
Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section 4.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See the last paragraph in Section

4.2.
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section
4.3.

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix B.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix C, D, E and F.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15

Appendix for “Multi-Objective Meta Learning”

A Review of Multi-Objective Optimization

A.1 Notations and Terminologies

We first recall some definitions in Multi-Objective optimization Problems (MOP), including the
definition of the minimality and convexity of vector-valued functions and Kuratowski-Painlevé
set-convergence [36].

Let P be the set of non-negative real vectors Rm+ = {l ∈ Rm : ∀li ≥ 0}, where li denote the ith
entry in l. The interior intP denotes the set of positive real vectors intP = {l ∈ Rm : ∀li > 0}. P ,
which is a closed and convex cone, and the interior intP induce a partial order for any two points in
Rm. That is, for any l1, l2 ∈ Rm, we define

l1 ≤ l2 ⇐⇒ l2 − l1 ∈ P
l1 < l2 ⇐⇒ l2 − l1 ∈ intP.

That is, for l1, l2 ∈ Rm, the partial ordering l1 ≤ l2 and l1 < l2 imply that l1i ≤ l2i and l1i < l2i
for all i ∈ {1, ...,m}, respectively. Given l1 ∈ Rm, we define l1 − P = {l ∈ Rm : l ≤ l1} and
l1 − intP = {l ∈ Rm : l < l1}. We now recall the notions of minimality for a subset in Rm.
Definition 1. For a nonempty set C ∈ Rm, the set of all minimal points in C w.r.t. the ordering cone
P is defined as

Min C :=
{
l ∈ C : C ∩ (l − P) = {l}

}
.

The weakly minimal points of the set C is

WMin C :=
{
l ∈ C : C ∩ (l − intP) = ∅

}
.

C

(a)

CCC

(b)

Figure 1: The thick line in (a) indicates minimal
points of C. The thick line in (b) indicates weakly
minimal points of C.

Figure 1 gives a 2-dimensional example to show
the difference between these two definitions of
minimality.

In the MOP, for the given objective function
g(z) : Rn → Rm (m,n ∈ N,m ≥ 2), where
z ∈ Z , we denote by Min g(z) the set of all
the minimal points of the function g. We also
call it as the Pareto frontier or Pareto-optimal
set. Thus, the corresponding efficient solution or
Pareto-optimal solution of g(z) can be defined
as

Eff (g(z)) :=
{
z ∈ Z : g(z) ∈ Min

z∈Z
g(z)

}
.

Similarly, we denote by WMin g(z) the set of weakly minimal points of the function g(z) and by
WEff (g(z)) the corresponding weakly efficient solution set.
Definition 2. The function g(z) : Rn → Rm is a P-convex function if for every z1, z2 ∈ Rn and for
every λ ∈ [0, 1], we have

g(λz1 + (1− λ)z2) ≤ λg(z1) + (1− λ)g(z2).

g(z) is a strictly P-convex function, if for every z1, z2 ∈ Rn, z1 6= z2 and for every λ ∈ (0, 1),

gi(λz1 + (1− λ)z2) < λgi(z1) + (1− λ)gi(z2).

Remark 1. For a given vector-valued function g(z), we have Min g(z) ⊆ WMin g(z). If g is
strictly P-convex, we have Min g(z) = WMin g(z) and WEff (g(z)) = Eff (g(z)).
Definition 3. Consider {An} as a sequence of subsets of an Euclidean space. The set Li An is
defined as the lower limit of the sequence of sets {An}, that is,

Li An :={a ∈ A : a = lim
n→+∞

an, an ∈ An, for sufficiently large n}.

16

The set Ls An is defined as the upper limit of the sequence of sets {An}, that is,
Ls An := {a ∈ A : a = lim

n→+∞
an, an ∈ Ank , for nk as a selection of the integers.}.

A sequence {An} converges in the Kuratowski sense to the set A, when
Ls An ⊆ A ⊆ Li An,

and we denote this convergence by An → A.

