly reduced, large
organizations would also receive some benefit from adopting such technology. On the other hand, we
also notice that decentralization and democratization can also lead to a lack of control of cheaper
computing resources and accelerate the risks of foundation models [1]. We look forward to actively
engaging the community on governance questions.

B Limitation and Future Work

There are still some limitations of the current approach that could be explored further in future work.

First, we assume a homogeneous compute GPU resource in the scheduling algorithm, and in practice,
different types of GPU could join the training computations. A native extension of the current
solution could be to further split the tasklets into smaller pieces and to assign different numbers of
pieces in different types of GPUs considering their memory budget and compute power as constraints.
However, there are many opportunities for further improvement.

Second, there is still lots of room for the improvement of our scheduling algorithm, and strengthen
our argument about the end-to-end speedup. In this paper, we hope to first provide some positive
insights to the community that the potential of decentralized training can make it deployable for
giant foundation models. On the other hand, there are many recent advances in system optimization
that could lead to further improvement. For example, exploring recent advances in reinforcement
learning [47] to solve our scheduling algorithm would be an interesting future direction. We believe
that any improvement there can only improve the decentralized performance, which is consistent
with the central message we try to share in this paper.

Last but not least, there are still some important open questions on the system side to handle the
dynamics in decentralized environments. For example, some mechanism should be necessary to
handle the dynamic join and leave of GPU nodes. On the other hand, failure happens more frequently
in the decentralized environment, as fault tolerance should be considered for deployment, we believe
that the current strategy such as checkpointing the model periodically could be adopted for this
problem, but there would be some suitable solutions for the decentralized training runtime.

C Anatomy of the Current ML Systems for Foundation Model Training

Training foundation models [1] is a challenging task due to the enormous scale of such models —
even the most powerful GPU cannot hold a complete copy of parameters for such models [48]. Thus,
one cannot train such a model without distribution or using vanilla data parallelism.

Two popular approaches have been proposed to distribute the training of such foundation models in a
data center:

• Megatron [4] distributes training by combining its proposed tensor model parallelism with pipeline
parallelism [49, 22] and data parallelism [50]. The tensor model parallelism partitions individual
layers across a group of workers and must run one AllReduce for the output activations of each
layer in forward propagation and one AllReduce for the corresponding gradients in backward
propagation for each layer.

• ZeRO [10] can be viewed as an effective optimization for data parallelism. The most effective mode
is called ZeRO stage-3 from the Deepspeed implementation [5], and the equivalent implementation
is known as Fully Sharded Data Parallelism (FSDP) from Fairscale [6]). In this mode, the parameter
is sharded among all workers — in forward propagation, each worker conducts one AllGather to
collect the parameters demanded for the current layer and discard the parameter after the forward
computation; in backward propagation, each worker uses one AllGather to collect the parameter
again and run one ReduceScatter to synchronize the gradients of this layer after the backward
computation.
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Both Megatron and ZeRO take a heavy usage of collective communication paradigms [51], which
leads to two fundamental problems when it is deployed with heterogeneous and slow connections:

• Demanding high bandwidth connections. Both Megatron and ZeRO require high bandwidth connec-
tions for collective communications, since the compute cores are idled during communication slots.
As long as communication takes an increasing share (due to lower bandwidth) of the execution
time, the hardware efficiency drops dramatically. In fact, tensor model parallelism is recommended
only within a single DGX server equipped with high-bandwidth NVLinks [48].

• Sensitive to straggler. The design and implementation of state-of-the-art collective communication
libraries, e.g., NCCL [52], assume highly homogeneous connections within a data center, thus
there is not sufficient robustness to handle the straggler among workers due to the heterogeneity of
the open collective runtime. Furthermore, the layer-wise usage of collective communications in
both Megatron and ZeRO has intensified this problem.

To bridge the performance gap between the data center and the decentralized open environment, we
need to rethink the communication paradigms in different parallel strategies.

• Pipeline parallelism is communication efficient. Pipeline parallelism [49, 22, 53] partitions the
model into multiple stages and a batch into multiple mini-batches, where once a worker finished the
forward computation of a micro-batch, this worker will send the activations to the worker running
the next stages; on the other hand, a worker needs to send the gradients of the activation back to
the last stage in the backward propagation. Notice that pipeline parallelism utilizes point-to-point
communications instead of collective paradigms. As long as one can put an increasing amount of
computation inside a stage, the ratio of communication cost will also drop, leading to more efficient
utilization of compute cores.3 On the other hand, pipeline parallelism has its own limitation — one
can only partition a model to a limited number of stages, which cannot scale out to lots of GPUs.
We need to combine pipeline parallelism with data parallelism to scale out the training.

