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In this appendix, we provide more detailed descriptions of the phase identification example in the
introduction section, the pseudocode of active learning algorithms, the tested datasets, as well as
additional experimental results.

1 Details of the phase diagram active learning example in Introduction

The example in the introduction section of the main text is a synthetic binary phase diagram. The
input features x = (x1, x2) belong to the domain X = [−0.5, 0.5]2 and the phase label y is from
the label set Y = {0, 1}. The phase is decided by the phase boundary f(x) as y = 1(f(x) > 0).
In Fig. 1, the phase boundary is f(x) = x2 − 2x21 + 0.1x1 + 0.35. We apply our NR-MOCU-RO
algoirthm to this problem. The active learning procedure has been shown in Fig. 1 in the main text,
demonstrating the reliable phase identification with only 22 samples, corresponding to the number of
required materials synthesis and profiling experiments in real-world materials science applications.

2 Additional pseudocode of active learning algorithms

We provide the pseudocode of the strait-forward EER-based active learning using random optimization
in Algorithm 1 and our NR-(S)MOCU-RO algorithm in Algorithm 2. Comparing two algorithms:
Algorithm 1 directly samples xs ∼ p(x) in the 3-rd line and retrains GPC for each x∗ in the 7-th
line, while Algorithm 2 leverages importance sampling xs ∼ p̃(xs;x∗) in the 5-th line and avoids
retraining GPC by calculating the joint distribution p(ys, y∗|xs,x∗) in the 8-th line.

3 Additional experiments and discussions

Here we test the algorithms in the task of finding the optimal classifier of the unknown probabilistic
model p(y|x, f) with f generated from the GP prior. In this set of experiments, the domain of f is
X = [−4, 4]. Each f is generated by first sampling 1000 function values from the GP prior with
γ2 = 0.5, l2 = 1. f is then given by the resulting GP posterior mean. We generate a total of 200 f ’s
following the procedure.

We perform all the competing active learning algorithms on these probabilistic models. MES, BALD,
NR-MOCU-RO and NR-SMOCU-RO are all optimized by random optimization with M2 = 1000. In
NR-SMOCU-SGD, we first perform random optimization with M2 = 800 and set the best point as
the initial point for Adagrad so that NR-SMOCU-SGD has similar running time compared with NR-
SMOCU-RO at their corresponding setups for fair comparison. Algorithm performance is measured
in terms of the error regret defined as the OBC error at n-th iteration minus the optimal classifier
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Algorithm 1 Random EER-based active learning for GPC: n-th iteration

1: function RANDOMOPTIMIZATION(p(x), q(f |X,Y ))
2: Sample M1 samples of x∗ ∼ p(x)
3: Sample M2 samples of xs ∼ p(x)
4: for each x∗ do
5: Calculate p(y∗|x∗) by (1)
6: for y∗ in {0, 1} do
7: Use EP to approximate the posterior q(f |x∗, y∗)
8: for each xs do
9: Calculate p(ys|xs) and p(ys|xs,x∗, y∗) by (1)

10: Calculate g(xs;x∗)
11: end for
12: end for
13: U(x∗) = 1

M2

∑
xs
g(xs;x∗)

14: end for
15: return x̃ = arg maxx∗

U(x∗)
16: end function

Algorithm 2 NR-(S)MOCU-RO: n-th iteration

1: function RANDOMOPTIMIZATION(p(x), q(f |X,Y ))
2: Sample M1 samples of x∗ ∼ p(x)
3: for each x∗ do
4: Calculate p(y|x∗) by (1)
5: Sample M2 samples of xs ∼ p̃(xs;x∗)
6: for y∗ in {0, 1} do
7: for each xs do
8: Calculate p(ys, y∗|xs,x∗) by (9)
9: Calculate p(ys|xs) by (1)

10: Calculate posterior p(ys|xs,x∗, y∗) = p(ys, y∗|xs,x∗)/p(ys|xs)
11: Calculate g(xs;x∗)
12: end for
13: end for
14: U(x∗) = 1

M2

∑
xs
p(xs)g(xs;x∗)/p̃(xs;x∗)

