
In Appendix A, we provide the lower and upper bounds of attack transferability for untargeted attacks.
In Appendix B, we extend our theoretical analysis to adversarial attacks bounded by distributional
distance. In Appendices C and D, we give the detailed proof of Theorems 1, 2, 3 and 4 characterizing
the lower and upper bounds for both targeted and untargeted attack transferability. In Appendix E, we
give the detailed introduction of our baseline ensembles and evaluated whitebox attacks, including
their exact configuration. In Appendix F, we present all the training details for TRS ensemble
and other baselines. In Appendix G, we give the numerical blackbox robustness evaluation results
on MNIST and CIFAR-10, corresponding to Figure 2 in main paper. In Appendix H, we analyze
the statistical stability of reported robust accuracy for TRS ensemble against attacks with random
start, and TRS ensemble claims its stability by showing small standard deviation. In Appendix I,
we visualize the decision boundaries of different robust ensembles and investigate how adversarial
training would further improve the robustness of TRS ensemble. We also show TRS ensemble
remains robust under large attack iterations through convergence analysis. In Appendix J, we evaluate
the robustness of TRS ensemble against other three strong blackbox attacks, and TRS ensemble still
remains robust. In Appendix K, we conduct whitebox robustness evaluation on CIFAR-100 dataset
and compare other state-of-the-art robust ensembles with our proposed TRS ensemble.

A Additional Theoretical Results for Untargeted Attacks

In this appendix, we present transferability lower and upper bounds for untargeted attack. All these
bounds have similar forms as their targeted attack counterparts in the main text.

A.1 Lower Bound

Theorem 3 (Lower Bound on Untargeted Attack Transferability). Assume both models F and G are
β-smooth. Let AU be an (α,F)-effective untargeted attack with perturbation ball ‖δ‖2 ≤ ε. The
transferabiity can be lower bounded by

Pr (Tr(F ,G, x) = 1) ≥ (1−α)−(ηF+ηG)−
ε(1 + α)− cF (1− α)

ε− cG
− ε(1− α)

ε− cG

√
2− 2S(`F , `G),

where

cF = min
(x,y)∈supp(D)

min
y′∈Y:y′ 6=y

`F (AU (x), y′)− `F (x, y)− βε2/2

‖∇x`F (x, y)‖2
, cG = max

(x,y)∈supp(D)

min
y′∈Y:y′ 6=y

`G(AU (x), y′)− `G(x, y) + βε2/2

‖∇x`G(x, y)‖2
.

Here ηF and ηG are the risks of models F and G respectively. The supp(D) is the support of benign
data distribution, i.e., x is the benign data and y is its associated true label.

The full proof is available in Appendix C. The discussion of the theorem is in Section 2.

A.2 Upper Bound

Theorem 4 (Upper Bound on Untargeted Attack Transferability). Assume both models F and G are
β-smooth with gradient magnitude bounded by B, i.e., ‖∇x`F (x, y)‖ ≤ B and ‖∇x`G(x, y)‖ ≤ B
for any x ∈ X , y ∈ Y . Let AU be an (α,F)-effective untargeted attack with perturbation ball

‖δ‖2 ≤ ε. When the attack radius ε is small such that `min − εB
(
1 +

√
1+S(`F ,`G)

2

)
− βε2 > 0,

the transferability can be upper bounded by

Pr (Tr(F ,G, x) = 1) ≤ ξF + ξG

`min − εB
(
1 +

√
1+S(`F ,`G)

2

)
− βε2

,

where `min = min
x∈X ,y′∈Y:

(x,y)∈supp(D),y′ 6=y

(`F (x, y
′), `G(x, y

′)). Here ξF and ξG are the empirical risks of

models F and G respectively, defined relative to a differentiable loss. The supp(D) is the support of
benign data distribution, i.e., x is the benign data and y is its associated true label.

The full proof is available in Appendix D. The discussion of the theorem is in Section 2.
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B Discussion: Beyond `p Attack

Besides the widely used `p norm based adversarial examples, here we plan to extend our understanding
to the distribution distance analysis.

We no longer distinguish the targeted attack and untargeted attack. Therefore, we denote either of
them by A. Accordingly, we revise the definition of (α,F)-effective attack (Definition 2) to be
Pr (F(A(x) 6= y)) ≥ 1− α where y ∈ Y is the true label of x ∈ X .

Moreover, we use PA(x) to represent the distribution of A (x) ∈ X where x is distributed according
to PX .

Now we define the distribution distance that we use to measure the adversarial distribution gap.
Definition 7 (Total variation distance; [7]). For two probability distributions PX and PA(x) on X ,
the total variation distance between them is defined as

‖PX − PA(x)‖TV = sup
C⊆X
|PX (C)− PA(x)(C)|.

Informally, the total variation distance measures the largest change in probability over all events. For
discrete probability distributions, the total variation distance is the `1 distance between the vectors in
the probability simplex representing the two distributions.
Definition 8. Given ρ ∈ (0, 1), an attack strategy A (·) is called ρ-conservative, if for x ∼ PX ,
‖PX − PA(x)‖TV ≤ ρ.

This definition formalizes the general objective of generating adversarial examples against deep
neural networks: attack samples are likely to be observed, while they do not themselves arouse
suspicion.
Lemma 5. Let f, g : X → Y be classifiers, δ, ρ, ε ∈ (0, 1) be constants, and A (·) be an attack
strategy. Suppose that A (·) is ρ-conservative and f, g have risk at most ε. Then

Pr (F(A (x)) 6= G(A (x))) ≤ 2ε+ ρ

for a given random instance x ∼ PX .
Remark. This result provides theoretical backing for the intuition that the boundaries of low risk
classifiers under certain dense data distribution are close [48]. It considers two classifiers that have
risk at most ε, which indicates their boundaries are close for benign data. It then shows that their
boundaries are also close for the perturbed data as long as the attack strategy satisfies a conservative
condition which constrains the drift in distribution between the benign and adversarial data.

Proof of Lemma 5. Given A (·) is ρ-conservative, by Definition 8 we know

|PrPX (f(A (x)) = g(A (x)))− PrX (f(x) = g(x))|
=
∣∣PrA(x) (f(x) = g(x))− PrX (f(x) = g(x))

∣∣
≤ρ.

Therefore, we have

Pr (f(A (x)) = g(A (x))) ≥ Pr (f(x) = g(x))− ρ.
From the low-risk conditions, the classifiers agree with high probability:

Pr (f(A (x)) 6= g(A (x)))

≤Pr (f(x) 6= g(x)) + ρ

≤1− Pr (f(x) = y, g(x) = y) + ρ , 4

≤1− (1− Pr (f(x) 6= y)− Pr (g(x) 6= y)) + ρ

=ε+ ε+ ρ

≤2ε+ ρ ,

where the third inequality follows from the union bound. 5

4Here we assume y is the ground truth label.
5Recall that for arbitrary events A1, . . . , An, the union bound implies P

(⋂n
i=1Ai

)
≥ 1−

∑n
i=1 P

(
Ai

)
.
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Theorem 6. Let F ,G : X → Y be classifiers (Y ∈ {−1, 1}), δ, ρ, ε ∈ (0, 1) be constants, and A (·)
an attack strategy. Suppose that A (·) is ρ-conservative and F ,G have risk at most ε. Given random
instance x ∈ X , if A (·) is (δ,F)-effective, then it is also (δ + 2ε+ ρ,G)-effective.

