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ABSTRACT

Diffusion models are a state-of-the-art generative modeling framework that trans-
form noise to images via Langevin sampling, guided by the score, which is the
gradient of the logarithm of the data distribution. Recent works have shown empiri-
cally that the generation quality can be improved when guided by classifier network,
which is typically the discriminator trained in a generative adversarial network
(GAN) setting. In this paper, we propose a theoretical framework to analyze the
effect of the GAN discriminator on Langevin-based sampling, and show that in IPM
GANS, the optimal generator matches score-like functions, involving the flow-field
of the kernel associated with a chosen IPM constraint space. Further, we show that
IPM-GAN optimization can be seen as one of smoothed score-matching, where
the scores of the data and the generator distributions are convolved with the kernel
associated with the constraint. The proposed approach serves to unify score-based
training and optimization of IPM-GANSs. Based on these insights, we demonstrate
that closed-form discriminator guidance, using a kernel-based implementation,
results in improvements (in terms of CLIP-FID and KID metrics) when applied
atop baseline diffusion models. We demonstrate these results by applying closed-
form discriminator guidance to denoising diffusion implicit model (DDIM) and
latent diffusion model (LDM) settings on the FFHQ and CelebA-HQ datasets. We
also demonstrate improvements to accelerated time-step-shifted diffusion, when
coupled with a wavelet-based noise estimator for latent-space image generation.

1 INTRODUCTION

Generative modeling is the process of learning the underlying distribution of data, either with the aim
of evaluating the density, or generating new unseen samples from the underlying distribution. Over
the past few years, diffusion models (Song & Ermonl 2019; |Ho et al., [2020) have become the de
facto approach for generative modeling. Diffusion modeling treats image generation as a denoising
process, and models the transformation by means of a stochastic differential equation (SDE) (Song
& Ermon, [2020). The sampling process involves learning the denoising function, or equivalently,
the gradient of the logarithm of the data distribution, known as the score (Hyvarinen, 2005), and
subsequently discretizing the SDE. Diffusion models achieve state-of-the-art performance for image
generation (Karras et al[2022; Kim et al} 2023 Zheng & Yang|, [2024])). Prior to diffusion models,
generative adversarial networks (GANs, [Goodfellow et al.|(2014)) were the most popular framework
for image generation, owing to their superior single-step sampling performance (Karras et al., 2020;
20215 Sauer et al., [2022). As shown by |Kim et al.| (2023), GANs and diffusion models can be
combined into a unified model, wherein the gradients of an auxiliary standard GAN (Goodfellow:
et al.,2014) discriminator can be used improve the score. We consider the aforementioned setting and
develop strong theoretical and experimental foundations to IPM-GAN-based discriminator guidance
for diffusion.

Score-based Diffusion Models: Score matching was originally proposed by Hyvirinen| (2005)) in the
context of independent component analysis. Let the underlying distribution of the data to be modeled
be denoted by py(x). The Stein score (Liu et al.,2016) is the gradient of logarithm of the density
function with respect to the data, i.e., V5 In (pg()). It generates a vector field that points in the
direction where the data density grows most steeply. In score matching, the score can be approximated
by a parametric function Sf(w) obtained by minimizing the Fisher divergence between the true
score and the score estimated by the network. (Cover & Thomas, [2006) The output of the trained
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Figure 1: Images generated by the proposed closed-form discriminator guidance (DG* approach for
the latent difusion model (LDM) on the 256-dimensional CelebA-HQ and FFHQ datasets.

network is used to generate samples through annealed Langevin dynamics in noise-conditioned
score networks (NCSN) 2019). Recent approaches aim at either improving the
approximation quality of the score network (Song et al., 2020} [Ho et al., [2020; [Song & Ermon|, 2020}
Song et al.| [20210; [Gong & Li, [2021)), or better discretizing the underlying differential equations to
accelerate sampling (Jolicoeur-Martineau et al., 202} [Karras et al} [2022). Upon discretization of the
SDE, the evolution of the images is indexed by time ¢ is denoted as x; € R", with &y ~ pg;, and
xr ~ N(0,I), which is the standard Gaussian distribution. Image generation follows the reverse
process, and is equivalent to sequentially denoising the sample x7, to ultimately generate a realistic
image that ideally comes from the distribution pg.

Generative Adversarial Networks (GANs): GANs are a two-player game between a generator
network G: R¢ — R™ and a discriminator network D: R” — R, n > d. Similar to the reverse
process in diffusion, the generator transforms a noise vector z ~ p.; z € R%, typically standard
Gaussian, and transforms it into a fake sample G(z), with the push-forward distribution p;, = G4 (p-).
The discriminator accepts an input drawn either from the target distribution, x ~ pg; & € R™, or from
the output of a generator, and learns a real versus fake classifier. The objective is to learn the optimal
generator that can create realistic samples, which is equivalent to modeling the reverse process in
a single step. GAN literature considers two main classes of loss functions: (a) f-divergence-based
losses, and (b) integral probability metric (IPM) based losses. The standard GAN (SGAN, |Goodfellow,
let al| (2014)), least-squares GAN (LSGAN, (2017)) and f-GANs (Nowozin et al., 2016)
formulations, fall into the first category, wherein the discriminator models a chosen divergence metric
between the target and generator distributions, while the generator network is trained to minimize this
divergence. In IPM-GAN:S, the discriminator performs the role of a critic, and approximates the IPM,
which in turn relates to a constraint class. For example, in Wasserstein GAN (WGAN),
consider Lipschitz-1 critics, while variants such as the Sobolev GAN
(2018), BWGAN [Adler & Lunz| (2018), and PolyGAN [Asokan & Seelamantula (2023a)) consider
discriminator functions drawn from Sobolev spaces, with a corresponding penalty on the energy in
the gradient. Gretton et al.| (2012) showed that the minimization of IPM losses can be equivalently
solved through the minimization of kernel-based statistics in a reproducing-kernel Hilbert space
(RHKS). Maximum-mean discrepancy GANs (MMD-GANSs) (Li et al., 2017} [Bifikowski et al., [2018))
and Coulomb GAN (Unterthiner et al., 2018)) are examples of kernel-based GANs.

GAN Discriminator Guidance in Diffusion Models: [Dhariwal & Nichol (2021) and [Ho & Sali!
proposed the use of classifier gradients in conjunction with the score estimate of a
diffusion model to improve the diversity of conditional image generation. were
the first to leverage the GAN discriminators, and showed that the score learnt at the time instant ¢
in the NCSN (Song & Ermon, [2019) could be improved by a correction term involving the SGAN
discriminator gradients. Subsequently, Naderiparizi et al.| (2024); Um et al.| (2024); Bansal et al |
(2023) and|[Yang et al (2024) have also explored discriminator guidance for superior coverage of the
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image manifold in diffusion models, while |[Ekstrom Kelvinius & Lindsten|(2024) and [Kerby & Moon
(2024) proposed discriminator guidance paired with discrete diffusion models for molecular graph
generation. However, these approaches typically either consider only the SGAN discriminator, or
are unable to provide an explanation for the the effectiveness of discriminator guidance when going
beyond the SGAN setting.

Unifying GANs and Diffusion Models: There has been a significant research focus on the optimality
of the GAN discriminator function. Mroueh et al.|(2018)); Zhu et al.[(2020)); [Liang| (2021)); [Franceschi
et al.|(2022); Y1 et al.| (2023)); /Asokan & Seelamantulal (2023b)) consider a functional approach, and
derive the differential equations that govern the optimal discriminator, given the generator. Along
another vertical, |Pinetz et al.|(2018)), Stanczuk et al.| (2021) and Korotin et al.| (2022)) showed that, in
practical gradient-descent-based training, the optimal discriminator is not attained. In the recent past,
there has been a strong push to develop a unifying theory to explain GAN optimization, potentially
leveraging results from flow-based approaches. For example, Y1 et al.|(2023); Heng et al.| (2023)
propose a unifying theory for all f-GANs under the umbrella of Wasserstein flows, while (Asokan
et al., [2023)) link the generator optimization in SGANS to score-based sampling, and [Franceschi et al.
(2023); /Zhang et al.| (2023) formulate both GANs and score-based diffusion models as special cases
of particle flows. While in most scenarios, the generator can be linked to minimizing the chosen
divergence or IPM, the actual functional optimization has not been thoroughly explored. Motivated
by the strong links between the guidance in diffusion and the GANs discriminator (Kim et al., [2023)),
and the equivalences between GAN training and Langevin sampling (Franceschi et al., 2023), in
this paper, we seek to answer the question: How does the closed-form optimization of the GAN
generator link to discriminator guidance for diffusion?