• Scheduling is essential. The point-to-point communication pattern in pipeline parallelism provides
good opportunities to assign the training procedure on the decentralized environment that utilizes
fast links and avoids slow links by a carefully designed scheduler, as presented in Section 3.

D Additional Details of Experimental Evaluation

We enumerate some additional details about our experiments.

D.1 Multiple Execution of the Benchmark

We repeated all the benchmarks of 5 different scenarios listed in Section 4 three times. For our system
with scheduler, since the scheduled layout is the same, we simply issued three independent executions
in each scenarios; For our system without scheduler, we used three different random seeds (2022,
2023, 2024) to generate three layouts, and issued one execution for each layout in each scenario.
The number in Figure 3 is based on an average of three different runs for each scenario — to avoid
visual confusion, we did not plot the error bar within this line plot. We also repeated the scheduling
algorithms three times with random seeds (0, 1, 2) to generate scheduled layouts and reported the
average estimated cost (seconds) in Figure 4. In Figure 6, we plot runtime of each iteration as a bar
chart with error bars. Notice that the variance of all executions in each setting is within 5%.

D.2 Tuning of Megatron and Deepspeed

Megatron. We carefully tuned Megatron to perform a fair comparison with our system. As we
mentioned in Section C. Megatron has three free degrees of parallel strategies: tensor model paral-
lelism, pipeline parallelism, and data parallelism, we note the degrees of these parallel strategies
as DTP, DPP, and DDP respectively. We conduct a complete grid search of the combinations of these
hyper-parameters in the space of:

{(DTP, DPP, DDP) |DTP, DPP, DDP ∈ {1, 2, 4, 8} and DTP ×DPP ×DDP = 64} .
3Notice this is not always true since the device memory is limited. However, one can offload [11] (e.g.,

activations and parameters) to host memory to perform training on larger models with limited GPU device
memory. Furthermore, the offloading through PCI-e is much faster compared to the decentralized connections,
although it is slower than NVLink between GPUs in a data center.
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Case 1 Data Center on Demand Case 2 Data Center Spot Instances Case 3 Multiple Data Centers

Case 4 Regional Distributed Case 5 World-wide Distributed

Figure 5: The performance of ZeRO-S3 from Deepspeed in terms of runtime of each iteration in 5
different Scenarios.

And we reported the optimal setting as the results for Megatron. Interestingly, only in Case 1 (data
center on demand), the optimal setting includes tensor model parallelism (i.e., DTP ̸= 1), where
DTP = 2, DPP = 4, DDP = 8; in all other scenarios, the optimal setting is DTP = 1, DPP = 8, DDP = 8.
This illustrates that tensor model parallelism is not suitable in slow and heterogeneous settings,
consistent with our analysis in Section C. Since Megatron does not include a similar scheduler as its
own components, we use the same random layouts as what we test for our system without scheduler.

Deepspeed. To run Deepspeed, we start with ZeRO-S3, which is usually viewed as the most
significant technical contribution of the Deepspeed system. Under the same settings, the execution
time of ZeRO-S3 is much longer comparing to both Megatron and our system (See Figure 5).
This is consistent with our analysis in Appendix B. We then try to combine the pipeline parallel
implementation in Deepspeed with its different implementations of data parallelism (e.g., ZeRO-S
1, 2 and 3)—it turns out that even the latest version of Deepspeed (0.6.7) only allows ZeRO-S1 to
combine with pipeline parallelism. We find this combination outperforms ZeRO-S3 in most of the
settings in Case 1 and all settings in Case 2,3,4 and 5. Notice that results of Deepspeed we report in
Figure 3 is based on the optimal result of these two settings.

D.3 Network Benchmark.

To obtain the network delay and bandwidth between different regions across the world, we rent
AWS instances in 9 different data centers (California, Oregon, Virginia, Ohio, Tokyo, Seoul, London,
Frankfurt, and Ireland). Instead of using AWS VPC, we setup our own VPN (using StrongSwan [54])
established on the public IP of these instances—any GPU machine connected to Internet can be
linked in the same way. The strongSwan VPN would expose a private IP associated with a visible
network interface, we can bind the NCCL communication on this network interface. The delay and
bandwidth we obtained for cross-region NCCL connections are summarized in Table 1 for Case 4
regional geo-distributed scenario and and Table 2 for Case 5 world-wide geo-distributed scenario.