The proof is shown below. This result formalizes the intuition that low-risk classifiers possess close
decision boundaries in high-probability regions. In such settings, an attack strategy that successfully
attacks one classifier would have high probability to mislead the other. This theorem explains why
we should expect successful transferability in practice: defenders will naturally prefer low-risk binary
classifiers. This desirable quality of classifiers is a potential liability.

Proof of Theorem 6. From Lemma 5 and the union bound we have

Pr (g(x) 6= y)

≥Pr (f(A (x)) 6= y, g(A (x)) = f(A (x)))

≥1− Pr (f(A (x)) = y)− Pr (g(A (x)) 6= f(A (x)))

≥1− δ − 2ε− ρ,
as claimed.

C Proof of Transferability Lower Bound (Theorems 1 and 3)

Here we present the proof of Theorem 1 and Theorem 3 stated in Section 2.3 and Appendix A.

The following lemma is used in the proof.
Lemma 7. For arbitrary vector δ, x, y, suppose ‖δ‖2 ≤ ε, x and y are unit vectors, i.e., ‖x‖2 =

‖y‖2 = 1. Let m := cos〈x, y〉 = x · y
‖x‖2 · ‖y‖2

. Let c denote any real number. Then

δ · y > c+ ε
√
2− 2m ⇒ δ · x > c.

Proof. δ · x = δ · y + δ · (x− y) > c+ ε
√
2− 2m+ δ · (x− y). By law of cosines, δ · (x− y) ≥

−ε
√
2− 2 cos〈x, y〉 = −ε

√
2− 2m. Hence, δ · x > c.

Theorem (Lower Bound on Targeted Attack Transferability). Assume both models F and G are
β-smooth. Let AT be an (α,F)-effective targeted attack with perturbation ball ‖δ‖2 ≤ ε and target
label yt ∈ Y . The transferabiity can be lower bounded by

Pr (Tr(F ,G, x, yt) = 1) ≥ (1−α)−(ηF+ηG)−
ε(1 + α) + cF (1− α)

cG + ε
−ε(1− α)

cG + ε

√
2− 2S(`F , `G),

where

cF = max
x∈X

min
y∈Y

`F (AT (x), y)− `F (x, yt) + βε2/2

‖∇x`F (x, yt)‖2
,

cG = min
x∈X

min
y∈Y

`G(AT (x), y)− `G(x, yt)− βε2/2

‖∇x`G(x, yt)‖2
.

Here ηF , ηG are the risks of models F and G respectively.

Proof. For simplifying the notations, we define xA := AT (x), which is the generated adversarial
example by AT when the input is x.

Define auxiliary function f, g : X 7→ R such that

f(x) =
miny∈Y `F (x

A, y)− `F (x, yt) + βε2/2

‖∇x`F (x, yt)‖2
,

g(x) =
miny∈Y `G(x

A, y)− `G(x, yt)− βε2/2
‖∇x`G(x, yt)‖2

.

The f and g are orthogonal to the confidence score functions of model F and G. Note that cF =
maxx∈X f(x) and cG = minx∈X g(x).
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The transferability of concern satisfies:

Pr (Tr(F ,G, x, yt) = 1)

=Pr
(
F(x) = y ∩ G(x) = y ∩ F(xA) = yt ∩ G(xA) = yt

)
(2)

≥1− Pr (F(x) 6= y)− Pr (G(x) 6= y)− Pr
(
F(xA) 6= yt

)
− Pr

(
G(xA) 6= yt

)
(3)

≥1− ηF − ηG − α− Pr
(
G(xA) 6= yt

)
. (4)

Eq. 2 follows the definition (Definition 6). Eq. 2 to Eq. 3 follows from the union bound. From Eq. 2
to Eq. 3 definition of model risk (Definition 3) and definition of adversarial effectiveness (Definition 2)
are applied.

Now consider Pr
(
F(xA) 6= yt

)
and Pr

(
G(xA) 6= yt

)
. Given that model predicts the label for

which `F is minimized, F(xA) 6= yt ⇐⇒ `F (x + δ, yt) > miny `F (x + δ, y). Similarly,
G(xA) 6= yt ⇐⇒ `G(x+ δ, yt) > miny `G(x+ δ, y).

Following Taylor’s Theorem with Lagrange remainder, we have

`F (x+ δ, yt) = `F (x, yt) + δ∇x`F (x, yt) +
1

2
ξ>HFξ, (5)

`G(x+ δ, yt) = `G(x, yt) + δ∇x`G(x, yt) +
1

2
ξ>HGξ. (6)

In Eq. 5 and Eq. 6, ξ = kδ for some k ∈ [0, 1]. HF and HG are Hessian matrices of `F and `G
respectively. Since `F (x+ δ, yt) and `G(x+ δ, yt) are β-smooth, the maximum eigenvalues of HF
and HG are bounded by β, As the result, |ξ>HFξ| ≤ β · ‖ξ‖22 ≤ βε2. Applying them to Eq. 5 and
Eq. 6, we thus have

`F (x, yt) + δ∇x`F (x, yt)−
1

2
βε2 ≤ `F (x+ δ, yt) ≤ `F (x, yt) + δ∇x`F (x, yt) +

1

2
βε2, (7)

`G(x, yt) + δ∇x`G(x, yt)−
1

2
βε2 ≤ `G(x+ δ, yt) ≤ `G(x, yt) + δ∇x`G(x, yt) +

1

2
βε2. (8)

Apply left hand side of Eq. 7 to Pr
(
F(xA) 6= yt

)
≤ α (from Definition 2):

Pr
(
F(xA) 6= yt

)
=Pr

(
`F (x+ δ, yt) > min

y
`F (x+ δ, y)

)
≥Pr

(
`F (x, yt) + δ∇x`F (x, yt)−

1

2
βε2 > min

y
`F (x+ δ, y)

)
=Pr

(
δ · ∇x`F (x, yt)
‖∇x`F (x, yt)‖2

> f(x)

)
,

=⇒ Pr

(
δ · ∇x`F (x, yt)
‖∇x`F (x, yt)‖2

> f(x)

)
≤ α.