A.2 Gradient-based Optimization Algorithm

To solve an unconstrained multi-objective optimization problem, we adopt the Multiple Gradient
Descent Algorithm (MGDA) [7]. MGDA finds the minimum-norm point in the convex hull composed
by the gradients of multiple objectives. Specifically, MGDA performs the following two steps
alternately:

Step 1. Compute the gradients ∇zgi(z) for i = 1, . . . ,m, and solve the following quadratic
programming problem

min
γ

∥∥∥∥∥
m∑
i=1

γi∇zgi(z)

∥∥∥∥∥
2

2

s.t. γi ≥ 0,

m∑
i=1

γi = 1, (10)

to determine the weights γi in the current iteration. ‖·‖2 denotes the `2 norm of a vector and γi can be
viewed as a weight for the ith objective. To solve the QP problem (10), we can use the Frank-Wolfe
algorithm [51]. Then, the gradient direction searched is computed as d =

∑m
i=1 γi∇zgi(z).

Step 2. If d = 0, the MGDA stops. Otherwise, the line step is determined as the largest positive
number ν, with which all objectives are decreasing. Then we update z as z − νd and go to Step 1.
Remark 2. The original MGDA searches the step size. However, this will result in significant
computational complexity for models with many parameters such as DNN. Therefore, in Algorithm 1,
similar to [51, 38], we use a fixed small step size in MGDA to reduce the computational complexity.

B Proofs of Theorems in Section 4

For the sake of clarity, we firstly introduce some notations from [36].

The sublevel set of the function g(z) : Rn → Rm at height h ∈ Rm is defined as

gh := {z ∈ Rn : g(z) ≤ h}.
If A is a closed convex set, then the recession cone of A is defined as

0+(A) := {d ∈ Rn : a+ td ∈ A,∀a ∈ A,∀t ≥ 0}.
The recession cone of the sublevel set of the function g(z) is denoted by Hg .

To prove theorems in Section 4, we first prove the following theorems based on the stability analysis
of MOPs [35].
Theorem 3. Z is a nonempty closed, convex set in Rn and g(z) : Rn → Rm is a vector-valued
function with z ∈ Z . Then, if gn(z)→ g(z) w.r.t. the continuous convergence, we have

LsWMin gn(z) ⊆WMin g(z).

Proof. For l ∈ LsWMin gn(z), there exists a subsequence {lk} in WMin gnk(z) such that lk → l.

We assume that l 6∈WMin g(z). Then there exists z ∈ Z such that gi(z) < li. Since gn continuously
converges to g, for a sequence {zk} in Z satisfying zk → z, we have gnk(zk)→ g(z). Thus, for a
sufficiently large n, gnk(xk) < lk. This shows a contradiction with the fact that lk ∈WMin gnk(z).
So l ∈WMin g(z) and we reach the conclusion.

Theorem 4. Z is a nonempty closed, convex set in Rn and z ∈ Z , gn(z) → g(z) w.r.t. the
continuous convergence. Then if gn(z) and g(z) are both P-convex functions and 0+(Z)∩Hg = {0},
we have

Min g(z) ⊆ LiMin gn(z).

Proof. This result can be directly obtained from Theorems 3.1 and 3.2 of [35].

17

B.1 Proof of Theorem 1

Proof. To show that F (ω∗(α), α) is continuous on α, we need to prove that for any convergent
sequence αn → ᾱ, F (ω∗(αn), αn) converges to F (ω∗(ᾱ), ᾱ).

Suppose that {αn} is a sequence in A satisfying αn → ᾱ. Since arg minω f(ω, α) is a singleton, we
have ω∗(αn) = arg minω f(ω, αn).

Since {ω∗(α)} is bounded for α ∈ A, according to Bolzano-Weierstrass theorem, there ex-
ists a convergent subsequence {ω∗(αkn)} such that ω∗(αkn) → ω̄ for some ω̄ ∈ Rp. Since
αkn → ᾱ, f(ω, α) is jointly continuous, we have ∀ω ∈ Rp, f(ω̄, ᾱ) = limn f(ω∗(αkn), αkn) ≤
limn f(ω(αkn), αkn) = f(ω(ᾱ), ᾱ). Therefore, we obtain ω∗(ᾱ) = ω̄. This means {ω∗(αkn)} has
only one cluster point ω∗(ᾱ). Thus, ω∗(αn) converges to ω∗(ᾱ) as αn → ᾱ. Because F is jointly
continuous, we have F (ω∗(αn), αn)→ F (ω∗(ᾱ), ᾱ) as αn → ᾱ.