D.4 Other Presentation of Experimental Results

In Figure 6, we plot runtime of each iteration for each scenario; this is a supplement to Figure 3.

D.5 Deployment on FluidStack

We believe that having more realistic measurements and an end-to-end run can provide more pervasive
statements for decentralized training. To this end, we conducted an additional experiment.
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Delay (ms)
California Ohio Oregon Virginia

California - 52 12 59
Ohio 52 - 49 11
Oregon 12 49 - 67
Virginia 59 11 67 -

Bandwidth (Gbps)
California Ohio Oregon Virginia

California - 1.02 1.25 1.05
Ohio 1.02 - 1.10 1.12
Oregon 1.25 1.10 - 1.15
Virginia 1.05 1.12 1.15 -

Table 1: Delay (in milliseconds) and bandwidth (in Gbps) obtained by NCCL for Case 4 regional
distributed scenario.

Delay (ms)
Oregon Virginia Ohio Tokyo Seoul London Frankfurt Ireland

Oregon - 67 49 96 124 136 143 124
Virginia 67 - 11 143 172 76 90 67
Ohio 49 11 - 130 159 86 99 77
Tokyo 96 143 130 - 34 210 235 199
Seoul 124 172 159 34 - 238 235 228
London 136 76 86 210 238 - 14 12
Frankfurt 143 90 99 235 235 14 - 24
Ireland 124 67 77 199 228 12 24 -

Bandwidth (Gbps)
Oregon Virginia Ohio Tokyo Seoul London Frankfurt Ireland

Oregon - 1.15 1.10 0.523 0.46 0.42 0.404 0.482
Virginia 1.15 - 1.12 0.524 0.500 0.364 1.02 1.05
Ohio 1.10 1.12 - 0.694 0.529 1.05 0.799 1.14
Tokyo 0.523 0.524 0.694 - 1.1 0.366 0.36 0.465
Seoul 0.46 0.500 0.529 1.1 - 0.342 0.358 0.335
London 0.42 0.364 1.05 0.366 0.342 - 1.14 1.09
Frankfurt 0.404 1.02 0.799 0.36 0.358 1.14 - 1.08
Ireland 0.482 1.05 1.14 0.465 0.335 1.09 1.08 -

Table 2: Delay (in milliseconds) and bandwidth (in Gbps) obtained by NCCL for Case 5 world-wide
distributed scenario.

We rent 32 A40 GPUs (each with 48GB GPU memory, and 149.7 peak FP16 TFLOPS) from
FluidStack [55], which consists of a group of geo-distributed GPU clusters, in (1) US Mid and (2)
US East. We get the communication delay and bandwidths between GPUs as below:

• Intra-US Mid: delay 0.5±0.1 ms; bandwidth 10.40±1.11 Gbps;

• Intra-US East: delay 0.5±0.1 ms; bandwidth 11.98±1.92 Gbps;

• US Mid to US East: delay 21.8±0.3 ms; bandwidth 3.87±1.07 Gbps;

• US East to US Mid: delay 21.8±0.3 ms; bandwidth 3.73±1.38 Gbps.

We conducted an end-to-end run of the same training task of GPT3-1.3B without artificially controlling
the bandwidth and latency. We also explore the training tasks of larger scale GPT3 models, including
GPT3-6.7B, and GPT3-13B with a batch size of 1024. The performance in terms of the total number
of floating point operations per second (PFLOPS) and runtime of each iteration are illustrated in
Figure 7. This is a promising result of decentralized training — for GPT3-1.3B model with 40
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Figure 6: End to end compassion of in terms of runtime of each iteration in 5 different scenarios. We
illustrate the comparison of Megatron, Deepspeed and our system with and without scheduler.

layers and 4K batch size, we archive 27.4% of the peak FLOPS of the cluster, for GPT3-6.7B and
GPT3-13B, we obtain 26.4% and 29.7% respectively.
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Model Architectures
(a) PFLOPS

Model Architectures
(b) Runtime per iterations (s)

Figure 7: End to end compassion of in terms of the cluster’s whole PFLOPS in (a) and runtime of
each iteration in (b). We illustrate the comparison of Megatron and our system with and without
scheduler.
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