Similarly, we apply right hand side of Eq. 8 to Pr
(
G(xA) = yt

)
:

Pr
(
G(xA) 6= yt

)
=Pr

(
`G(x+ δ, yt) > min

y
`G(x+ δ, y)

)
≤Pr

(
`G(x, yt) + δ∇x`G(x, yt) +

1

2
βε2 > min

y
`G(x+ δ, y)

)
=Pr

(
δ · ∇x`G(x, yt)
‖∇x`G(x, yt)‖2

> g(x)

)
. (9)

Knowing that ‖δ‖2 ≤ ε, from Lemma 7 we have

δ · ∇x`G(x, yt)
‖∇x`G(x, yt)‖2

> f(x) + ε
√
2− 2S(`F , `G) (10)
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=⇒ δ · ∇x`G(x, yt)
‖∇x`G(x, yt)‖2

> f(x) + ε
√
2− 2 cos〈∇x`F (x, yt),∇x`G(x, yt)〉 (11)

=⇒ δ · ∇x`F (x, yt)
‖∇x`F (x, yt)‖2

> f(x). (12)

From Eq. 10 to Eq. 11, the infimum in definition of S (Definition 4) indicates that

S(`F , `G) ≤ cos〈∇x`F (x, yt),∇x`G(x, yt)〉.
Hence,

f(x) + ε
√
2− 2S(`F , `G) ≥ f(x) + ε

√
2− 2 cos〈∇x`F (x, yt),∇x`G(x, yt)〉.

Eq. 11 to Eq. 12 directly uses Lemma 7. As a result,

Pr

(
δ · ∇x`G(x, yt)
‖∇x`G(x, yt)‖2

> f(x) + ε
√

2− 2S(`F , `G)
)

≤Pr
(
δ · ∇x`F (x, yt)
‖∇x`F (x, yt)‖2

> f(x)

)
≤ α.

Note that f(x) ≤ cF , we have

Pr

(
δ · ∇x`G(x, yt)
‖∇x`G(x, yt)‖2

> cF + ε
√
2− 2S(`F , `G)

)
≤ α.

Now we consider the maximum expectation of δ · ∇x`G(x,yt)
‖∇x`G(x,yt)‖2 . Its maximum is max ‖δ‖2 = ε.

Therefore, its expectation is bounded:

E
[
δ · ∇x`G(x, yt)
‖∇x`G(x, yt)‖2

]
≤ ε · α+

(
cF + ε

√
2− 2S(`F , `G)

)
(1− α).

Now applying Markov’s inequality, we get

Pr

(
δ · ∇x`G(x, yt)
‖∇x`G(x, yt)‖2

> cG

)

≤
ε · α+

(
cF + ε

√
2− 2S(`F , `G)

)
(1− α) + ε

cG + ε

=
ε(1 + α) +

(
cF + ε

√
2− 2S(`F , `G)

)
(1− α)

cG + ε
.

Since g(x) ≥ cG ,

Pr

(
δ · ∇x`G(x, yt)

‖∇x`G(x, yt)‖2
> g(x)

)
≤ Pr

(
δ · ∇x`G(x, yt)

‖∇x`G(x, yt)‖2
> cG

)

≤
ε(1 + α) +

(
cF + ε

√
2− 2S(`F , `G)

)
(1− α)

cG + ε
.

Combine with Eq. 12, finally,

Pr (Tr(F ,G, x, yt) = 1)

≥1− ηF − ηG − α− Pr
(
G(xA) 6= yt

)
(i.)

≥ 1− ηF − ηG − α− Pr

(
δ · ∇x`G(x, yt)
‖∇x`G(x, yt)‖2

> g(x)

)

≥1− ηF − ηG − α−
ε(1 + α) +

(
cF + ε

√
2− 2S(`F , `G)

)
(1− α)

cG + ε

=(1− α)− (ηF + ηG)−
ε(1 + α) + cF (1− α)

cG + ε
− ε(1− α)

cG + ε

√
2− 2S(`F , `G).

Here, (i.) follows Eq. 9.
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Theorem (Lower Bound on Untargeted Attack Transferability). Assume both models F and G are
β-smooth. Let AU be an (α,F)-effective untargeted attack with perturbation ball ‖δ‖2 ≤ ε. The
transferabiity can be lower bounded by

Pr (Tr(F ,G, x) = 1) ≥ (1−α)−(ηF+ηG)−
ε(1 + α)− cF (1− α)

ε− cG
− ε(1− α)

ε− cG

√
2− 2S(`F , `G),

where

cF = min
(x,y)∈supp(D)

min
y′∈Y:y′ 6=y

`F (AU (x), y′)− `F (x, y)− βε2/2

‖∇x`F (x, y)‖2
,

cG = max
(x,y)∈supp(D)

min
y′∈Y:y′ 6=y

`G(AU (x), y′)− `G(x, y) + βε2/2

‖∇x`G(x, y)‖2
.

Here ηF and ηG are the risks of models F and G respectively. The supp(D) is the support of benign
data distribution, i.e., x is the benign data and y is its associated true label.

Proof. For simplifying the notations, we define xA := AU (x), which is the generated adversarial
example by AU when the input is x. Define auxiliary function f, g :M→ R such that

f(x, y) =

min
y′∈Y:y′ 6=y

`F (x
A, y′)− `F (x, y)− βε2/2

‖∇x`F (x, yt)‖2
,

g(x, y) =

min
y′∈Y:y′ 6=y

`G(x
A, y′)− `G(x, y) + βε2/2

‖∇x`G(x, yt)‖2
.

The f and g are orthogonal to the confidence score functions of model F and G. Note that

cF = min
(x,y)∈supp(D)

f(x, y), cG = max
(x,y)∈supp(D)

g(x, y).

The proof is similar to that of Theorem 1.

Pr (Tr(F ,G, x) = 1)

=Pr
(
F(x) = y ∩ G(x) = y ∩ F(xA) 6= y ∩ G(xA) 6= y

)
≥1− Pr (F(x) 6= y)− Pr (G(x) 6= y)− Pr

(
F(xA) = y

)
− Pr

(
G(xA) = y

)
=1− ηF − ηG − α− Pr

(
G(xA) = y

)
. (13)

From Taylor’s Theorem and Lemma 7, we observe that

Pr
(
G(xA) = y

)
≤ Pr

(
δ · ∇x`G(x, y)
‖∇x`G(x, y)‖2

< cG

)
, (14)

Pr

(
δ · ∇x`G(x, y)
‖∇x`G(x, y)‖2

< cF − ε
√
2− 2S(`F , `G)

)
≤ Pr

(
F(xA) = y

)
= α. (15)

According to Markov’s inequality, Eq. 15 implies that

Pr

(
δ · ∇x`G(x, y)
‖∇x`G(x, y)‖2

< cG

)
≤
ε(1 + α)−

(
cF − ε

√
2− 2S(`F , `G)

)
(1− α)

ε− cG
. (16)

We conclude the proof by combining Eq. 14 with Eq. 16 and plugging it into Eq. 13.

D Proof of Transferability Upper Bound (Theorems 2 and 4)

Here we present the proof of Theorem 2 and Theorem 4 as stated in Section 2.4 and Appendix A.