B.2 Proof of Theorem 2

Proof. To prove the first claim of Theorem 2, we firstly show that ϕK(α) continuously converges
to ϕ(α). Suppose there exists a sequence {αn} in A satisfying αn → α. Then for any ϕK(α) and
sequence αn, we have

‖ϕK(αn)− ϕ(α)‖ =‖F (ωK(αn), αn)− F (ω∗(α), α)‖
≤‖F (ωK(αn), αn)− F (ω∗(αn), αn)‖+ ‖F (ω∗(αn), αn)− F (ω∗(α), α)‖

According to the continuity property in Theorem 1, we have F (ω∗(αn), αn) → F (ω∗(α), α) as
αn → α. Furthermore, because F (·, α) is uniformly Lipschitz continuous, we have

‖ϕK(αn)− ϕ(αn)‖ =‖F (ωK(αn), αn)− F (ω∗(αn), αn)‖
≤L‖ωK(αn)− ω∗(αn)‖.

According to assumption (ii) in Theorem 2, ωK(α) converges to ω∗(α) uniformly as K → +∞.
Therefore, ϕK(α) continuously converges to ϕ(α).

Since Min ϕ(α) ⊆WMin ϕ(α) and Theorem 3, we have the following set relations as

LsMin ϕK(α) ⊆ LsWMin ϕK(α) ⊆WMin ϕ(α). (11)

Because A is a compact convex set in Rn, 0+(A) = {0}. Then, the condition 0+(A)∩Hϕ = {0} is
naturally satisfied for function ϕ(α). According to assumption (iv) in Theorem 2, ϕ(α) and ϕK(α)
are both P-convex functions. Then we obtain the lower part of the set convergence from Theorem 4
as

Min ϕ(α) ⊆ LiMin ϕK(α) ⊆ LiWMin ϕK(α). (12)

Because ϕ(α) is strictly P-convex, we have WMin ϕ = Min ϕ and then we get Min ϕK(α) →
Min ϕ(α) according to Definition 3.

For the second claim, let αn ∈ Eff ϕK(α) and αn → ᾱ. Since Min ϕK(α) → Min ϕ(α), we get
ϕK(αn)→ ϕ(ᾱ) and ᾱ ∈ Min ϕ(α), which implies LsEff ϕK(α) ⊆ Eff ϕ(α).

For the lower limit, by defining ᾱ ∈ Eff ϕ(α), the corresponding minimal point satisfies l̄ = ϕ(ᾱ) ∈
Min ϕ(α). Based on this theorem’s first claim, there is a sequence {lK} in Min ϕK(α) such that
lK → l̄. Then we can take a bounded sequence {αK}, where αK = ϕ−1K (lK) and the subsequence
of {αK} has a cluster point. Because ϕ(α) is strictly P-convex, this cluster point is ᾱ. Then, we have
αK → ᾱ, which implies Eff ϕ(α) ⊆ LiEff ϕK(α). Combined with the upper limit convergence, we
can get Eff ϕK(α)→ Eff ϕ(α).

Remark 3. In fact, if we consider the weakly minimal points under the same assumptions in Theorem
1 and 2, we can still obtain similar convergence results to those in Theorem 2, i.e.,

WMin ϕK(α)→WMin ϕ(α), WEff ϕK(α)→WEff ϕ(α).

Since ϕ(α) is strictly P-convex, the first claim can be directly obtained from the set relations in Eqs.
(11) and (12). Then, the proof of the convergence of the weakly efficient solution follows that of
Theorem 2.

18

C Few-Shot Learning

C.1 Detailed Formulation

MAML [12], ProtoNet [55], and BOIL [40] are three representative FSL methods. We now introduce
the details about how to adapt our MOML framework into them. Specifically, we will present the
definition of model parameters α, meta parameters ω, and the classification loss LF (ω, α,D) of
problem (5) based on these three different algorithms.

MAML is an optimization-based meta-learning algorithm. In MAML, α represents the meta-
initialized parameter and ω represents the task-specific parameter. In this paper, we focus on
classification tasks and so the loss function LF (ω, α,D) is the cross-entropy loss with α and ω on a
datasetD. Given the meta-initialized parameter α of the backbone, we use α to initialize task-specific
parameters ω0 and update ω0 to ωK in K steps on the support set for the LL subproblem. Then, we
compute the loss on the query set in the UL subproblem by using ωK for the corresponding task.
Thus, we can update α and find universally good meta-initialized parameters that can quickly adapt
to new tasks with a small number of samples. In problem (5), we find the meta-initialized parameters
α that not only have good performance but also be robust to adversarial attacks when adapting to new
tasks with a few examples.