1.1 OUR CONTRIBUTIONS

In this paper, we analyze the links between GAN optimization and score-based diffusion, and provide
a principled approach to applying IPM-GAN discriminator guidance for diffusion models. We
consider the GAN optimization setting, and draw a parallel between the generator optimization in
GANSs and score-based diffusion. When analyzed through the lens of Variational Calculus, the
generator optimality condition in divergence-minimizing and IPM-based GAN formulations closely
resembles the score-matching condition seen in diffusion models. Considering the family of f-GANs,
we extend the analysis of |Asokan et al.|(2023) to the optimization of the generator loss in IPM-GANSs,
given the optimal discriminator. We show that the optimal generator in these settings minimizes a
smoothed score-matching difference term, where the scores are conditioned by means of the kernel
associated with the reproducing kernel Hilbert space (RKHS) from which the IPM discriminator is
drawn, akin to noise-conditioned score networks (NCSN) (Song & Ermon, [2019). Futher, we show
that, in IPM GANS, the smoothed score-matching formulation is equivalent to one of minimizing a
flow induced by the gradient field of a kernel function (cf. Section[3)). These results can be viewed
as a generalization of Sobolev descent (Mroueh et al., 2019), MMD-Flows (Arbel et al., [2019)
and MonoFlows (Y1 et al., 2023). The results establish a fundamental connection between GANSs,
score-based models, and flow-based generative models. Leveraging these insights, we employ the
closed-form IPM-GAN discriminator as a guidance term in score-based diffusion. Leveraging a
kernel-based discriminator enables the proposed closed-form discriminator guidance (abbreviated
DG*) approach to be compatible with any existing Langevin sampling framework. We show that
the guidance model can also be deployed in Langevin sampling without explicit use of the score
function (cf. Section E]) Proceeding further, we include closed-form discriminator guidance (DG*) in
the elucidating the design space of diffusion models (EDM) setting (cf. Section[d) and latent-space
diffusion models (LDM) (cf. Section[3)). Lastly, considering time-step-shifted diffusion, we show that
the inclusion of DG™* can also accelerate the denoising process, allowing for larger jumps in noise
levels when transitioning from discriminator guidance to score-based sampling.

Our key contributions are two-fold: We develop a strong theoretical foundation for employing
closed-form IPM-GAN discriminators for guidance, based on the established equivalence between
GAN-generator optimality and a smoothed version of the score-matching constraint. We lever-
age these insights to develop a novel closed-form discriminator guidance framework that be ap-
plied in a plug-and-play fashion with an existing diffusion model. We demonstrate this capability
through experimental results on NCSN (Song & Ermonl [2019), EDM (Karras et al.| 2022), trainable
discriminator-guidance (Kim et al., 2023)), and LDMs (Rombach et al., [2022)).
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2 BACKGROUND ON DIFFUSION AND GANS

In this section, we briefly introduce the training and sampling procedure in diffusion probabilistic
models (DPM), Latent Diffusion Models (LDM), and GANS.

2.1 DIFFUSION PROBABILISTIC MODELS

Diffusion probabilistic models (DPMs) primarily model the forward process wherein Gaussian
noise is progressively added to an image © ~ py. The noise is modelled as adhering to a fixed
variance schedule 3(t). The generative task is one of modeling the reverse process, essentially
iterated denoising. Given the data distribution py and a fixed noise schedule 3(¢) € (0,1),Vt =
1...T, the forward process, structured as a Markov process, is expressed as p(x12, . 1|®o) =

Hle p(x+|xs—1). In the DPM setting, the forward transition kernel at time ¢, given by p(@¢|x:—1)
can be defined as a Gaussian N’ (\/OTt:Bt_l, B:1), centered around the sample of the previous time
instant \/o;x; 1, where oy = 1 — 3; (Ho et al.,|2020). By means of the reparameterization trick, the
conditional distribution can be expressed as:

p(xiz0) = Vareo + VI —awe, = plaii|ze, xo) = N (i, 5r) (1

1 - 1 — Ot B‘ (1_&t_1)6
—_ Ry R = -
\/ Ot ¢ \/1_6% ! t ].—Oét t
and p(xg) = pg. Training DPMs involves learning a neural network ey to approximate e;, with the
following mean-squared-error loss |[Song et al.[(2021a):

wherein, a; = Hle a; and €; ~ N(0,1), iy =

Lopm = Ei g, e,~nr0,n [ll€o (e, 1) — EtHg] (2)

In practice, the model is trained on a variational lower bound of the negative log-likelihood loss.
Consequently, generation starts by sampling @ from a standard Gaussian, i.e., 7 ~ N (0,T), and
progressively generating samples according to the backward recursion:

xi_1 = po(xy,t) + Xo(x4, t).2¢, where z ~ N(0,I), andt =T, T —1,...,1,0

where (g and ¥y are the estimates of the noise mean and covariance, as output by eg. The SDE
governing the above process was generalized by Song et al.|(2021a), wherein the discretized update
is given by:

[og_ o
T = ; Lo, — \/ ; ! V(1 —ap)eg(me, t) +4/ (1 — ap1) — 0 - €o(xe,t) + 0rer (3)
t t
2o

where & can be viewed as the prediction of xg; the term /(1 — a¢—1) — 07 - €} (x;) represents
the direction pointing towards x; with ay = 1; and o€, is the diffusion term with ¢; ~ N(0,T)
being standard Gaussian and independent of x,. Different values of ¢ lead to different generative
processes while keeping ¢y fixed, thus removing the necessity to retrain the models. When o is
setto /(1 —a¢—1)/(1 — az)y/(1 — a¢/az_1), for all ¢, the resulting generative process becomes
DDPM |Song et al.|(2021a). On the other hand, when o; = 0 for all ¢, the samples generated obey a
deterministic procedure and this specific generative trajectory is referred to as denoising diffusion
implicit model (DDIM) sampling. DDIM sampling can generate high-quality samples with fewer
time-steps 7 < 71" with no changes in the training procedure of the DDPM denoiser ¢y which was
trained over 7 timesteps. In general, we can set o,(,) = nv/(1 — ;1) /(1 — ;) /(1 — /vy —1)
to interpolate between the DDPM and DDIM settings (Song et al.| 2021a)). The choice of 1 directly
controls the stochasticity in sampling, with = 1 and n = 0 corresponding to DDPM and DDIM,
respectively. In this work, we explore the inclusion of closed-form discriminator guidance in the
DDIM setting.

2.2 OPTIMALITY OF GANS

GAN optimization can be viewed as minimizing either the f-divergence between the target distribution
pq and the distribution of the generated samples (denoted as py), or an integral probability metric
(IPM) between pgq and p,. [Nowozin et al.| (2016) proposed f-GANSs, considering f-divergences
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of the form: D¢ (pgll pi—1) = [y f (re—1(x)) pa(x) de, where f: R, — R is a convex, lower-
semicontinuous function over the support X and satisfies f(1) = 0 and r;_; (z) is the density ratio

rea(@) = 242

. The optimization is given by

m(%n {mgx {Ewwpd [T(x)] — Eznp, [fc(T(G(z))]}} ) @

where T'(x) = g(D(x)), is the output of the discriminator D subjected to the activation g, and D*(x)
is the optimal discriminator, and f¢ denotes the Fenchel conjugate of f. In practice, the optimization
is an alternating one, wherein the discriminator D, is derived given the generator of the previous
iteration G¢_1, and the subsequent generator optimization involves computing G, given D; and
G't_1. Within this setting, (Asokan et al.,[2023) presented the following result:

Theorem 1. (Asokan et all 2023) Consider the generator loss in f-GANs, given by Equa-
tion @). The optimal f-GAN generator satisfies the following score-matching condition:
thl(fﬁ)g/(t)’t:D*Df’(y)‘y:m(n_l)Vm (Inri—q1(x)) = 0, where ¢'(t) denotes the derivative of

the activation function with respect to D evaluated at Df, D}'(y) denotes the derivative of the
optimal discriminator function with respect to y = In(ri—1(x)), evaluated at In(ri_1(x)). For z
such that r+_1(x)g' (t) D}’ (y) # O, the optimization yields the score-matching cost:

Vezln (pi—1(x)) |w=G:(Z) = Vg 1n (pa(x)) |:c=G;;(z)‘

In the IPM-GAN setting, |Arjovsky et al.| (2017) proposed Wasserstein GANs (WGANSs) as an
alternative to divergence-minimizing GANs. Motivated by optimal transport, the discriminator
(also called the critic) minimizes the Wasserstein-1 distance between py and p,. The IPM GAN
optimization is defined through Kantorovich—Rubinstein duality as:

min {max { E [D(x)]— E [D(x)]+ QD}} ) )
Py D T~pqa T~Pg

where (2p is an appropriately chosen regularizer. [Arjovsky et al.| (2017) enforced a Lipschitz-1
discriminator by clipping the network weights. Subsequent variants considered regularizers that bound
the energy in the discriminator gradient (Petzka et al., 2018} Mroueh et al.} 2018} |Adler & Lunz, 2018},
Asokan & Seelamantula,2023a)), resulting in Sobolev constraint spaces. The optimal discriminator in
these variants has been shown to be the solution to partial differential equations (PDEs) (Mroueh
et al.,|2018; |/Asokan & Seelamantulal, 2023a)), which can be represented through convolutions with
the Green’s function of the PDEs. As in the case of f-GANS, consider the alternating minimization
involving G;_1, D; and G;. The optimal discriminator in gradient-regularized WGANS is given by a
kernel-based convolution (Unterthiner et al., 2018 |Asokan & Seelamantulal [2023al):

Di(x) = & ((pt—1 — pa) * k) (z), (6)

where the kernel & is the Green’s function to the differential operator governing the optimal discrimi-
nator and &, is a positive constant. In Poly-WGAN (Asokan & Seelamantulal [2023a)), the kernel
corresponds to the family of polyharmonic splines, given by

() = ||| * if k<0 or nisodd,
~ Ulz||*In(||l=||) if £ >0 and nis even,
where in turn, £ = 2m—n, m being a hyper-parameter that controls to smoothness of the discriminator

and n is the dimensionality of the data. In this paper, we extend the results derived for f-GANs to
the IPM-GAN setting, and leverage the resulting solution for discriminator guidance in DDIMs.