The following lemma is used in the proof.
Lemma 8. Suppose two unit vectors x, y satisfy x ·y ≤ S, then for any δ, we have min(δ ·x, δ ·y) ≤
‖δ‖2

√
(1 + S)/2.
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Proof. Denote α to be the angle between x and y, then cosα ≤ S, or α ≥ arccosS. If αx, αy are
the angles between δ and x and between δ and y respectively, then we have max(αx, αy) ≥ α/2 ≥
arccosS/2. By the half-angle formula, cos(α/2) ≤ cos

(
arccosS

2

)
=
√

1+S
2 . Thus, min(δ·x, δ·y) ≤

‖δ‖2 cos(α/2) ≤ ‖δ‖2
√

(1 + S)/2.

Theorem (Upper Bound on Targeted Attack Transferability). Assume both model F and G are
β-smooth with gradient magnitude bounded by B, i.e., ‖∇x`F (x, y)‖ ≤ B and ‖∇x`G(x, y)‖ ≤ B
for any x ∈ X , y ∈ Y . LetAT be an (α,F)-effective targeted attack with perturbation ball ‖δ‖2 ≤ ε

and target label yt ∈ Y . When the attack radius ε is small such that `min−εB
(
1 +

√
1+S(`F ,`G)

2

)
−

βε2 > 0, the transferability can be upper bounded by

Pr (Tr(F ,G, x, yt) = 1) ≤ ξF + ξG

`min − εB
(
1 +

√
1+S(`F ,`G)

2

)
− βε2

,

where `min = minx∈X (`F (x, yt), `G(x, yt)). Here ξF and ξG are the empirical risks of models F
and G respectively, defined relative to a differentiable loss.

Proof. We let xA := AT (x) be the generated adversarial example when the input is x. Since F(x)
outputs label for which `F is minimized, we have

F(x) = y =⇒ `F (x, yt) > `F (x, y) (17)

and similarly

F(xA) = yt =⇒ `F (x
A, y) > `F (x

A, yt), (18)
G(x) = y =⇒ `G(x, yt) > `G(x, y), (19)

G(xA) = yt =⇒ `G(x
A, y) > `G(x

A, yt). (20)

Since `F (x, y) and `G(x, y) are β-smooth,

`F (x, y) + δ · ∇x`F (x, y) +
β

2
‖δ‖2 ≥ `F (xA, y),

which implies

δ · ∇x`F (x, y) ≥ `F (xA, y)− `F (x, y)−
β

2
‖δ‖2

≥ `F (xA, yt)− `F (x, y)−
β

2
‖δ‖2 =: c′F .

(21)

Similarly for G,

δ · ∇x`G(x, y) ≥ `G(xA, yt)− `G(x, y)−
β

2
‖δ‖2 =: c′G . (22)

Thus,

Pr
(
F(x) = y,G(x) = y,F(xA) = yt,G(xA) = yt

)
≤Pr

(
`F (x, yt) > `F (x, y), `F (x

A, y) > `F (x
A, yt), `G(x, yt) > `G(x, y), `G(x

A, y) > `G(x
A, yt)

)
(23)

≤Pr
(
δ · ∇x`F (x, y) ≥ c′F , δ · ∇x`G(x, y) ≥ c′G

)
(24)

≤Pr
((

c′F ≤ ε
√

(1 + S(`F , `G))/2‖∇x`F (x, y)‖2
) ⋃(

c′G ≤ ε
√

(1 + S(`F , `G))/2‖∇x`G(x, y)‖2
))

(25)

≤Pr
(
c′F ≤ ε

√
(1 + S(`F , `G))/2‖∇x`F (x, y)‖2

)
+ Pr

(
c′G ≤ ε

√
(1 + S(`F , `G))/2‖∇x`G(x, y)‖2

)
,

(26)
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where Eq. 23 comes from Eqs. 17 to 20, Eq. 24 comes from Eq. 21 and Eq. 22. The Eq. 25 is a result
of Lemma 8: either

δ · ∇x`F (x, y)
‖∇x`F (x, y)‖2

≤ ‖δ‖2
√

(1 + S(`F , `G))/2

or

δ · ∇x`G(x, y)
||∇x`G(x, y)||

≤ ‖δ‖2
√

(1 + S(`F , `G))/2.

We observe that by β-smoothness condition of the loss function,

c′F = `F (x
A, yt)− `F (x, y)−

β

2
‖δ‖22

≥ `F (x, yt) + δ · ∇x`F (x, yt)−
β

2
‖δ‖22 − `F (x, y)−

β

2
‖δ‖22.

Thus,

Pr

(
c′F ≤ ε

√
(1 + S(`F , `G))/2‖∇x`F (x, y)‖2

)
≤Pr

(
`F (x, yt)− `F (x, y) ≤ εB(1 +

√
(1 + S(`F , `G))/2) + βε2

)
≤Pr

(
`F (x, y) ≥ `F (x, yt)− εB(1 +

√
(1 + S(`F , `G))/2− βε2

)
≤ ξF

min
x∈X

`F (x, yt)− εB
(
1 +

√
(1 + S(`F , `G))/2

)
− βε2

.

(27)

Similarly for G,

Pr

(
c′G ≤ ε

√
(1 + S(`F , `G))/2‖∇x`G(x, y)‖2

)
≤ ξG

min
x∈X

`G(x, yt)− εB
(
1 +

√
(1 + S(`F , `G))/2

)
− βε2

.
(28)

We conclude the proof by combining the above two equations into Eq. 26.

Theorem (Upper Bound on Untargeted Attack Transferability). Assume both model F and G are
β-smooth with gradient magnitude bounded by B, i.e., ‖∇x`F (x, y)‖ ≤ B and ‖∇x`G(x, y)‖ ≤ B
for any x ∈ X , y ∈ Y . Let AU be an (α,F)-effective untargeted attack with perturbation ball

‖δ‖2 ≤ ε. When the attack radius ε is small such that `min − εB
(
1 +

√
1+S(`F ,`G)

2

)
− βε2 > 0,

the transferability can be upper bounded by

Pr (Tr(F ,G, x) = 1) ≤ ξF + ξG

`min − εB
(
1 +

√
1+S(`F ,`G)

2

)
− βε2

,

where `min = min
x∈X ,y′∈Y:

(x,y)∈supp(D),y′ 6=y

(`F (x, y
′), `G(x, y

′)). Here ξF and ξG are the empirical risks of

models F and G respectively, defined relative to a differentiable loss. The supp(D) is the support of
benign data distribution, i.e., x is the benign data and y is its associated true label.

Proof. The proof follows the proof for the targeted attack case. Accordingly, Eq. 21 and Eq. 22 are
modified to

δ · ∇x`F (x, y) ≥ `F (xA, y)− `F (x, y)−
β

2
‖δ‖2

≥ `F (xA, ya)− `F (x, y)−
β

2
‖δ‖2 =: c′F .