ProtoNet is a metric-based FSL algorithm. In ProtoNet, α represents the parameter of the embedding
function f(x;α), which encodes inputs into a vector space V . ωk represents the prototype of the kth
class, which can be considered as a class center. Suppose there are n labeled examples in dataset D
and C is the number of classes. Then, given a distance function d in V , the distribution over classes
for one input x is a softmax over the inverse of distances to the prototypes in vector space V ,

P (y = k | x;α, ω) =
exp(−d(f(x;α), ωk)∑C

k′=1 exp(−d(f(x;α), ωk′))
,

where ω represents the set of all prototypes. Suppose Dk ⊂ D is the set of examples labeled with
class k and nk is the corresponding number of examples. Then, the loss function is the negative
log-likelihood

LF (ω, α,D) = − 1

n

C∑
k=1

∑
xi∈Dk

logP (yi = k | xi;α, ω),

where k is the true class. In the LL subproblem, by minimizing this loss function w.r.t. ω, we have a
close form solution ωk = 1

nk

∑
xi∈Dk f(xi;α). In the UL subproblem, we minimize this loss w.r.t.

α on the query set.

BOIL is also an optimization-based meta-learning algorithm. Similar to MAML, BOIL also aims to
find universally good meta-initialized parameters. However, BOIL updates only the feature extractor
of the model and freezes the classification layer in the LL subproblem. In the UL subproblem, BOIL
updates the meta-initialized parameters of the feature extractor and classification layer, which is the
same as MAML. Specifically, consider task-specific parameters ω = {θ, ψ}, where θ denotes the
parameter of body of the model and ψ represents the classifier parameter, respectively. α = {αθ, αψ}
represent the meta-initialized parameters. In BOIL, we update α in the UL subproblem and only
update θ in LL subproblem.

C.2 Experimental Setting

Experiments are conducted on two FSL benchmark datasets, CUB-200-2011 (referred to as CUB)
[62] and mini-ImageNet [61]. The CUB dataset contains 200 classes and 11,788 images in total.
Following [18], we randomly split this dataset into a base dataset containing 100 classes, a validation
dataset containing another 50 classes, and a novel dataset containing the rest 50 classes. The mini-
ImageNet dataset contains 100 classes with 600 images per class, sampled from the ImageNet dataset
[6]. By following [46], this dataset is partitioned into 64, 16, and 20 classes for the base, validation,
and novel datasets, respectively.

For all methods, each task is a 5-way k-shot classification problem, where k equals 1 or 5. The input
images are resized to 84× 84 for both two datasets and applied data augmentation including random
crop, random horizontal flip, and color jitter. A four-layer convolutional neural network (Conv-4) is

19

used as the backbone, which consists of four blocks each of which consists of a convolution layer with
64 kernels of size 3× 3, stride 1, and zero padding, a batch normalization layer, a ReLU activation
function, and a max-pooling layer with the pooling size 2× 2. After the backbone, a fully-connected
linear layer with 5 neurons is used as a classifier to output the prediction for the input image. The
Adam optimizer [24] with the learning rate 0.001 is used for the optimization.

In the meta training process, we randomly sample k and 16 instances per class as the support set and
the query set, respectively, in each episode. The adversarial attack on the query set is performed by
the PGD attack with a perturbation size ε = 2/255 and it takes 7 iterative steps with the step size of
2.5ε. In the meta testing process, we generate 600 5-way k-shot tasks from Dnovel, where each task
has k samples for the training and 16 samples for testing. We compute the average results on all the
600 testing tasks. We compare with the vanilla FSL models (i.e., MAML, ProtoNet, and BOIL) since
problem (5) can reduce to each of them when there is only the first objective in its UL subproblem.
All these experiments are conducted on one single NVIDIA Tesla V100S GPU.

C.3 Experimental Results on the CUB Dataset

The average results over 600 testing tasks on the CUB dataset are shown in Table 4. From the results,
we can get similar conclusions to the experimental results on mini-ImageNet dataset. The SOML and
the proposed MOML can significantly improve the PGD accuracy. The B-score of MOML is higher
than SOML, which indicates that the porposed MOML is better than the single-objective formulation
in SOML.