We now derive the optimality condition on the IPM-GAN generator, and derive its relationship to
score-based diffusion.

3 THE OPTIMAL GENERATOR IN IPM GANS

To motivate our results, consider the solution to Theorem We observe that the optimal f-GAN
generator is the one that matches the score of the generator push-forward distribution to the score of
the data distribution. While this results in the dicriminator guidance framework (Kim et al., |2023)),



Under review as a conference paper at ICLR 2025

f-divergence GANs are known to be unstable to train (Arjovsky & Bottou}2017; Kim et al., [2023).
Furthermore, as noted by (Yi et al.,2023)), f-GANSs can be viewed as a special case of IPM-GANS.
Therefore, we derive the general solution to generator optimality that holds for all IPM-GAN variants.
Consider the IPM-GAN optimization problem given in Equation (3)). The following theorem presents
the optimality condition for the generator in kernel-based GANs:

Theorem 2. Consider the generator loss given by LE(G; Dy, Gi—1) = —Ez~p, [Di (G(2))], and
the optimal discriminator given in Equation|6] The optimal IPM-GAN generator satisfies

Q:Ii ( E [Vy lnpt—l(y)’f(m - y)} - E [vy lnpd(y)ﬁ(w - y)]) ‘ngz« (2) = 07 (7)

Y~pi—1 Y~pd

forallx = Gf(z), z ~ p,, where €,; is a non-zero constant dependent on the kernel k.

The above theorem shows that the optimal generator in IPM GANS is also one of score-matching,
where the score is conditioned by the kernel function, centered around . We observe that the
condition presented in Theorem [2]is equivalent to a condition on the kernel gradient, given by the
following lemma.

Lemma 3. Consider the optimality condition for the IPM generator, presented in Theorem[2] The

condition can be written equivalently as: €. ((pg — pt—1) * Vgk) () |E7G*(z) = 0, where Vgk
—t

denotes the gradient vector of the kernel, and the convolution must be interpreted element-wise, i.e.,

pa(x) — pi—1(x) is convolved with each entry of V k.

The proof of Theorem 2] and Lemma [3] and are presented in detail in Appendix [D.I] The optimal
IPM-GAN generator can be seen as minimizing a proxy to the score — similar to the Stein score —
where the gradient field induced by the kernel x is maximized at locations where data samples are
present. As observed in Coulomb GAN:Ss, these are akin to charge-potential fields, with attractive
data samples and repulsive generator samples. While we use the polyharmonic spline kernel for the
choice of x due to its stability (Asokan & Seelamantulal [2023a), a discussion on other choices is
presented in Appendix

3.1 LINKING THE OPTIMAL IPM-GAN GENERATOR TO SCORE-BASED DIFFUSION

Based on the theoretical insights, we see that, given the optimal discriminator D; that admits a
kernel-based interpolation form at training iteration ¢ — 1, the optimal generator at the subsequent
iteration G can be derived as a one that minimizes the value of the convolution between the density
difference, and the gradient of the optimal discriminator kernel, i.e.,, minimize ((pq — pi) * V&).
For most popular positive-definite kernels x (cf. Table 3 of the Appendix), this term would be
minimized when the generator distribution p; moves towards the data distribution p4. Furthermore,
from Lemma [3] we see that the gradient field of the kernels convolved with the density difference,
and the data score V4 In (p4()), serve similar purposes, which is to output an arbitrarily large value
at data sample location, and low values elsewhere. Unlike the score, however, the kernel gradients
produce a repulsive force at the location of generator samples, resulting in a push-pull framework —
The target distribution creates a pull, while the generator distribution creates the push. This serves
to validate why IPM GANSs typically do not suffer from vanishing gradients (Arjovsky & Bottoul
2017), as opposed to the f-divergence counterparts. When py () is initialized far from the target,
although the influence of the score is weak, the repulsive force of the kernel-based loss is strong.
The derived solution can also be used to explain denoising diffusion GANs (DDGAN, Xiao et al.
(2022))), wherein a GAN is trained to model the reverse diffusion process, with the generator and
discriminator networks conditioned on the time index. DDGAN can be seen as a special instance of
our approach, with Langevin updates over the gradient field of the time-conditioned discriminator
(cf. Appendix D). The kernel-convolved score-matching condition can also be viewed as generalized
score matching (Lyu, |2009) where the IPM-GAN generators minimize a generalized score, i.e., given
an IPM GAN, an equivalent diffusion model exists, with the flow field induced by the kernel of the
discriminator, and vice versa. We demonstrate this approach in Section 4]

This results allows us to explore Langevin sampling, wherein the score of the data is either replaced,
or guided using the gradient of the kernel-based discriminator. While the score of the data possesses
a strong attractive force in regions close to the target data, it does not significantly influence samples
that are far away. On the other hand, the kernel gradients possess a repulsive term that pushes particles
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Figure 2: (a Color online) (a) Shape morphing using the proposed discriminator-guided Langevin
sampler. For relatively simpler input shapes, such as the circular pattern, the sampler converges
in about 100 iterations, while in the spiral case, the sampler converges in about 500 steps. (b)
Images generated using the discriminator-guided Langevin sampler on MNIST and Ukiyo-E faces
datasets. The score in standard diffusion models is replaced with the gradient field of the discriminator,
obviating the need for training a neural network.

away from where they previously were, thereby accelerating convergence. We consider the following
update scheme:

Tiy1 = X — Ve Di () +veze, where zy ~ N(0,,1,)

and the discriminator gradient is an N-sample estimate with centers consisting of data samples
d' ~ pg, and the set of samples generated at the previous iteration {@;_1 | ®;—1 ~ p;—1}, given by:

VaDi( LY Vak(zi—g)) — € ) Vak(m —d'). (8)

QJN{mt 1} di~pg

Typically, v+ = /2a4, while «; is decayed geometrically (Song & Ermon, |2019). Within this
framework, the training time is traded in for memory overhead. We do not require a trained
score/discriminator network, but require random batches of samples drawn {d’ ~ p,} at each
sampling step.

4 EXPERIMENTATION — DISCRIMINATOR-GUIDED LANGEVIN DIFFUSION

To demonstrate the performance of the discriminator-guided Langevin flow, we consider shape
morphing, proposed by [Mroueh et al.|(2019). The source and target samples are drawn uniformly
from the interior regions of pre-defined shapes. Figure [7(a) depicts two such scenarios, where
the target shape is a heart, and the input shapes are a disk, and a spiral, respectively. Additional
combinations are presented in Appendix [E} The discriminator-guided Langevin sampler converges
in about 500 iterations in all the scenarios considered, compared to the 800 iterations reported in
Sobolev descent (Mroueh et al., 2019; [Mroueh & Rigottil [2020)), without the need for training a
network approximation of the discriminator.

We extend the proposed approach to images, considering MNIST, SVHN and Ukiyo-E (Pinkney &
Adler; [2020) datasets. Ablation experiments on the choice of o, and ~; are provided in Appendix
Figure[7[b) presents the samples generated by this discriminator-guided Langevin sampler on MNIST
and 256-dimensional Ukiyo-E faces. The model converges to realistic images in as few as 300
steps of sampling, resulting in performance comparable to baseline NCSN (Song & Ermon) 2019).
Subsequent iterations, akin to NCSN models, serve to clean the noisy images generated. Additional
experiments are provided in Appendix [E]

Since the proposed approach suggests the interoperability of the score and the discriminator-kernel
gradient in Langevin flow, we also consider discriminator-guided Langevin sampling on the CIFAR-
10 and ImageNet-64 datasets, considering EDMs as the baseline (Karras et al.l 2022). In both the
scenarios, we also replace the sampler in discriminator-guided Langevin diffusion with the one used
for the baseline considered by Karras et al.|(2022). Based on the experiments in Appendix F of the
present submission, we replace the score with the gradient of the polyharmonic kernel discriminator,
with a constant coefficient, and ignore the exploratory noise term in our approaches. Images generated
by the proposed method are provided in Figure 3] while side-by-side comparisons with the baseline
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Figure 3: (s Color online) Samples generated by the proposed discriminator-guided Langevin
diffusion on the CIFAR-10 and ImageNet-64 datasets, using the second-order Heun and EDM
samplers, respectively, and sampling parameters as described by Karras et al.|(2022)) for the baseline.
While the images generated by the proposed approach lack diversity, the sampler converges in fewer
steps and generation is performed without having to train a score network.

Table 1: A comparison of the proposed closed-form discriminator guidance for LDM (LDM+DG*)
and the baseline LDM sampler on CelebA-HQ and FFHQ datasets, in terms of standard evaluation
metrics. LDM+DG* outperforms the baseline on the Clean-FID, CLIP-FID and KID metrics. * While
the FID reported by (Rombach et al.}[2022)) is 5.11, we were unable to reproduce these numbers (even
with pre-trained models) using standard metric libraries (Clean-FID (Parmar et al.,[2021)) and Torch
Fidelity (Obukhov et al,[2020)). A { denotes a metric computed via Torch Fidelity, and  denotes a
metric computed via Clean-FID.