(29)

δ · ∇x`G(x, y) ≥ `G(xA, yb)− `G(x, y)−
β

2
‖δ‖2 =: c′G (30)
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where ya and yb are the predicted labels of model F and G for xA under a transferable untargeted
attack respectively. Both ya and yb are not equal to y. Then, instead of minx∈X `F/G(x, yt) we use

min
x∈X ,y′∈Y:(x,y)∈supp(D),y′ 6=y

`F/G(x, y
′)

in Eq. 27 and Eq. 28 and henceforth.

E Additional Details for Baseline Ensembles and Whitebox Attacks

In this section, we present a detailed introduction for our baseline ensembles and evaluated whitebox
attacks. We introduce the baseline ensemble methods as follows:

• Boosting [35, 43] is a natural way of model ensemble training, which builds different weak
learners in a sequential manner improving diversity in handling different task partitions. Here we
consider two variants of boosting algorithms: 1) AdaBoost [19], where the final prediction will
be the weighted average of all the weak learners: weight αi for i-th base model is decided by the
accumulated error ei as αi = log 1−ei

ei
+ log(K − 1). Here K refers to the number of categories

in a classification task. As we can see, higher weight will be placed on stronger learners. 2)
GradientBoost [16], which is a general ensemble training method by identifying weaker learners
based on gradient information and generating the ensemble by training base models step by step
with diverse learning orientations within pseudo-residuals r = −∂`(f(x),y)∂f(x) computed from the
current ensemble model f on input x with ground truth label y.

• CKAE [25] develops diverse ensembles based on CKA measurement, which is recently shown
to be effective to measure the orthogonality between representations. For two representations K
and L, CKA(K,L) = HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
, HSIC(K,L) = 1

(n−1)2 tr(KHLH), where n is the

number of samples and H the centering matrix. For an ensemble consisting of base models {Fi},
we regard the representation of Fi as its loss gradient vectors on batch samples and then minimize
pair-wise CKA between base models Fi,Fj’s representations to encourage ensemble diversity.

• ADP [38] is proposed recently as an effective regularization-based training method to reduce
adversarial transferability among base models within an ensemble by maximizing the volume
spanned by base models’ non-maximal output vectors. Specifically, for a ensemble consisting
of base models {Fi}Ni=1 and input x with ground truth label y, the ADP regularizer is defined as
LADP(x, y) = α ·H(mean({Fi(x)}Ni=1)) + β · log(ED), where H(·) is the Shannon Entropy Loss
and ED the square of the spanned volume. Nevertheless, the ADP ensemble has been shown to be
vulnerable against attacks that run for enough iterations until converged [49]. We will also discuss
this similar observation in our empirical robustness evaluation.

• GAL [23] promotes the diverse properties of the ensemble model by only minimizing the actual
cosine similarities between pair-wise base models’ loss gradient vectors. For N base models
{Fi}Ni=1 within an ensemble and input x with ground truth label y, the GAL regularizer is defined
as: LGAL = log(

∑
1≤i<j≤N exp(CS(∇x`Fi ,∇x`Fj )) where CS(·, ·) refers to the actual cosine

similarity measurement and ∇x`Fi
the loss gradient of base model Fi on x. It could serve as a

baseline to empirically verify our theoretical analysis: when the loss gradients of base models are
similar, the smoother the base models are, the less transferable they are.

• DVERGE [56] reduces the transferability among base models by utilizing Cross-Adversarial-
Training: For a ensemble consisting of base models {Fi} and input x with ground truth label y,
each base model Fi is trained with the non-robust feature instances [22] generated against another
base model. Specifically, DVERGE minimizes

∑
j 6=i `(Fi(x′Fj

(xs, x)), ys) for every Fi iteratively,
where x′Fj

(xs, x) represents the non-robust features against Fj based on the randomly chosen
input (xs, ys). `(·, ·) is the cross-entropy loss function.

We consider the following attacks for whitebox robustness evaluation. Here we define (x, y) to be
the input x with label y and xA to be the notion of adversarial example generated from x. `(F(x), y)
refers to the loss between model output F(x) and label y, and ε is the `∞ perturbation magnitude
bound for different attacks.

• Fast Gradient Sign Method (FGSM) [17] is a simple yet effective attack strategy which generates
adversarial example xA = x+ ν by assigning ν = ε · sgn(∇x`(F(x), y)).

23



• Basic Iterative Method (BIM) [34] is an iterative attack method which adds adversarial perturbations
step by step: xi+1 = clip(xi + α · ∇xi`(F(xi), y)), with initial starting point x0 = x. Function
clip(·) projects the perturbed instance back to the `∞ ball within the perturbation range ε, and α
refers to the step size.

• Momentum Iterative Method (MIM) [13] can be regarded as the variant of BIM by utilizing the
gradient momentum during the iterative attack procedure. Within iteration i+ 1, we update new
gradient as gi+1 = µgi +

`(F(xi),y)
‖∇x`(F(xi),y)‖1 and set xi+1 = clip(xi + α · gi+1) while µ refers to the

momentum coefficient and α the step size.

• Projected Gradient Descent (PGD) [34] can be regarded as the variant of BIM by sampling x0
randomly within the `p ball around x within radius ε. After initialization, it follows the standard
BIM procedure by setting xi+1 = clip(xi + α · ∇xi`(F(xi), y)) on i-th attack iteration.

• Auto-PGD (APGD) [11] is a step-size free variant of PGD by configuring the step-size according
to the overall iteration budgets and the progress of the current attack. Here we consider APGD-CE
and APGD-DLR attack which use CrossEntropy (CE) and Difference of Logits Ratio (DLR) [11]
loss as their loss function correspondingly.

• Carlini & Wanger Attack (CW) [5] accomplishes the attack by solving the optimization problem:
xA := minx′ ‖x′ − x‖22 + c · f(x′, y), where c is a constant to balance the perturbation scale
and attack success rate, and f is the adversarial attack loss designed to satisfy the sufficient and
necessary condition of different attacks. For instance, the untargeted attack loss is represented as
f(x′, y) = max(F(x)y −F(x)i 6=y,−κ) while κ is a confidence variable with value 0.1 as default.

• Elastic-net Attack (EAD) [8] follows the similar optimization of CW Attack while considering both
`2 and `1 distortion: xA := minx′ ‖x′ − x‖22 + β‖x′ − x‖1 + c · f(x′, y). Here β, c refer to the
balancing parameters and f(x′, y) = max(F(x)y −F(x)i 6=y,−κ) under untargeted attack setting.
We set β = 0.01, κ = 0.1 as default.

In our experiments, we set 50 attack iterations with step size α = ε/5 for BIM, MIM attack and PGD
attack with 5 random starts. For CW and EAD attacks, we set the number of attack iterations as 1000
and evaluate them with different constant c for different datasets.

F Training Details

We adapt ResNet-20 [20] as the base model architecture and Adam optimizer [24] in all of our
experiments.