Table 4: Classification accuracy (abbreviated as "Clean Acc.") and PGD accuracy (abbreviated as
"PGD Acc.") on the CUB dataset for 5-way k-shot FSL. The best result in each group of methods is
highlighted in bold and the best result in each setting is annotated with underline.

Setting Model Clean Acc. PGD Acc. B-score

1-shot

MAML [12] 54.62±0.87 3.92±0.49 7.28±0.61
MAML+SOML 49.60±0.81 36.42±0.87 41.89±0.84
MAML+MOML (ours) 48.66±0.87 38.37±0.90 42.75±0.89

ProtoNet [55] 52.93±0.91 2.00±0.29 3.53±0.47
ProtoNet+SOML 48.04±0.91 28.53±0.85 35.42±0.90
ProtoNet+MOML (ours) 42.26±0.89 32.19±0.82 36.24±0.85

BOIL [40] 61.79±0.94 6.53±0.48 11.81±0.61
BOIL+SOML 54.29±0.83 33.65±0.67 41.34±0.71
BOIL+MOML (ours) 52.15±0.93 40.44±0.94 45.55±0.94

5-shot

MAML [12] 75.57±0.72 8.76±0.78 15.61±0.76
MAML+SOML 68.50±0.69 52.96±0.87 59.63±0.77
MAML+MOML (ours) 67.57±0.78 55.26±0.87 60.68±0.83

ProtoNet [55] 78.01±0.71 1.89±0.21 3.58±0.56
ProtoNet+SOML 72.51±0.68 52.61±0.77 60.81±0.72
ProtoNet+MOML (ours) 71.10±0.74 56.11±0.87 62.73±0.76

BOIL [40] 78.97±0.67 14.12±0.57 23.75±0.60
BOIL+SOML 76.25±0.60 44.86±0.81 56.28±0.73
BOIL+MOML (ours) 71.03±0.74 56.05±0.84 62.65±0.81

D Semi-Supervised Domain Adaptation

D.1 Detailed Formulation of Problem (6)

We give detailed formulations of problem (6) when adapting to MME [49] and DSAN [74]. Let
ω = {θ, ψ}, where θ denotes the parameter of backbone and ψ represents the classifier parameter.
Correspondingly, let α = {αθ, αψ}, where αθ and αψ represent the initialization of θ and ψ,
respectively. Assume f(θ, αθ, x) denotes the feature representation of the input x extracted by the
backbone θ with the initialization αθ. C denotes the number of classes. nS and nuT denote the size of
DS and DuT , respectively.

20

When adapting problem (6) to different domain adaptation methods, the biggest difference is the
design of the alignment loss LA(ω, α,DS ,DuT). Combining with MME [49], we can define the
alignment loss LA as the entropy loss to find domain-invariant prototypes

LA(ω, α,DuT) =

nuT∑
i=1

C∑
c=1

p(y = c | xTi) log p(y = c | xTi), (13)

where σ(·) denotes the softmax function and p(y = c|x) =
[
σ(ψ

T f(θ,αθ,x)
‖f(θ,αθ,x)‖)

]
c

computes the condi-
tional probability that x belongs to class c. Obviously, ψ can be considered as the prototypes based
on the cosine distance. Although Eq. (13) is not explicitly dependent on source domain data DS ,
the prototypes ψ are computed on DS in previous iterations. Therefore, minimizing Eq. (13) (i.e.,
maximizing the entropy) can promote the prediction distribution of samples from unlabeled target
domain to uniform distribution, i.e., all target features are close to the prototypes, which indicates
learning the domain-invariant prototypes.

When adapting to DSAN [74], the alignment loss LA is defined as the local maximum mean discrep-
ancy to measure the difference between two domains. Thus, following DSAN, LA is formulated
as

LA(θ, αθ,DS ,DuT) =
1

C

C∑
c=1

[nS∑
i=1

nS∑
j=1

wSi,cw
S
j,c k(f(θ, αθ, x

S
i), f(θ, αθ, x

S
j))

+

nuT∑
i=1

nuT∑
j=1

wTi,cw
T
j,c k(f(θ, αθ, x

T
i), f(θ, αθ, x

T
j))

− 2×
nS∑
i=1

nuT∑
j=1

wSi,cw
T
j,c k(f(θ, αθ, x

S
i), f(θ, αθ, x

T
j))
]
,

where k(·, ·) denotes the kernel function. Here wSi,c =
yi,c∑nS
j=1 yj,c

represents the possibility of sample

xSi belonging to class c, where yi,c is the c-th element of the one-hot label vector of xSi . The definition
of weight wTi,c is similar, while we use the prediction distribution as the pseudo label of xTi from
DuT since its true label is unavailable. Specifically, when combining with DSAN, problem (6) is
formulated as

min
αθ,ψ

(LD({θ∗(αθ), ψ},DS),LD({θ∗(αθ), ψ},DlT),LA(θ, αθ,DS ,DuT))

s.t. θ∗(αθ) = arg min
θ
LA(θ, αθ,DS ,DuT).