Method ‘ *FIDY |, ‘ Clean-FID3 | ‘ CLIP-FID; | ‘ KIDi | ‘ Precision 1 ‘ Recallf 1

g LDM 18.21 21.53 7.17 2.208 x 1072 0.5434 0.4406
<| LDM+DG* (Ours) 18.46 2049 6.48 2.041 x 10~2 0.4932 0.4806
Q
3| WANDA (Ours) 19.84 2276 7.98 2.270 x 102 0.4570 0.4990
o LDM 10.972 8.65 7.16 3.43 x 102 0.545 0.563
E LDM+DG* (Ours) || 11.056 7.92 6.51 3.02 x 10~3 0537 0.571

WANDA (Ours) 11.787 8.79 7.06 3.39 x 102 0.540 0.568

EDM are provided in Appendix [E] (cf. Figures[I5}23). For CIFAR-10, we consider the second-order
Heun sampler with 128 sampler steps in the baseline, while the proposed approach converges in
40 steps. For ImageNet-64, the baseline EDM sampler took 255 steps, while discriminator-guided
Langevin diffusion took 80 steps to converge.

However, we observe two limitations to this brute-force approach. First, diffusion models like
EDM (Karras et al] [2022)) and NCSN (Song & Ermon| [2019) work directly on the pixel space,
making both the training and inference of the score network, and the evaluation of the closed-form dis-
criminator computationally expensive. These approaches are therefore infeasible on high-resolution
datasets such as CelebA-HQ (Karras et al] 2018)) and FFHQ (Karras et al} [2019). Furthermore, we
observe that the inclsion of the discriminator guidance over all iterations may not be optimal. As we
observe from Figure 3] that the inclusion of discriminator guidance at all time stems might worsen
image quality. We now present approaches to circumvent these two challenges in Sectionj]

5 EXTENSION TO LATENT DIFFUSION MODELS

Given the limitations of the pixel-space generation given above, we extend the closed-form
discriminator-guidance approach to latent diffusion models (LDMs) (Vahdat et all, 2021} [Rom]
2022). The modified latent-space DDIM update with discriminator guidance is:

(o) (o7}
€z, , = t_ewt - : V (1 - at)eg(ewt,t)

Qi Qi

+/ (1 — 1) — 02 - €g(ex,,t) + orer + Wag Ve, Df (€, ),

where wgqq ¢ is a temporal weighting factor to gradually decay the effect of the closed-form discrimina-
tor guidance (DG*) term and e, = Er,pm () is the LDM-encoded representation of x. The resulting
LDM baseline is therefore a DDIM sampler working on encoder representations. Experimentally, we
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Figure 4: (a Color online) A comparison of the 256-dimensional CelebA-HQ images generated
(given the same input) by the baseline latent diffusion model (LDM), and the proposed closed-form
discriminator guidance models with and without time-step-shifted sampling (WANDA and LDM-
DG*, respectively). The discriminator guidance in LDM-DG* significantly improves the quality of
the images generated, by removing artifacts. WANDA is capable of generating images with a quality
comparable to that of LDM-DG*, with relatively fewer function evaluations.

found that setting wqqy 7 = 5 with an exponential decay resulted in superior image generation quality.
Ablations on this choice are discussed in Section 5.1

Figure[] presents the samples generated using vanilla LDM update and LDM+DG* approach sampled
using the equation above, on CelebA-HQ. Similar comparisons on the FFHQ dataset are provided in
Appendix [E] Both approaches are initialized with the deterministic sampler (1) = 0) on the CelebA-
HQ dataset while with the stochastic sampler (n = 1) on the FFHQ dataset. We observe that
the LDM-DG* sampler converges to different samples and results in visually superior images in
comparison to the vanilla DDIM. Table|l| presents the standard performance metrics — FID
et al.| [2021), KID (Bifikowski et al.,2018), CLIP-FID (Kynkédnniemi et al.,[2023)), and precision-
recall (Kynkéaidnniemi et al., 2019) scores. LDM+DG* outperforms the baseline in terms of the
Clean-FID, CLIP-FID and KID metrics.

Given the acceleration that was shown by EDM+DG* setting, we also explore accelerating the
LDM+DG* sampler, using time-step shifted samples, proposed by |Li et al.| (2024)

Discriminator Guidance with Time-Shifted Sampling: proposed the time-shifted
sampler to mitigate exposure bias in DPMs caused due to poor inference-time generalization, i.e., €y
is trained on ground-truth samples ¢, but inference is performed on &;_;. Due to this discrepancy
between training and generated samples, the exposure bias accumulates across the reverse process,
causing it to divert from the intended trajectory. To mitigate this issue, given the sample &; an
estimate of the noise variance in the image is used to evaluate a superior coupling time ¢4 than the
iteration’s backward time ¢. Further, they also show that diffusion models basically contain fwo
stages — The initial phase, wherein the input Gaussian distribution moves towards the image space,
and the second phase, wherein patterns and structure emerge from latching onto a specific image
to generate. Acceleration mechanisms such as time-step shifting (Li et al., 2024) and the proposed
DG* operate in the first stage, which is why we focus the discriminator guidance to earlier iterations.
Motivated by the fact that LDM+DG™, when applied for all time steps reduces images quality, (cf.
Figure[3) we adopt the time-shifted discriminator-guided diffusion strategy to ensure that the effect of
discriminator guidance is restricted to the earlier step. However, we observed that the noise-variance
estimation technique proposed in the baseline was at a pixel-level sample estimate and could be
improved. In particular, Mallat| (2009) and [Donoho| (1995)) showed that, in the context of image
denoising, the noise variance can be estimated robustly using the Haar wavelet representation. The
noise standard deviation is estimated as o = 0%/17 =, wherein M, is the median of the absolute of the
wavelet coefficients of the image «, and one level of decomposition suffices. The details are presented
in Appendix [F} We refer to the wavelet-based noise estimation for DG* guidance as WANDA.

TableT| presents various evaluation metrics, when sampling using WANDA, compared against the
baseline LDM, and LDM+DG* approaches. Figure ] presents the images generated by the proposed
approach. WANDA achieves comparable performance, while running fewer sampling steps than
the baseline approaches. The key takeaway from these results is that the closed-form discriminator
guidance (DG*) approach can be applied over any existing diffusion model at no additional training
cost, with a marginal increase in memory, to store the centres of the kernel-based discriminator
expansion. These are akin to a non-trainable set of discriminator guidance parameters.
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Table 2: Ablations of the proposed closed-form discriminator guidance for LDM (LDM+DG*) on the
CelebA-HQ dataset. LDM+DG™ with an exponential decay of the discriminator guidance weight
performs the best, in terms of the Clean-FID, CLIP-FID and KID metrics. We also observe that fewer
DG* steps leads to superior performance. Essentially, the DG* steps provide good initialization to the
subsequent LDM sampling steps. { denotes that the metric is computed via Torch Fidelity (Obukhov
et al., 2020), and I denotes that the metric is computed via Clean-FID (Parmar et al.,[2021).

Method H Clean-FIDj ‘ CLIP-FID} ‘ KIDj ‘ Precisiont ‘ Recallf
LDM+DGy (Kim et al., 2023) 21.44 7.08 2191 x 1072 | 0.5465 0.4420
LDM+DG" (linear wyg.¢) 31.68 10.99 3.125 x 1072 | 0.3602 0.5787
LDM+DG"* (Tp = 50) 20.49 6.48 2.041 x 1072  0.4932 0.4806
WANDA (Tp = 50) 22.76 7.98 2.270 x 1072 | 0.4570 0.4990
WANDA (Tp = 100) 28.79 10.02 2.845 x 1072 | 0.3574 0.5413
WANDA (T = 200) 37.83 12.64 3.688 x 1072 | 0.2030 0.5330

5.1 ABLATIONS

To better understand the effect of the time-shifted diffusion, and the effect of the closed-form
discriminator on generation performance, we perform ablations on the CelebA-HQ dataset. We
ablate on the choice of the decay parameter, wqg,; considering linear, exponential, and step-wise
decay profiles. For the linear vs. exponential decay setting, considering LDM+DG*, we found that
exponential decay with wg, 7 = 1. gave superior performance. Performance comparisons with
a linear decay and wq, 7 = 0.1, which leads to a comparable values for the weight as sampling
completes (i.e., wq, , approach similar values in both cases, as t — 0. We compare the performance
of the LDM+DG™ against a model wherein the discriminator is trained akin to the procedure described
by (Kim et al.| |2023)). We employ a noise-embedded U-Net encoder with sigmoid activation as the
discriminator that learns to classify the real and fake samples across all noise levels. The model is
trained using the binary cross-entropy (BCE) loss. From Table|2| we observe that the LDM model
with the trained discriminator (LDM+Dy) either outperforms or is on par with the baselines. However,
the trainable discriminator requires significantly more compute. On the contrary, the proposed
LDM-DG* can be applied in a plug-and-play manner, with no additional training costs, and achieves
a superior performance in terms of FID and KID metrics, compared to the LDM+Dy sampler. Lastly,
we ablate on the time-step shifting algorithm with DG*. We consider a sampling strategy wherein
the discriminator is applied for the first 7o steps, and subsequently, transitioned to the base LDM
sampler. We ablate over Tp € {50, 100,200}. From the metrics shown in Table |2} we observe that
fewer discriminator steps lead to a superior performance. Empricially, this was found to be T ~ 50.
We observe that in the WANDA setting, there is a stark jump initially, of about 10 or so steps via
the noise-variance-based time-step shifting. These observations show that DG* can be viewed as
providing a quick high-quality transition at the initial iterations.