TRS training algorithm. We show the one-epoch TRS training algorithm pseudo code in Algo-
rithm 1. We apply the mini-batch training strategy and train the TRS ensemble for M epochs
(M = 120 for MNIST and M = 200 for CIFAR-10) in our experiments. To decide the δ within the
local min-max procedure, we use the Warm-up strategy by linearly increasing the local `∞ ball’s
radius δ from small initial δ0 to the final δM along with the increasing of training epochs.

Baseline training details. For ADP and GAL, we follow the exact training configuration mentioned
in their paper in both MNIST and CIFAR-10 experiments. For DVERGE, we set the same feature
distillation ε = 0.07 with step size as 0.007 for CIFAR-10 as they mentioned in their paper but set
ε = 0.5 with step size as 0.05 for MNIST since they did not conduct any MNIST experiments in their
paper. We set training epochs as 120 for MNIST and 200 for CIFAR-10 and CIFAR-100 in baseline
training.

TRS training details. For MNIST, we set the initial learning rate α = 0.001 and train our TRS
ensemble for 120 epochs by decaying the learning rate by 0.1 at 40-th and 80-th epochs. For CIFAR-
10 and CIFAR-100 we set the initial learning rate α = 0.001 and train our TRS ensemble for 200
epochs by decaying the learning rate by 0.1 at 100-th and 150-th epochs. For PGD Optimization
within Lsmooth approximation, we set step size α̃ = δ/3 and the total number of steps T as 6 for both
MNIST and CIFAR-10 experiments. We also leverage the ablation study about the convergence of
PGD optimization w.r.t the robustness of TRS ensemble by varying α̃ and T in I.5.

By configuring the default TRS ensemble training setting, we evaluated the average epoch training
time for TRS and compared it to other baselines (ADP, GAL, DVERGE) on RTX 2080 single GPU
device. Results are shown in Table 2.
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Algorithm 1 TRS training framework in epoch m for an ensemble with N base models {Fi}, with
the total number of training epochs M .

1: δm ← δ0 + (δM − δ0) ·m/M
2: for b = 1, · · · , B do
3: (x, y)← training instances from b-th mini-batch
4: LReg ← 0
5: LECE ← 0
6: for i = 1, · · · , N do
7: for j = i+ 1, · · · , N do
8: LReg ← LReg + LTRS(Fi,Fj , x, δm)
9: end for

10: end for
11: for i = 1, · · · , N do
12: LECE ← LECE + LCE(Fi(x), y)
13: end for
14: LReg ← LReg/

(
N
2

)
15: LECE ← LECE/N
16: for i = 1, · · · , N do
17: ∇Fi

← ∇Fi
[LECE + LReg]

18: Fi ← Fi − lr · ∇Fi

19: end for
20: end for

Table 2: Comparison on average epoch training time (s) between TRS training and other baseline
training methods, evaluated on RTX 2080 single GPU device.

Avg epoch training time (s) ADP GAL DVERGE TRS
MNIST 29.22 106.81 184.42 302.24

CIFAR-10 33.22 139.10 349.61 1291.55

Our results show that though ADP, GAL require less training time, they can not achieve even
comparable robustness with TRS as shown in our paper. Compared with DVERGE, TRS requires
longer training time but maintains higher robustness under almost all attack scenarios.

G Numerical Results of Blackbox Robustness Evaluation

Table 3 and 4 show the detailed robust accuracy number of different ensembles against blackbox
transfer attack with different perturbation scale ε, which corresponds to the Figure 2. As we can
see, TRS ensemble shows its competitive robustness to DVERGE on small ε setting but much better
stability of robustness on large ε setting although it slightly sacrifices benign accuracy on clean data.

H Statistical Stability Analysis on Robust Accuracy

For attacks with random-start (PGD, APGD-DLR, APGD-CE) mentioned in Table 1, we run each
of them 10 times with different random seeds and evaluate them on TRS ensemble to present the
statistical indicators (Min, Max, Mean, Std) of robust accuracy in Table 6. We can conclude that our
reported robust accuracy shows statistical stability given the standard deviation is smaller than 0.3
under all the scenarios.

I Ablation Studies

I.1 Decision Boundary Analysis

We visualize the decision boundary of the GAL, DVERGE and TRS ensembles for MNIST and
CIFAR-10 in Figure 4. The dashed line is the negative gradient direction and the horizontal direction
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Table 3: Robust accuracy (%) of different approaches against blackbox transfer attack with different
perturbation scales ε on MNIST dataset.

ε clean 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Vanilla 99.5 1.8 0.1 0.0 0.0 0.0 0.0 0.0
ADP 99.4 25.5 13.8 7.0 2.1 0.3 0.1 0.0
GAL 98.7 96.8 77.0 29.1 12.8 4.6 1.9 0.6

DVERGE 98.7 97.6 97.4 96.9 96.2 94.2 78.3 20.2
TRS 98.6 97.2 96.7 96.5 96.3 95.5 93.1 86.4

Table 4: Robust accuracy (%) of different approaches against blackbox transfer attack with different
perturbation scales ε on CIFAR-10 dataset.

ε clean 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Vanilla 94.1 10.0 0.1 0.0 0.0 0.0 0.0 0.0
ADP 91.6 20.7 0.5 0.0 0.0 0.0 0.0 0.0
GAL 88.3 74.6 58.9 39.1 22.0 11.3 5.2 2.1

DVERGE 91.9 83.3 69.0 49.8 28.2 14.4 4.0 0.8
TRS 86.7 82.3 76.1 65.8 55.0 45.5 35.8 26.7

Table 5: Robust accuracy (%) of TRS ensemble trained with different hyper-parameter settings
against various whitebox attacks on MNIST dataset.

λa 100 500
λb 2.5 10 2.5 10
δM 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4

ε = 0.1 95.6 94.6 90.6 94.8 95.6 93.0 95.2 93.6FGSM
ε = 0.2 91.7 83.4 89.7 87.3 92.0 84.0 88.0 85.0

BIM (50) ε = 0.1 93.3 82.9 75.7 92.5 88.2 83.9 92.6 90.9
ε = 0.15 85.7 69.7 61.3 84.1 73.1 61.3 82.2 83.3
ε = 0.1 93.0 79.1 74.3 92.2 86.3 83.3 91.7 90.6PGD (50)
ε = 0.15 85.1 62.6 57.4 82.6 69.9 58.2 80.0 82.9

MIM (50) ε = 0.1 92.9 81.6 75.1 92.0 87.7 83.5 91.7 91.2
ε = 0.15 85.1 68.2 60.2 83.7 74.0 62.4 82.4 83.4
c = 0.1 98.1 96.6 96.4 97.5 98.4 97.2 98.1 97.8CW
c = 1.0 92.6 92.6 89.1 95.9 86.1 77.4 88.2 95.1

EAD c = 1.0 23.3 14.3 9.2 24.1 22.5 2.6 3.4 23.9
c = 5.0 1.4 0.9 0.1 2.3 0.0 0.0 0.2 1.7
ε = 0.1 92.1 78.5 72.8 91.5 85.9 82.8 91.1 90.2APGD-DLR
ε = 0.15 83.4 62.1 57.0 82.3 69.6 57.9 79.8 82.4

APGD-CE ε = 0.1 91.7 78.1 72.1 91.2 85.2 82.5 90.8 89.7
ε = 0.15 82.8 61.3 56.5 81.9 69.3 57.6 79.4 81.7

Table 6: {Min, Max, Mean, Std} of Robust accuracy (%) of TRS ensemble against 10 times whitebox
attacks simulation with different random seeds on MNIST and CIFAR-10 datasets.