15: end for
16: return x̃ = arg maxx∗

U(x∗)
17: end function

error of the simulated ground truth. Fig.S1 shows the average error regret with standard deviation
bars in the logarithmic scale obtained by each algorithm across the 150 different probabilistic models.
The results show that in the first few iterations, all three MOCU-based algorithms (NT-MOCU-RO,
NT-SMOCU-RO, NT-SMOCU-SGD) outperform the competing algorithms. With more observations
included, the decrease of the error regret slows down for NT-MOCU-RO. This is because the MOCU-
based acquisition function cannot take into account the long-term effect of a query, also discussed
in [3]. The plot also shows that the best algorithm in this setting is NR-SMOCU-SGD as it utilizes
the gradient information during optimization.

We have also compared algorithms on the 4× 4 checkerboard problem with flip error rate equal to 0.1
and the performances of algorithms are shown in Fig. S2. The figure shows similar trends as in Fig.
2b-c, which again demonstrate the superior performance of our proposed algorithms (NT-MOCU-RO,
NT-SMOCU-RO, NT-SMOCU-SGD).
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Figure S1: Algorithm performance
comparison on 1-d GPC.
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Figure S2: Algorithm performance comparison on
the 4× 4 checkerboard with flip error rate=0.1.

4 Data description

Detailed data characteristics of the UCI datasets [2] used in the main text and the experiments
generating Fig. S2 are shown in Table S1.

Table S1: Details of the tested UCI datasets
Dataset ntrain ntest d Dataset description

WDBC 284 285 30 Wisconsin diagnostic breast cancer
Ionosphere 175 176 34 Radar returns from the ionospher

Vehicle 208 208 18 Features extracted from silhouettes image
Wine [1] 65 65 13 Wine quality

5 Calculation of∇µ∗,∇σ∗∗ and∇σs∗

Given observations X and Y , EP approximates the non-Gaussian likelihood p(Y |X, f) with a
Gaussian function: p(Y |X, f) ≈ CN (f |µ̂, Σ̂). Here C is a constant and µ̂ and Σ̂ are calculated by
iterative moment matching. Note that they are all unrelated to x∗. The posterior of f is proportional
to the likelihood times the prior by Bayes’ rule and therefore is also a Gaussian distribution. Given a
testing instance x∗, the posterior distribution of the latent variable f∗ = f(x∗) ∼ N (µ∗, σ∗∗). µ∗
and σ∗∗ can be calculated based on the multiplication of two Gaussian functions:

µ∗ = K(x∗, X)(K(X,X) + Σ̂)−1µ̂

σ∗∗ = K(x∗, x∗)−K(x∗, X)(K(X,X) + Σ̂)−1K(X,x∗),

where K is the kernel function. Since µ̂ and Σ̂ are unrelated to x∗, the calculation of ∇µ∗ and∇σ∗∗
turns into calculating ∇K(x∗, X) and∇K(x∗, x∗), which can be done as long as the kernel function
is differentiable. Similarly, the mean and covariance matrix of the posterior joint distribution of
(f∗, fs) can also be calculated by similar equations. Explicitly we have:

σs∗ = K(xs, x∗)−K(xs, X)(K(X,X) + Σ̂)−1K(X,x∗),

and therefore we can calculate ∇σs∗. Given these gradients, we can calculate
∇x∗p(ys, y∗|xs, x∗, X, Y ) with equations (12) and (13).

6 The reason∇x∗p(ys|xs, x∗, y∗X, Y ) is intractable when retraining GPC

Finally we explain why we cannot calculate the gradient ∇x∗p(ys|xs, x∗, y∗X,Y ) if we retrain
the GPC with EP approximation for observations X,Y, x∗, y∗. We assume that EP approximates
p(Y, y∗|X,x∗, f) with the Gaussian function C∗N (f |µ̂∗, Σ̂∗). Now since µ̂∗ and Σ̂∗ are related to
x∗, we should also calculate the gradients of them. However, µ̂∗ and Σ̂∗ are calculated numerically
by iterative moment matching, so the gradients of them are intractable.
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