6 CONCLUSION

In this paper, we considered the setting of discriminator guidance in diffusion models, and developed
strong theoretical links to GAN generator optimization. We showed, using variational calculus, that
the optimality of IPM-GAN generator corresponds to a smoothed score-matching condition. Based
on this novel insight, we developed a kernel-based closed-form discriminator guidance framework
that can be applied in a plug-and-plan fashion to any existing diffusion model. We demonstrated
the feasibility of this approach by means of experimentation with a discriminator-only Langevin
sampler. Subsequently, we showed that closed-form discriminator guidance, applied to EDMs and
DDIMs, results in superior image quality at no additional training cost. We also demonstrated an
extension to accelerated DDIM by means of a time-step-shifted diffusion model considering a novel
wavelet-based noise variance estimate. While the presented experiments demonstrate the versatility
of the closed-form discriminator guidance approach, exploring applications to other state-of-the-art
diffusion models, or leveraging other techniques from GAN training for accelerating diffusion, are
promising directions for future research.
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A COMPUTATIONAL RESOURCES

All experiments were carried out using TensorFlow 2.0 (Abadi et al., 2016)) and PyTorch (Paszke et al.,
2019) backend. Experiments on NCSN, EDM, and LDM were built atop publicly available implemen-

tations (URL: https://github.com/Xemnas0/NCSN-TF2.0, https://github.com/
NVlabs/edm, and https://github.com/CompVis/latent—-diffusion, respectively).
Experiments were performed on SuperMicro workstations with 256 GB of system RAM comprising
two NVIDIA GTX 3090 GPUs, each having 24 GB VRAM, and NVIDIA RTX A6000 with 8 GPUs.

B CODE REPOSITORY AND ANIMATIONS

The TF 2.0 (Abadi et al., 2016)) based source code for implementing discriminator-guided Langevin
diffusion and LDM-based experiments have been included as part of the Supplementary Material
and will be made accessible on GitHub upon paper acceptance. Additionally, we have also provided
animations corresponding to the Shape Morphing experiments presented in Figure|/| and the images
generated in Figures [8HIO] Figure [T4]and Figure ] Full-resolution versions of images presented in
the paper will also be made accessible in the GitHub Repository.
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C MATHEMATICAL PRELIMINARIES

Consider a vector z = [z1,29,...,2,]7 € R" and the generator G : R" — R", ie,.,

G(z) = [G1(2),Ga(2),...;G,(2)]T, where G;(2) denotes the i'" entry of G. The notation
V .G(z) represents the gradient matrix of the generator, with entries consisting of the partial deriva-
tives of the entries of G with respect to the entries of z and is given by

G, 9G4 9G
Oz Oz e Dz
909G, 9G4 9G,
Oz oz t oz
V.G(z)= |72 7 :
Ozn Ozpn  °°° Oz

The Jacobian J measures the transformation that the function imposes locally near the point of
evaluation and is given as the transpose of the gradient matrix, i.e., Jg(z) = (V.G(z))".

Calculus of Variations: Our analysis centers around deriving the optimal generator in the functional
sense, leveraging the Fundamental Lemma of the Calculus of Variations (Goldstine, |1980; Ferguson),
2004). Consider an integral cost L, to be optimized over a function h:

L (h,h') = /.F(:c,h(:c),h’(a:)) dz, 9)
X

where h is assumed to be continuously differentiable or at least possess a piecewise-smooth derivative
KW (z) for all z € X. If h*(x) denotes the optimum, The first variation of L, evaluated at h*,

is defined as the derivative 0L(h*;n) = Meai(eh*) evaluated at ¢ = 0, where L.(h*) denotes an
e-perturbation of the argument i about the optimum h*, given by

Lne(€) = LW (@) + en(a), h™ (@) + e ()

where, in turn, () is a family of perturbations that are compactly supported, infinitely differentiable
functions, and vanishing on the boundary of X. Then, the optimizer of the cost L satisfies the
following first-order condition:

8£h,e(6>

e |, "0

e=0

Another core concept in deriving functional optima is the Fundamental Lemma of Calculus of
Variations, which states that, if a function g() satisfies the condition

/gumwnnzo
X

for all compactly supported, infinitely differentiable functions 7(x), then g must be identically zero
almost everywhere in X'. Together, these results are used to derive the condition that the optimal
generator transformation satisfies, within various GAN formulations.
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D OPTIMALITY OF IPM-BASED GANS

We now derive the proofs for theorems presented in the context of IPM GANs. The f-GAN
counterparts are provided in|Asokan et al.[(2023]).

D.1 OPTIMALITY OF KERNEL-BASED IPM-GANS (PROOFS OF THEOREM [2] AND LEMMA [3))

Mroueh et al.|(2018), in the context of SobolevGAN, showed that IPM-GANs with a gradient-based
constraint defined with respect to a base density p(x) results in the optimal discriminator solving the
Fokker-Planck partial differential equation (PDE), given by:

div. (u VD) |D:D;‘(:c) =c(pa(z) — pi-1(x)),

where div denotes the divergence operator and c is a constant. Considering a uniform base measure,
Asokan & Seelamantulal (2023b) showed that the optimization results in a Poisson differential
equation, while in the case of higher-order gradient penalties (Adler & Lunz, 2018} [Asokan &
Seelamantulal [2023a)), the optimal discriminator is the solution to an iterated Laplacian equation,
and generalizes the SobolevGAN formulation. The optimal discriminator that satisfies the iterated-
Laplacian operator was shown to be (Asokan & Seelamantulal 2023a):

Di(z) = € ((pt—1 — pa) * k) (z),
where €, = (10" and o are positive constants, and the kernel x is the Green’s function associated
with the differential operator. In Poly-WGAN, the kernel corresponds to the family of polyharmonic
splines, given by

(@) = ]| if k<0 or nisodd,
~ Ulzl*In(||lz||) if k>0 and n is even,

where in turn, & = 2m — n. The above was also shown to be an mt"-order generalization to
the Plummer kernel considered in Coulomb GANSs (Unterthiner et al., |2018). Given the optimal
discriminator, consider the generator optimization. Only the terms involving G(z) influence the
alternating optimization in practice, and the other terms can be neglected. Then, the cost is given by:

Lo(G D Ge) == E [Di(G(2))] = */ZDZ‘(G(Z))pz(Z) dz

Let L ; . denote the loss considering an e perturbation of the i** entry about the optimum, given by:
:,i,e(z) = [Gik,t<z)v G;,t(z)7 ] G;‘k,t(z) + €7I(z)a Tt G:z,t(z)]T’

where 7)(z) is drawn from a family of compactly supported, infinitely differentiable functions. The
loss can then be written as a function of e. Consider the perturbed optimal generator G ; (z), and

the corresponding cost L ; . (€). Substituting for D} and expanding the convolution integral yields:

5 () = — L €. pa(2) /y (r-1(GLic(2) — 1) — pal(Gi(2) — ) 5(y) dy dz,  (10)

where Y is the union of the supports of py and p;_; when they are overlapping, and the convex hull
of their supports when non-overlapping. Differentiating the above with respect to € and setting it to
zero at € = 0 gives:

oLy, . (e k(G (z) —

e - [ €ea) [ st - puty) Y] s
- [ et | Gt
= [ €2 /y R e I a2
_ _ . B Ok (w) . L
=~ [ ena) [ ) = atw) L e
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The inner integral represents a convolution, given by

oL
OLGice) | _ /Z (P11 — pa) * K)) ()

Oe
e=0

w=G;(2)

where «/, is the partial derivative of the kernel x with respect to its " entry. From the Fundamental
Lemma of Calculus of Variations, we have

€. ((pe—1 — pa) * kL) ()

=0, VzezZ. (11)
2=Gj(2)

Since the above holds for all ¢, the above can be written compactly as

< ((ptfl - pd) * vaL) (w) =0, V z¢€ Z,

=G (=)

where the convolution between a scalar- and vector-valued function is carried out element-wise. This
completes the proof of Lemma 3] Table 3]lists a few common kernels used across GAN variants and
their corresponding gradient vectors.