D.2 More Details of Baselines

We compare the proposed MOML with eight state-of-the-art baselines, including one Semi-Supervised
Learning (SSL) method (i.e., ENT), four Unsupervised Domain Adaptation (UDA) methods (i.e.,
DANN, ADR, CDAN, DSAN) and three Semi-Supervised Domain Adaptation (SSDA) methods (i.e.,
MME, Meta-MME, APE). ENT [16] is a SSL method trained on labeled source data and unlabeled
target data by minimizing the classification loss and the entropy of the predictive distribution. DANN
[14] uses a domain classifier such that domains can not be discriminated from each other by adversarial
training. ADR [50] learns discriminative features by multiple classifiers with different dropout rates
in an adversarial training manner. CDAN [32] tries to align source and target domains in the feature
space conditioned on the output of the classifier via adversarial training. Instead of adversarial
learning, DSAN [74] aims to align the same category of different domains via the local maximum
mean discrepancy. For these four UDA methods, we appropriately modify them so that they can
be trained with the labeled target domain. MME [49] aims to learn domain-invariant prototypes by
maximizing the entropy on unlabeled target data and minimizing the entropy on labeled source and
target data. Meta-MME [27] reformulates the MME method as a bi-level optimization problem,
while its formulation is significantly different with the proposed MOML (i.e., problem (6)). APE
[23] aims to minimize the intra-domain discrepancy within the target domain to improve the domain
alignment.

21

D.3 Experimental Setting

Experiments are conducted on the Office-31 dataset [60]. This dataset1 consists of three domains:
Amazon, DSLR, and Webcam, abbreviated as A, D, and W, respectively. It contains 4,110 labeled
images in total and each domain consists of 31 categories.

We use the ResNet-50 model [17] pretrained on the ImageNet dataset as the backbone network
followed by a Fully-Connected (FC) layer. The same network architecture is used for all baseline
methods. All baselines use the same experimental setting as the original methods. For the training of
all the DSAN-related models, the SGD optimizer with the learning rate 10−3, the momentum 0.9 and
the weight decay 5× 10−4 is used for optimization. The batch size is set to 96, including 32 images
in the source, labeled target, and unlabeled target domains, respectively. For all the MME-related
models, we implement them based on the public code base3 and use the same experimental settings
as the original MME method. All the experiments are conducted on one single NVIDIA Tesla V100S
GPU.

E Multi-Task Learning

E.1 Datasets

Experiments are conducted on the NYUv2 [53], Office-31 and Office-Home [60] datasets. The
NYUv2 dataset is an indoor scene RGB-D image dataset, which consists of three tasks: 13-class
semantic segmentation, depth estimation, and surface normal prediction. We use the NYUv2 dataset
pre-processed by [31]. It contains 795 and 654 labeled images for training and test, respectively, and
the size of each image is 288 × 384. The Office-31 dataset has been introduced in Appendix D.3
and we consider the classification problem on each domain as a task. Thus, there are three tasks
on the Office-31 dataset. The Office-Home dataset4 contains four tasks: artistic images, clip art,
product images, and real-world images, abbreviated as Ar, Cl, Pr, and Rw, respectively. This dataset
has 15,500 labeled images in total and each task consists of 65 object categories in office and home
settings.