Robust Accuracy param. Min Max Mean Std

MNIST

PGD ε = 0.1 92.8 93.2 93.1 0.143
ε = 0.15 84.9 85.1 85.1 0.067

APGD-DLR ε = 0.1 92.1 92.3 92.2 0.083
ε = 0.15 83.2 83.5 83.4 0.114

APGD-CE ε = 0.1 91.7 92.0 91.9 0.102
ε = 0.15 82.5 82.9 82.7 0.120

CIFAR-10

PGD ε = 0.01 50.4 50.5 50.4 0.049
ε = 0.02 14.8 15.8 15.2 0.293

APGD-DLR ε = 0.01 50.0 50.5 50.2 0.151
ε = 0.02 15.2 16.0 15.6 0.234

APGD-CE ε = 0.01 48.6 48.9 48.8 0.090
ε = 0.02 15.3 16.0 15.6 0.199

is randomly chosen which is orthogonal to the gradient direction. From the decision boundary of
GAL ensemble, we can see that controlling only the gradient similarity will lead to a very non-smooth
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Table 7: Conditional Robust Accuracy (%) of Adversarial Training based ensemble (AdvT) and
TRS+AdvT ensemble against (Top) whitebox attacks and (Down) blackbox attack with different
perturbation scales ε.

Attacks FGSM BIM (50) PGD (50) MIM (50)
ε 0.10 0.20 0.10 0.15 0.10 0.15 0.10 0.15

AdvT 98.4 97.3 98.2 97.5 98.2 97.2 98.2 97.6MNIST
TRS+AdvT 99.1 98.0 99.0 98.2 98.9 98.0 99.0 98.1

ε 0.02 0.04 0.01 0.02 0.01 0.02 0.01 0.02
AdvT 79.3 60.0 88.5 76.1 88.4 76.1 88.5 76.3CIFAR-10

TRS+AdvT 79.2 58.0 90.7 76.7 90.7 76.6 90.9 76.9

MNIST
ε 0.10 0.15 0.20 0.25 0.30 0.35 0.40

AdvT 98.9 98.7 98.6 98.4 98.4 91.6 8.1MNIST
TRS+AdvT 99.4 99.3 99.1 99.1 98.9 98.7 98.5

ε 0.01 0.02 0.03 0.04 0.05 0.06 0.07
AdvT 98.4 96.2 93.9 91.5 89.0 84.9 81.1CIFAR-10

TRS+AdvT 98.8 97.7 94.9 92.6 89.9 86.3 81.6

model decision boundary and thus harm the model robustness. From the comparison of DVERGE and
TRS ensemble, we find that DVERGE ensemble tends to be more robust along the gradient direction
especially on CIFAR-10, (i.e. the distance to the boundary is larger and sometimes even larger
than along the other random direction). This may be due to the reason that DVERGE is essentially
performing adversarial training for different base models and therefore it protects the adversarial
(gradient) direction. Thus, DVERGE performs better against weak attacks which only consider the
gradient direction (e.g. FGSM on CIFAR-10). On the other hand, we find that TRS training yields a
smoother model along different directions than DVERGE, which leads to more consistent predictions
within a large neighborhood of an input. Thus, the TRS ensemble has higher robustness in different
directions against strong attacks such as PGD attack.
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Figure 4: The decision boundary of different models around testing images on (left) MNIST and (right)
CIFAR-10 dataset. Same color indicates the same model prediction. The dash lines shows the negative gradient
direction, which is used in the gradient-based attacks.

I.2 TRS with Adversarial Training

While the TRS regularizer could reduce adversarial transferability among base models by enforcing
low similarity on loss gradients and promoting model smoothness, we explore whether Adversarial
Training [34], which aims to reduce base models’ vulnerability, is able to further improve the
robustness of TRS or not. We first apply adversarial training to train an ensemble model (AdvT)
containing 3 base models as in TRS ensemble. During training, we use `∞ adversarial perturbation
δadv (‖δadv‖∞ ≤ 0.2 for MNIST and ‖δadv‖∞ ≤ 0.03 for CIFAR-10). To combine TRS with
adversarial training (TRS+AdvT), we combine TRS regularizer Loss LTRS with Adversarial Training
Loss LAdvT = max‖x−x′‖∞≤δadv `F (x

′, y) on input x with label y with the same weight, and train
the ensemble F jointly. We evaluate both whitebox and blackbox robustness of TRS+AdvT and
AdvT ensembles. During the evaluation, we consider the Conditional Robust Accuracy evaluated on
adversarial examples generated based on correctly classified clean samples to eliminate the influence
of model benign accuracy. Other settings are the same as we have introduced in Section 4.1.

Table 7 shows the robustness of both AdvT and TRS+AdvT under whitebox and blackbox attacks
on different datasets. As we can see, TRS+AdvT ensemble outperforms the traditional adversarial
training based ensemble consistently especially when ε is large.
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I.3 Impacts of Lsim and Lsmooth

To better understand the exact effects of regularizing Lsim and Lsmooth, we conduct ablation studies
by regularizing Lsim or Lsmooth only on both MNIST and CIFAR-10 datasets. Results are shown in
Table 8.

We can see that, though training with Lsmooth only could lead to high robustness, TRS ensemble could
achieve even higher robustness against strong multi-step attacks by concerning similarity loss Lsim at
the same time. This indicates that both model smoothness and model diversity are important, though
Lsmooth would take the majority.

Table 8: Robust accuracy (%) of TRS ensemble trained by regularizing Lsim or Lsmooth only, or
together, against various white-box attacks on MNIST and CIFAR-10 datasets.