Proof of Theorem 2} An alternative approach to solving the aforementioned optimization, is to
leverage the properties of convolution in Equation (I1)). Consider the convolution integral:

ok(w
(-1 =) <) (0) = [ (eea0) = palw) o ay
Y Wy
w=Gj(z)-y
0]
= oo ([ ra) = paty) () ay =0y zez
Py w=G}(2)-y
From the property of convolutions, we have:
0
(2 =) ) @) = 5 ([ -2(0) = patw) )y
w; y
w=Gj(z)~y
— (/ <8pta‘1(_w) - 81?@) r(y) dy) =0,V z € Z.
v i —G; ()~
w=Gj(z)-y

8g(w) — p(w) 6lréi(iw)

o= ([ (P )|

= (/y (pt 1 aln(ggyf(y)) —pd(y)alng);(y))> Kx —y) dy) =

forall z € Z and * = G} (z). Rewriting the integrals as expectations yields

Stacking the above, for all 4, as a vector, we obtain:
E  [VyInpi1(y)r(Gi(z) —y)] — JE [VyIn(pa(y))r(Gi(2) —y)| =0, V z€Z.
~Pd

Y~pi—1

Using the identity , we obtain:

((pt—1 — pa)

This completes the proof of Theorem [2]

Explaining Denoising Diffusion GANs: To derive a general solution to IPM-GANSs (both network-
based, or otherwise), consider the discriminator given at iteration ¢, D,(x). Then, the generator
optimization is given by:

EéPM(G;Dthfl):— E [Dt /Dt )dZ
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Table 3: Standard kernels considered in the GAN literature and their associated gradient fields.

Kernel ‘ k() ‘ Gradient Vg x(x)

Radial basis function Gaussian (RBFG) (o > 0) exp (—U% ||wH2) —%z exp (— U% ||m||2)

Mixture of Gaussians (MoG) ({o; > 0}¢_,) >0, €XP (—(%2”9;“2) —x (Za, 01—2 exp (—01—2||m||2))
Inverse multi-quadric IMQ) (¢ > 0) (|2 +c)_% —%w(||:v||2 +c)_%
Polyharmonic spline (PHS) (k < 0 or m is odd) ||| * (k — 2)x||x||F—2

Polyharmonic spline (PHS) (k > 0 and niseven) | |l||* In(||z|) x||2||*=2 ((k — 2) In(||z||) + 1)

The loss defined about the perturbed optimal generator is then given by:
£ == [ DGl az

oLt / 0D, ()
—0_ z Oz

Oe
A similar approach, as in the case of kernel-based IPM-GANSs, to simplifying the above for all 4,
results in the following optimality condition:

VaDy(z)|

= p=(2)n(z) dz = 0.

2=Gj(2)

w=Gi(2) = 0, Vzep,.
While the above condition is essentially the optimality condition for gradient-descent over the
discriminator in the context of gradient-descent-based training of GANS, it can be used to explain
the optimality of GAN based diffusion models such as Denoising Diffusion GANs (DDGAN,
et al (2022))). In DDGAN, a GAN is trained to approximate the reverse diffusion process, with
time-embedding-conditioned discriminator and generator networks. While the approach results in
superior sampling speeds as one only needs to sample from the sequence of generators, the underlying
transformations that the generated images undergo, can be seen as the flow through the gradient field
of the time-dependent discriminator as obtained above.

Convergence of the Generator Distribution: Given the optimal discriminator D*,|Asokan & Seela
(2023a) showed that the generator distribution converges to the desired data distribution. For
the sake of completeness, we summarize the Theorem here:

Theorem 4. (Asokan & Seelamantula) [20234d) (Optimal generator density): Consider the minimiza-
tion of the generator loss L¢. The optimal generator density is given by pj(z) = pa(x), V € X.
The optimal Lagrange multipliers are

. » 0, Va: pi(x) >0,
A, ER and /Lp(w){ ():O

Qz) € P_i(z), YVa: pa(w)

respectively, where Q(x) is a non-positive polynomial of degree m — 1, i.e., Q(x) < 0V x, such that
pa(x) = 0. The solution is valid for all choices of the homogeneous component P(x) € Pl _,(x)
in the optimal discriminator.

Proof. As the cost function involves convolution terms, the Euler-Lagrange condition cannot be
applied readily, and the optimum must be derived using the Fundamental Lemma of Calculus of
Variations|Gel’fand & Fomin| (1964)), as presented bylAsokan & Seelamantulal (2023a)). We recall
a summary of the proof here for completeness. Consider the Lagrangian of the generator loss L.
Enforcing the first-order necessary conditions for a minimizer of the cost yields the following equation

that the optimum solution pj (x) satisfies the equation p; (x) = pa(x) + (%) A s (). Ttis clear
from the above solution that the optimum, pj (z), does not depend on the choice of the homogeneous
component P () in the optimal discriminator. The optimal Lagrange multipliers can be determined

through dual optimization and enforcing the complementary slackness condition to obtain the result
in above Theorem. O
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D.2 SAMPLE ESTIMATE OF THE DISCRIMINATOR GRADIENT

The proof follows closely the approach used in |Asokan & Seelamantulal (2023a)). Consider the
optimality condition along a given dimension i. We have:

€y ((pr—1 — pa) * ;) (x) =0, V ze2Z.

2=G; (2)

Expanding the convolution integral yields
& | (e v) - W) KG() ) dy =0, ¥ zeZ
Yy

:x/yptq(y)n;((;:(z)—y) dy—A}pd<y>n;<Gr<z>—y> dy=0, Vzez

= E [5(Gi(2)=yl- E [5(Gi(2)-y]=0, VzeZ

Y~pr—1 Y~Pd
Replacing the expectations with their sample estimates yields
Y mG(z) -y = Y Ri(Gi(z) —y), VY zeZ.
Yervpe—1 Yer~vpd

Evaluating the above at a sample level, for G} (z:) = @, and stacking for all 4, we get the desired
N-sample estimate of the discriminator gradient for the closed-form discriminator:

VaDj(x) = €, Z Vaek(z, — ') — ¢, Z Ver(z, — db). (12)

gin{xi_1} di~pg
D.3 CONVERGENCE OF DISCRIMINATOR-GUIDED LANGEVIN DIFFUSION

An in-depth analysis of the convergence of discriminator-guided Langevin diffusion from the perspec-
tive of stochastic differential equations (SDEs) is outside the scope of this paper. However, (Lunz
et al.l 2018)), in the context of adversarial regularization for inverse problems, have extensively
analyzed the following iterative algorithm:

Tiy1 = Ty — anD;G(J’)a

where 7 is the learning rate, and Dy , (z) denotes the optimal discriminator at time ¢ parameterized
by 6. In particular, they show that (Lunz et al.|(2018)), Theorem 1):

0 .
W wap) =— E [[IV2D; (2)]13] ,
n TP

where WV denotes the Wasserstein-1 or Earthmover’s distance. This shows that, the updated distri-
bution p; is closer in Wasserstein distance to the target distribution pg4, in comparison to p;_;. For
functions with ||V 4 D; ,(x)|| = 1, which is the condition under which the gradient-regularized GANs

have been optimized, we have the decay (%W(pd, pt) = —1. While we consider the updates

Ty = Xy — Ve Dy () + 121

in discriminator-guided Langevin diffusion, we will show, experimentally, that the update scheme
i1 = Ty — ag Ve Dj (x;) indeed performs the best, on image datasets (cf. Appendix @)
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E ADDITIONAL EXPERIMENTAL RESULTS ON DISCRIMINATOR-GUIDED
LANGEVIN SAMPLING

We present additional experimental results on generating 2-D shapes, and images using the
discriminator-guided Langevin sampler.

E.1 ADDITIONAL RESULTS ON SYNTHETIC DATA LEARNING

On the 2-D learning task, we present additional combinations on the shape morphing experiment.

Training Parameters: All samplers are implemented using TensorFlow (Abadi et al., 2016) library.
The discriminator gradient is built as a custom radial basis function network, whose weights and
centers are assigned at each iteration. Att = 0, the centers g/ ~ p;_; are sampled from the unit
Gaussian, i.e., p_; = N(0,T). In subsequent iterations, the batch of samples from time instant
t — 1 serve as the centers for D} . Based on experiments presented in Appendix wesety; =0
and oy = 1V ¢. The input and target distributions are created following the approach presented
by (Mroueh & Rigotti, 2020). Figure 5] shows the supports of the input/output distributions (black
denotes the support). For grayscale images, the support corresponds to regions with pixel intensities
below the threshold of 128.

Experimental Results: We consider the Heart and Cat shapes as the target, while considering various
input shapes, corresponding to varying levels of difficulty in matching the target distribution. In the
case of learning the Heart shape, for input shapes that do not contain gaps/holes, the convergence
is relatively fast, and shape matching occurs in about 100 to 250 iterations. For more challenging
input shapes, such as the Cat logo, the discriminator-guided Langevin sampler converges in about
500 iterations. This is superior to the reported 800 iterations in the Unbalanced Sobolev descent
formulation. The results are similar in the case where the Cat image is the target (cf. Figure[7).

E.2 ADDITIONAL RESULTS ON IMAGE LEARNING

We present ablation experiments on generating images with the discriminator-guided Langevin
sampler to determine the choice of o, and ~; in the update regime. We also provide additional images
pertaining to the experiments presented in the Main Manuscript.

Choice of coefficients o; and ~y;: For the ablation experiments, we consider MNIST, SVHN, and
64-dimensional CelebA images. Based on the analysis presented in|Asokan & Seelamantulal (2023a)),
we consider the kernel-based discriminator with the polyharmonic spline kernel in all subsequent
experiments. Recall the update scheme:

Xy = 1 — Vg D] (T4; pr—1,Pa) + Ve2t, Wwhere 2z, ~ N(0,1).
Based on the observations made by [Karras et al.| (2022)), to ascertain the optimal choice of the

coefficients, we consider the following scenarios:

* The ordinary differential equation (ODE) formulation, wherein the noise perturbations
are ignored, giving rise to an ODE that the samples are evolved through. Here v, = 0, V ¢.