E.2 Experimental Settings

NYUv2 The ResNet-50 pretrained on the ImageNet dataset is used as the backbone to extract
features and m Atrous Spatial Pyramid Pooling (ASPP) [3] modules are used as the decoder for
task-specific outputs. For the DMTL architecture, the multi-task learning model adopts the widely
used hard-sharing or equivalently the multi-head structure. For the MTAN architecture, we add m
task-specific attention networks into the backbone based on the DMTL architecture. We implement
both DMTL and MTAN architectures based on the public code base5. The MTL model with parameter
ω in problem (7) is trained by the Adam optimizer [24] with the learning rate as 10−4 and weight
decay as 10−5. The loss weight α in problem (7) is initialized as (1

3 ,
1
3 ,

1
3)T and is optimized by the

Adam optimizer with the learning rate as 10−4. For SOML and the proposed MOML method, we
randomly split 795 training images into two parts: 636 for training and the rest 159 for validation and
test on the same test dataset as all baselines. A batch size 8 is used for DMTL architecture and 4 for
MTAN architecture. All the experiments are conducted on one single NVIDIA Tesla V100S GPU.

Office-31 and Office-Home The experimental settings of Office-31 and Office-Home datasets are
similar to those of the NYUv2 dataset. The ResNet-18 pretrained on the ImageNet dataset is used as
the backbone to extract features and m linear layers are used for task-specific classification. We also
add m task-specific attention networks to build the MTAN architecture. The MTL model is trained by
the Adam optimizer [24] with the learning rate as 10−4. The loss weight α is initialized with equal
values and optimized by the Adam optimizer with the learning rate as 10−3. Both the Office-Home
and Office-31 datasets are split into three parts, including 60% for training, 20% for validation, and
the remaining 20% for testing. All the baselines are trained on training and validation datasets. We set

1https://www.cc.gatech.edu/~jhoffman/domainadapt/#datasets_code
3https://github.com/VisionLearningGroup/SSDA_MME
4https://www.hemanthdv.org/officeHomeDataset.html
5https://github.com/lorenmt/mtan/tree/master/im2im_pred/model_resnet_mtan

22

the batch size to 64 for both Office-31 and Office-Home datasets. All the experiments are conducted
on one single NVIDIA Tesla V100S GPU.

E.3 Experimental Results on the Office-31 and Office-Home Datasets

Experimental results on the Office-31 and Office-Home datasets are shown in Table 5. Firstly, we
notice that SOML achieves comparable performance with state-of-the-art baselines under both DMTL
and MTAN architectures on both Office-31 and Office-Home datasets, which means the proposed
bi-level formulation (i.e., problem (7) with weighted combined objectives in the UL subproblem)
is competitive when comparing with the baselines with single-objective formulation. Secondly, the
proposed MOML slightly outperforms SOML in all cases. It indicates the multi-objective formulation
in the UL subproblem is better than the single-objective formlation in SOML. Finally, compared with
state-of-the-art baselines, the proposed MOML achieves the best result in some tasks, such as the
best classification accuracy 88.20% in task A on the Office-31 dataset.

Table 5: Classification accuracy (%) on the Office-31 and Office-Home datasets. The best combina-
tions of the architecture and weighting strategy are highlighted in bold. The best results for each task
on each measure are annotated with underlines.

Architecture Weighting Office-31 Office-Home
Strategy A D W Avg Ar Cl Pr Rw Avg

DMTL

EW 87.17 98.36 99.44 94.99 68.88 80.93 91.73 81.72 80.81
DWA [31] 87.52 99.18 99.44 95.38 70.39 79.95 90.36 82.05 80.69

MGDA [51] 87.52 99.18 99.44 95.38 69.44 79.30 91.63 81.72 80.52
PCGrad [71] 87.00 98.36 98.33 94.56 68.31 80.71 90.57 81.94 80.38

SOML 87.35 100 98.89 95.41 70.77 81.14 90.46 80.97 80.84
MOML (ours) 87.69 99.18 99.44 95.43 69.63 81.79 91.20 82.05 81.17

MTAN [31]

EW 87.52 98.36 99.44 95.10 69.63 80.60 91.94 82.91 81.27
DWA [31] 87.52 100 99.44 95.65 69.63 81.14 91.10 82.48 81.09

MGDA [51] 87.35 99.18 99.44 95.32 69.25 81.36 91.73 82.81 81.29
PCGrad [71] 87.69 100 99.44 95.71 69.25 81.36 92.37 82.27 81.31

SOML 87.52 100 99.44 95.65 70.77 81.25 91.20 82.59 81.45
MOML (ours) 88.20 100 99.44 95.88 70.96 81.14 92.05 83.02 81.80