Robust Accuracy FGSM BIM PGD MIM CW EAD

MNIST

param. ε = 0.2 ε = 0.15 ε = 0.15 ε = 0.15 c = 1.0 c = 10.0
Lsim only 30.7 0.0 0.0 0.0 58.6 0.5
Lsmooth only 93.1 82.5 80.7 82.6 86.2 1.2

Lsim + Lsmooth (TRS) 91.7 85.7 85.1 85.1 92.6 1.4

CIFAR-10

param. ε = 0.04 ε = 0.02 ε = 0.02 ε = 0.02 c = 1.0 c = 5.0
Lsim only 35.0 0.0 0.0 0.0 17.6 0.0
Lsmooth only 9.3 13.9 13.8 15.0 43.0 0.0

Lsim + Lsmooth (TRS) 24.9 15.8 15.1 17.2 58.1 0.1

I.4 Robust Accuracy Convergence Analysis

We observe that when the number of attack iterations is large, both ADP and GAL regularizer trained
ensembles achieve much lower robust accuracy against iterative attacks (BIM, PGD, MIM) than
the reported robustness in the original papers which is estimated under a small number of attack
iterations. This case implies the non-convergence of iterative attack evaluation mentioned in their
papers, which is also confirmed by [49]. In contrast, both DVERGE and TRS still remain highly
robust against iterative attacks with large iterations. To show the stability of our model’s robust
accuracy, we evaluate it against PGD attack with 500 and 1000 attack iterations. Results are shown
in Table 9 where TRS ensemble’s robust accuracy only slightly drops after increasing the attack
iterations, and outperforms DVERGE by a large margin.

I.5 Convergence of PGD Optimization within Lsmooth Approximation

Since the computation cost of training a TRS ensemble partially relies on the complexity of PGD
procedure on solving the inner-maximization task of Lsmooth, we conduct ablation study on analyzing
the trade-off between the computation cost (by varying PGD steps T ) and the resulting robustness of
TRS ensemble on MNIST dataset. Specifically, we consider the following settings of PGD step size
α̃ and the number of steps T :

(1) α̃ = δ, T = 1

(2) α̃ = δ/3, T = 6

(3) α̃ = δ/10, T = 20

Results are shown in Table 10. As we can see, the robustness of TRS ensemble consistently improves
with the increasing of T and converges. We should also notice that, even for T = 1, TRS ensemble is
more robust than the strongest baseline DVERGE against various strong attacks. Due to the positive
correlation between T and the training cost, we should choose suitable T balancing the training cost
and model robustness. For MNIST, the default setting (T = 6) could be a good choice.

J Robustness of TRS Ensemble against Other Strong Blackbox Attacks

We also conduct additional blackbox robustness evaluation against the following three strong blackbox
attacks which focus on attack transferability between surrogate model and target model:
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Table 9: Convergence of PGD attack on different ensembles.

Settings iters ADP GAL DVERGE TRS

MNIST

ε = 0.10
50 4.5 4.1 69.2 93.0

500 1.6 1.1 66.5 92.8
1000 1.6 1.0 66.3 92.6

ε = 0.15
50 1.0 0.6 28.8 85.1

500 0.5 0.1 25.0 83.6
1000 0.4 0.1 24.8 83.5

CIFAR-10

ε = 0.01
50 9.0 8.3 37.1 50.5

500 3.5 7.8 35.8 50.3
1000 2.9 7.8 35.7 50.2

ε = 0.02
50 0.1 0.6 10.5 15.1

500 0.0 0.3 9.0 14.5
1000 0.0 0.3 8.8 14.5

Table 10: Robustness of TRS ensemble against various white-box attacks by varying PGD step size
α̃ and total number of steps T for solving the inner-maximization within Lsmooth on MNIST dataset.

Robust acc on MNIST FGSM BIM PGD MIM CW EAD
param. ε = 0.2 ε = 0.15 ε = 0.15 ε = 0.15 c = 1.0 c = 10.0

DVERGE 91.6 47.7 28.8 44.6 79.2 0.0
TRS (α̃ = δ, T = 1) 90.5 76.0 70.1 73.3 89.6 0.1

TRS (α̃ = δ/3, T = 6) 91.7 85.7 85.1 85.1 92.6 1.4
TRS (α̃ = δ/10, T = 20) 92.1 87.2 85.5 86.1 92.8 1.4

Table 11: Robust accuracy (%) of different approaches against strong blackbox transfer attack on
MNIST and CIFAR-10 datasets.

Robust Accuracy ILA DI2-FGSM IRA

MNIST (ε = 0.3)

ADP 5.4 9.9 4.8
GAL 3.0 8.6 7.1

DVERGE 89.5 91.6 82.0
TRS 91.2 93.7 84.4

CIFAR-10 (ε = 0.05)

ADP 1.2 1.6 1.4
GAL 32.2 36.2 29.2

DVERGE 35.9 38.3 32.4
TRS 46.2 50.0 45.1

• Intermediate Level Attack (ILA) [21] enhances the blackbox attack transferability by taking the
perturbation on an intermediate layer of surrogate model into account.

• DI2-FGSM [55] can be viewed as a variant of BIM by applying input transformation randomly at
each attack iteration to promote diverse input patterns.

• Interaction Reduced Attack (IRA) [50] integrates an additional interaction loss term after analyzing
the negative correlation between attack transferability and interaction between adversarial units.

We use the open-source code mentioned in their original papers and generate blackbox adversarial
examples from a surrogate ensemble model consisting of three ResNet20 submodels for both MNIST
and CIFAR-10 datasets. We compare the robustness of TRS ensemble with other baseline ensemble.
Results are shown in Table 11.

We can find that, TRS ensemble consistently demonstrates the highest robustness compared to other
baseline ensembles, which indicates solid blackbox robustness of TRS ensemble against various
types of blackbox attacks.
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K Robustness of TRS Ensemble on CIFAR-100 Dataset

Besides MNIST and CIFAR-10 datasets, we also evaluate our proposed TRS ensemble on the CIFAR-
100 dataset. The base model structure and training parameter configuration remain the same as in
CIFAR-10 experiments. The whitebox robustness evaluation results are shown in Table 12. From
the results, we can see that the robustness of TRS model is better than other methods against all
attacks except FGSM, which is similar with our observations in CIFAR-10. This shows that our TRS
algorithm still achieves a good performance on classification tasks with large number of classes.

Table 12: Robust accuracy(%) of different ensembles against whitebox attacks on CIFAR-100. “para.” refers
to the attack parameter (ε is the `∞ perturbation budget for the attack and c the constant to balance the attack
stealthiness and effectiveness).

CIFAR-100 para. ADP GAL DVERGE TRS
ε = 0.02 11.5 28.7 29.7 19.3FGSM
ε = 0.04 6.4 2.7 25.4 9.5

BIM (50) ε = 0.01 0.5 7.6 12.1 22.9
ε = 0.02 0.0 1.5 2.9 5.4
ε = 0.01 0.4 5.4 11.3 23.0PGD (50)
ε = 0.02 0.0 1.1 2.0 5.3

MIM (50) ε = 0.01 0.5 5.7 13.1 23.4
ε = 0.02 0.0 0.5 2.6 6.2
c = 0.01 11.3 32.0 44.8 45.7CW
c = 0.1 0.5 10.7 20.3 26.9

EAD c = 1.0 0.0 0.0 1.0 5.7
c = 5.0 0.0 0.0 0.0 0.3
ε = 0.01 0.2 4.3 11.8 22.2APGD-LR
ε = 0.02 0.0 0.6 2.1 5.3

APGD-CE ε = 0.01 0.2 4.2 11.3 20.7
ε = 0.02 0.0 0.4 1.7 4.8
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