¢ The stochastic differential equation (SDE) formulation, wherein we retain the noise
perturbations. Based on the links between score-based approaches and the GANs, we
consider the approach presented in noise-conditioned score networks (NCSNv1) (Song &
Ermon, 2019), with v = /20.

Within these two scenarios, we further consider the following cases:

* Unadjusted Langevin dynamics (ULD), wherein o, is fixed, i.e., oy = ag, V t.

* Annealed Langevin dynamics (ALD), wherein «; decays according to a schedule. While
various approaches have been proposed for scaling (Song & Ermon, 2019;2020; [Song et al.,
2021b; Jolicoeur-Martineau et al.| 2021} |[Karras et al., [2022)), we consider the geometric
decay considered in NCSNv1 (Song & Ermon, [2019).

For either case, we present results considering o9 € {100, 10, 1}.

22



Under review as a conference paper at ICLR 2025

Figures [BHIO|show the images generated by the discriminator-guided Langevin sampler on MNIST,
SVHN and CelebA, respectively, for the various scenarios considered. Across all datasets, we observe
that annealing the coefficients results in poor convergence. We attribute this to the fact that the
polyharmonic kernel, being a distance function, decays automatically as the iterates converge, i.e., as
p¢ approaches py. Consequently, the magnitude of the discriminator gradient, in the case when « is
decays, is too small to significantly move the particles along the discriminator gradient field. Next,
we observe that for relatively small oy < 10, the samplers converge to realistic images. When « is
large, the resulting gradient explosion during the initial steps of the sampler results in mode-collapse
in all scenarios. Thirdly, in choosing z;, the experimental results indicate that the model converges
to visually superior images when z; = 0. For the scenarios where o, the coefficient of V, Dy, is
kept constant, but the coefficient v, decays with ¢ as in the baseline setting. When z; is non-zero,
the generated images are noisy. We attribute the convergence of the discriminator-guided Langevin
sampler to unique samples even in scenarios when z; is zero, to the implicit randomness of the centers
of the radial basis function kernels introduced by the sample estimates in the discriminator Dy

The superior convergence of the proposed approach is further validated by the iterate convergence
presented in Figure [ We compare discriminator-guided Langevin sampler, with a; = ap = 10,
with and without noise perturbations z;, against the base NCSN model, owing to the links to the
score-based results derived in ScoreGANs and FloWGANs. We plot ||z; — z;_1]|3 as a function
of iteration ¢ for the MNIST learning task. In NCSN, the iterates converge at each noise level, and
subsequently, when the noise level drops, the sample quality improved. This is consistent with the
observations made by [Song & Ermon|(2020), who showed that the score network Sy implicitly scales
its output by the noise variance o. The proposed approach, with z; = 0, performs the best.

Uniqueness of generated images: As the kernel-based discriminator operates directly on the target
data, drawing batches of samples as centers in the RBF interpolator, an obvious question to ask
is whether the discriminator-guided Langevin iterations converge to unique samples not seen in
the dataset. To verify this, we perform a k-nearest neighbor analysis, considering ¥ = 9 in the
experiments. Figures present the top-k neighbors of samples generated by the proposed
images from each digit class of MNIST, SVHN, and CelebA datasets. The neighbors are found across
all digit classes in the case of MNIST and SVHN. It is clear from these results that the proposed
approach does not memorize the dataset. In the case of SVHN, considering the samples generated
from digit class 5 of digit class 9, we observe that the nearest neighbor is from a different class,
indicative of the sampler’s ability to interpolate between the classes seen as part of discriminator
centers during sampling.

Details on the experiment presented in Section {| of the Main Manuscript: Figure [[4] presents
the images, considering the Langevin sampler with a; = a9 = 10 with z; = 0. Across all three
datasets, we observe that the models converge to nearly realists samples in about ¢ = 500 iterations,
while subsequent iterations serve to denoise the images. Animations pertaining to these iterations are
provided as part of the Supplementary Material.

Images for experiments presented in Section [3|of the Main Manuscript: Figures[[7]and [I§]provide
additional comparisons between the baseline and proposed LDM variants on the CelebA-HQ and
FFHQ datasets, respectively.

Ablation on the choice of the sampler: The proposed discriminator guidance term is orthogonal
to baselines such as|Lu et al.| (2022)); [Zhou et al.| (2024), wherein better ODE solvers are used to
accelerate sampling. As such, the closed-form discriminator guidance (+DG*) can be combined with
these techniques as well. As a proof of concept, we present an ablation on CelebA-HQ, considering
the DPM solver (Lu et al., [2022)), with and without +DG™*. TableE] presents the evaluation metrics for
this experiment. We observe that including discriminator guidance allows us to further accelerate
the sample generation process, with the DPM+DG™ sampler achieving comparable performance in
T = 15 (1 discriminator step with 14 DPM solver steps) steps, as the baseline DPM model with
T = 20. On the other hand, the DPM+DG™* with T" = 20 outperforms the baseline for the same 7T'.
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Table 4: Ablations of the proposed closed-form discriminator guidance for DPM Solver (DPM+DG*)
on the CelebA-HQ dataset, in terms of the Clean-FID, CLIP-FID and KID metrics. We observe that
including discriminator guidance allows us to further accelerate the sample generation process, with
the DPM+DG™* sampler achieving comparable performance in 7" = 15 (1 discriminator step with
14 DPM solver steps) steps, as the baseline DPM model with 7" = 20. 1 denotes that the metric is

computed via Clean-FID (Parmar et al| [2021].

Method H Clean-FIDj ‘ CLIP-FID} ‘ KIDj

< T =20 24.54 9.50 0.0231
5 T=15 26.63 10.07 0.0262
T =20, Tp =20, waqy =1.0 24.10 9.28 0.0230

T =20, Tp =2, way =1.0 24.07 9.22 0.0235

% T =20, Tp =2, way =0.5 24.67 9.28 0.0235
< T=15 Tp=1, wg =1.0 24.64 9.71 0.0233
= T =15, Tp =1, way =0.5 24.44 9.66 0.0232
T=10, Tp =1, way = 1.0 31.82 11.48 0.0320

T=10, Tp =1, way = 0.5 31.81 11.42 0.0328

Table 5: Performance evaluation of WANDA, in terms of Clean-FID and CLIP-FID
when ablations are carried out on the choice of the cut-off time T’ and guidance weight wg,.
In general, we observe that, running discriminator guidance for about 10% of the initial iterations,
with the guidance weight wq, € (0.5, 1) leads to the best performance.

Method H Clean-FIDj ‘ CLIP-FID{}
Baseline 12.95 3.78
Tp = 50, way = 25 22.85 5.48
Tp = 50, way = 20 19.92 5.01
Tp = 50, way = 10 15.41 422
T =50 Tp = 10, way = 10 15.37 4.18
Tp =5, way =10 14.04 4.14
Tp =5, wgg =5 12.79 3.90
Tp =5, wgy =2 12.24 3.81
Tp =5, wag =1 12.13 3.79
Tp =5, wag = 0.5 12.04 372
Baseline 9.30 3.02
Tp = 100, wqy = 25 15.37 4.16
Tp =100, wgy =15 11.93 3.51
T =100 Tp =10, way = 10 10.70 3.26
Tp =10, way =5 9.88 3.11
Tp =10, way =1 9.39 3.06
Tp =5, wgg =5 9.27 3.01
Tp =5, wgg =1 9.07 2.94
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Table 6: Performance of LDM+DG* on the LSUN-Churches 256-dimensional dataset. I denotes that
the metric is computed via Clean-FID (Parmar et al.| [2021]).

Method H Clean-FIDj ‘ CLIP-FID{} ‘ KID}
T = 200 H 6.67 ‘ 4.89 ‘ 0.0039
T =200, Tp = 20, way = 2.0 6.99 4.96 0.0044
T =200, Tp =10, way = 0.5 6.43 473 0.0037
T =200, Tp =10, way = 0.1 6.50 4.80 0.0032

L i

Figure 5: (s Color online) Images considered in generating the source and target in the Shape
morphing experiment.
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Figure 6: (& Color online) Plot comparing the iterate convergence of the discriminator-guided
Langevin diffusion model, compared against the baseline NCSNv1 (Song & Ermonl [2019) model.
The score in NCSN is replaced with the output of a score network Sy. The norm of the iterate-
differences decays as the noise-scale in the case of NCSN. This is consistent with the observations
made by [Song & Ermon|(2020), who showed that the score network Sy implicitly scales its output
by the noise variance . In discriminator-guided Langevin diffusion, adding noise results in poorer
performance, while the unadjusted Langevin sampler performs the best.
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Figure 7: (s Color online) Samples evolving with iterations for the discriminator-guided Langevin
sampler, considering various shapes of the initial uniform distributions, given a target uniform
distribution shaped like a Heart, or a Cat as indicated. For relatively simpler input shapes, such as the

circular pattern, the sampler converges in about 100 iterations, while in the spiral case, the sampler
converges in about 250 steps.