F Neural Architecture Search

F.1 Experimental Settings

The search space and training procedure of MOML adopt the same settings as DARTS [29]. Specifi-
cally, in both normal and reduction cells, the set of operations O contains eight operations, including
3 × 3 separable convolutions, 5 × 5 separable convolutions, 3 × 3 dilated separable convolutions,
5× 5 dilated separable convolutions, 3× 3 max pooling, 3× 3 average pooling, identity, and zero.
Half of the training set is used for training a model, and the other half is for the validation. A small
network of 8 cells is trained with the batch size as 64 and 16 initial channels for 50 epochs. The Adam
optimizer [24] with the learning rate 3 × 10−4, the momentum β = (0.5, 0.999), and the weight
decay 1× 10−3 is used to update α in the UL subproblem. The SGD optimizer with the decayed
learning rate down from 0.025 to 0 by a cosine schedule, the momentum 0.9, and the weight decay
3× 10−4 is used to update ω in the LL subproblem.

In the evaluation stage, a neural network of 20 searched cells is trained on the full training set for
600 epochs with the batch size as 96, the initial number of channels as 36, the length of a cutout
as 16, the dropout probability as 0.2, and auxiliary towers of weight as 0.4. The full testing set is
used for testing. Adversarial examples are generated using the PGD attack with the perturbation size
ε = 1/255 and the PGD attack takes 10 iterative steps with the step size of 2.5ε as suggested in [26].
All the experiments are conducted on one single NVIDIA Tesla V100S GPU.

23

Table 6: Comparison between MOML and DARTS and other three state-of-the-art baselines on the
CIFAR-10 dataset. ↑ indicates that a larger value is better, while ↓ implies that a lower value is better.
“{DARTS-C#channels}" means that the architecture searched by DARTS is evaluated with the initial
number of channels as “channels”. “{SOML-V#size-C#channels}" means that the architecture
searched by SOML with L as “size” is evaluated by the initial number of channels as “channels”.
“{MOML-V#size}" denotes the architecture searched by MOML with L as “size”. The B-score,
which is defined in Section 5.1, measures the balance between the clean accuracy and PGD accuracy
when the numbers of parameters in different architecture are comparable.

Architecture Params (MB) ↓ Clean Acc. (%) ↑ PGD Acc. (%) ↑ B-score
SNAS (moderate) [67] 2.8 97.15 - -
RC-DARTS-C42 [21] 3.3 97.19 - -
ENAS [42] 4.6 97.11 - -

DARTS-C26 1.787 96.91 28.45 43.98
SOML-V1-C38 1.750 96.36 40.20 56.73
MOML-V1 1.754 96.48 42.66 59.16
DARTS-C30 2.354 97.13 31.53 47.60
SOML-V2-C42 2.402 97.03 31.44 47.49
MOML-V2 2.367 97.18 36.15 52.69
DARTS-C34 2.998 97.34 30.31 46.22
SOML-V3-C36 3.018 97.18 35.36 51.85
MOML-V3 3.018 97.25 35.22 51.71

F.2 Experimental Results and Analysis

Table 6 compares the proposed MOML with the DARTS method and other three state-of-the-art
baselines on the CIFAR-10 dataset [25]. We search for neural networks with different expected sizes
(i.e., different L’s used in Eq. (8)) via the MOML method. To make the network size searched by
DARTS comparable with that of MOML under different settings, we use different numbers of initial
channels in DARTS during the evaluation process. Hence, according to the parameter size (i.e., L=1,
2, and 3), we split the results of DARTS, SOML and MOML into three groups.

Comparing with three state-of-the-art baselines (i.e., SNAS, RC-DARTS and ENAS), the proposed
MOML can search an architecture with similar or less parameter size but higher clean accuracy
than all baselines. Comparing with DARTS, MOML achieves a better trade-off among accuracy,
network size, and robustness. With a comparable number of parameters, the MOML method improves
the robustness while test accuracy are comparable or even slightly better. For example, compared
MOML-V1 with DARTS-C26, the PGD accuracy increases by about 14%, while the clean test
accuracy only drops around 0.5%. In addition, comparing with SOML, MOML has a higher B-score
when L equals 1 and 2, and has a comparable B-score when L equals 3. It indicates MOML with
multi-objective formulation in the UL subproblem can achieve a better trade-off between the clean
accuracy and PCG accuracy than SOML with the single-objective formulation. So experimental
results in Table 6 show that the MOML method can search more robust architectures with similar
model size and comparable classification accuracy than the DARTS method and other state-of-the-art
baselines.

24