26



Under review as a conference paper at ICLR 2025

| Constant oy = g V' ¢ Geometrically decaying a;

205 VT

Yt =

Figure 8: (& Color online) Images generated using the discriminator-guided Langevin sampler with
MNIST as the target. The model fails to converge when o decays, for small g < 10. When

ap = 100, some samples diverge due to gradient explosion. We observe that oy = 10, with z, =0
yields the best performance.
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Figure 9: (& Color online) Images generated using the discriminator-guided Langevin sampler with
SVHN as the target. The model fails to converge with geometrically decaying o, or when z; is
not the zero vector. As in the case of MNIST, observe that g = 10, with z; = 0 yields the best
performance. Setting ap = 1 with z; = 0 results in slow convergence.
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| Constant oy = g V' ¢ Geometrically decaying oy

0; Vit

Yt =

205 VT

Yt =

Figure 10: (& Color online) Images generated using the discriminator-guided Langevin sampler with
CelebA as the target. The model fails to converge when «; decays geometrically, or when z; # 0.

Setting o € [1,10], with z; = 0 results in the sampler generating realistic images. For these choices
of ap, when z; # 0, the generated images are noisy.
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Figure 11: (& Color online) The k-nearest neighbor (k-NN) test performed on images generated by
the discriminator-guided Langevin sampler, when a; = a9 = 10 and z; = 0, on the MNIST dataset.
We observe that the generated images are unique and distinct from the top-9 neighbors drawn from
the target dataset, indicating that the sampler does not memorize the images seen as part of the
interpolating RBF discriminator’s centers.
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Figure 12: (% Color online) The k-nearest neighbor (kNN) test performed on images generated by
the discriminator-guided Langevin sampler, when a; = a9 = 10 and z; = 0, on the SVHN dataset.
We observe that the generated images are unique, compared to the top-9 neighbors drawn from the
target dataset. For generated samples such as the digit 9 or digit 5, we observe that the top k-NN
images are from classes different from that of the generated image, indicative of the model’s ability
to interpolate between the classes seen as part of discriminator centers during sampling.
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k-nearest neighbors of 7 (k = 9)
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Figure 13: (& Color online) The k-nearest neighbor (kNN) test performed on images generated by
the discriminator-guided Langevin sampler, when o, = a9 = 10 and z; = 0, on the CelebA dataset.
The generated images are unique and distinct from the top-9 neighbors drawn from the target dataset,
which suggests that the proposed approach does not memorize data.
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Figure 14: (& Color online) Images generated using the discriminator-guided Langevin sampler. The
score in standard diffusion models is replaced with the gradient field of the discriminator, obviating
the need for any trainable neural network, while generating realistic samples.
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EDM + Heun Sampler (128 steps)

Ours + Heun Sampler (40 steps)

Figure 15: (a Color online) Samples generated by the proposed discriminator-guided Langevin
diffusion, compared against the baseline EDM (Karras et al.,[2022), on the CIFAR-10 dataset. Both
approaches are sampled using the Heun second-order sampler, with sampling parameters as described
by [Karras et al.| (2022). While the baseline model requires 128 iterations, the proposed sampler
generates realistic images in about 40 iterations.

Ours + EDM Sampler (80 steps)

Figure 16: (s Color online) Samples generated by the proposed discriminator-guided Langevin
diffusion, compared against the baseline EDM approach proposed by Karras et al.| (2022), on the
ImageNet-64 dataset, using the EDM sampler, with sampling parameters as described by
(2022) for the baseline. The baseline model requires 256 iterations, while the proposed discriminator-
guided Langevin sampler converges in about 80 steps. The images generated by discriminator-guided
Langevin diffusion lack significant color diversity, but were obtained entirely from kernel-guided
sampling, without the need for training a score network. The issue of lack of sufficient color diversity
on ImageNet-64 dataset requires further investigation.
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LDM

LDM+DGg

LDM+DG* (Ours)

WANDA (Ours)

Figure 17: A comparison of the 256-dimensional CelebA-HQ images generated (given the same input)
by the baseline latent diffusion model (LDM), and the proposed closed-form discriminator guidance
models with and without time-step-shifted sampling (WANDA and LDM-DG*, respectively). Images
generated by LDM+DGy are oversmooth. The discriminator guidance in LDM-DG™ significantly
improves the quality of the images generated, by removing artifacts. WANDA is capable of generating
images with a quality comparable to that of LDM-DG*, with relatively fewer function evaluations.
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LDM

LDM+DG* (Lin. Decay)

LDM+DG* (Ours)

WANDA (Ours)

Figure 18: A comparison of the 256-dimensional FFHQ images generated (given the same input) by
the baseline latent diffusion model (LDM), and the proposed closed-form discriminator guidance
models with and without time-step-shifted sampling (WANDA and LDM-DG*, respectively). Images
generated by LDM+DG* with the linear decay (Lin. Decay) on wgg + are either oversmooth or have
saturated colors, which we attribute to the discriminator guidance not decaying sufficiently fast. The
discriminator guidance in LDM-DG™ significantly improves the quality of the images generated, by
removing artifacts. WANDA is capable of generating images with a quality comparable to that of
LDM-DG*, with relatively fewer function evaluations.
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Data Score: V4 In (p4(x)) IPM-GAN Discriminator Gradients

Figure 19: (s Color online) The loss landscape of the closed-form IPM-GAN discriminator, jux-
taposed against the (Stein) score of the target data, for a Gaussian mixture pg; = é]\/(—512, I) +
%N(512, I). The starting distribution, pr for the T-step diffusion process, is the standard normal
Gaussian. All integral probability metric (IPM) minimizing GANs minimize the gradient field of
the density difference py — p, convolved with a kernel «, which corresponds to a kernel-convolved
version of the score. The repulsive nature of the gradient field of the Discriminator improves stability
and accelerated sampling in the proposed closed-form discriminator-guided diffusion.

F WAVELET-BASED NOISE VARIANCE ESTIMATION

To estimate the variance o of the noise W [t] from the data X [t] = W [t] + f[t] where X [t] is x;, we
need to suppress the influence of f[t]. When f is piecewise smooth, a robust estimator is calculated
from the median of the finest-scale wavelet coefficients.

A signal X of size N has N/2 wavelet coeffecients {(X, ¢;,m)}o<m<n/2 at the finest-scale 2! =
2N ~1. The coefficient | {f, ;) | is small if f is smooth over the support of t ,,,, in which case
(X, Y1m) =~ (W, m). In contrast, | {f, ;) | is large if f has sharp transitions in the support of
U1.m. A piece-wise regular signal has few sharp transitions, and thus produces a number of large
coefficients that is small compared to N/2. At the finest scale, the signal f thus influences the value
of a small portion of large-amplitude coefficients (X, 1/, ,,) that are considered to be “outliers.” All
others are approximately equal to (W, % ,,,), which are independent Gaussian random variables of

variance o2.

A robust estimator of o2 is calculated from the median of (X, Y1,m)o<m<nN/2- The median of P
coefficients Med(a;, )o<p< p is the value of the middle coefficient a,,, of rank P/2. As opposed to an
average, it does not depend on the specific values of coefficients o, > av,,. If M is the median of
the absolute value of P independent Gaussian random variables of zero mean and variance 0(2), then
one can show that

B{X} ~ 0.6T450, (13)

The variance o2 of the noise W is estimated from the median Mx of {(X, Yim) Jo<m<nN /25 DY
neglecting the influence of f:

Mx
0.6745

(14)

6’:

Indeed, f is responsible for few large-amplitude outliers, and these have little impact on M x .
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k-nearest neighbors of x7 (k = 9)
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Figure 20: (% Color online) The k-nearest neighbor (kNN) test performed on images generated by
the discriminator-guided DPM sampler, on the CelebA-HQdataset. The generated images are unique
and distinct from the top-9 neighbors drawn from the target dataset, which suggests that the proposed
approach does not memorize data.
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M =50 M =100

Figure 21: (% Color online) A comparison of the images generated for varying numbers of centers M
considered in the closed-form discriminator. We observe that the performance is generally unaffected

by this choice, and using M = 50 is preferred, to ensure statistically, that the sample estimates
converge.

39



Under review as a conference paper at ICLR 2025

Plot of followed Time - steps Vs Actual Time - steps
10004 __ poim : ' '

—— DDIM + Wavelet Time Shifting
—— DDIM + DG* 4+ Wavelet Time Shifting

980

960

Time - steps followed

920

900 A

T T T
940 960 1000

Actual Time - steps

(a)

900 920 980

Plot of followed Time - steps Vs Actual Time - steps

1000 + — DDIM
—— DDIM + Wavelet Time Shifting
950 4+ —— DDIM + DG* + Wavelet Time Shifting

900 +

850 +

800 4

750 ~

Time - steps followed

700 4

650

600

800 850 200 950 1000

Actual Time - steps

(b)

600 650 700 750

Figure 22: (s Color online) A comparison of the predicted and actual time step ¢ in WANDA, and
the baseline DDIM variants for (a) Tp = 900 and (b) Tp = 600, respectively, with T = 1000. We
observe that the the discriminator guidance term introduces a jump (a sharp drop in the time step
Jollowed for the green curve) of 2-10% of the steps is either setting.

DPM

+DG*

Figure 23: (s Color online) Samples generated by the proposed DPM+DG* sampler, compared
against the DPM sampler on the CIFAR-10 dataset.
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